Revert "Hard code bicubic coefficients in the shader"

This reverts commit 81ad5f744a.

Reason for revert: Serious regressions on Tegra3, and significant regression on Adreno 530.

Original change's description:
> Hard code bicubic coefficients in the shader
> 
> BUG=skia:
> 
> Change-Id: Ie231a9bd2ea2083005a595e9e426590da740b2ed
> Reviewed-on: https://skia-review.googlesource.com/6619
> Reviewed-by: Robert Phillips <robertphillips@google.com>
> Commit-Queue: Brian Osman <brianosman@google.com>
> 

TBR=bsalomon@google.com,robertphillips@google.com,brianosman@google.com,reviews@skia.org
BUG=skia:
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true

Change-Id: I62b26f2a67e8a245c36bb6098c5cb9fbed21bb8f
Reviewed-on: https://skia-review.googlesource.com/6630
Commit-Queue: Brian Osman <brianosman@google.com>
Reviewed-by: Brian Osman <brianosman@google.com>
This commit is contained in:
Brian Osman 2017-01-05 21:54:25 +00:00 committed by Skia Commit-Bot
parent 3afa628e50
commit b38db9a48d

View File

@ -13,6 +13,32 @@
#include "glsl/GrGLSLUniformHandler.h"
#include "../private/GrGLSL.h"
/*
* Filter weights come from Don Mitchell & Arun Netravali's 'Reconstruction Filters in Computer
* Graphics', ACM SIGGRAPH Computer Graphics 22, 4 (Aug. 1988).
* ACM DL: http://dl.acm.org/citation.cfm?id=378514
* Free : http://www.cs.utexas.edu/users/fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
*
* The authors define a family of cubic filters with two free parameters (B and C):
*
* { (12 - 9B - 6C)|x|^3 + (-18 + 12B + 6C)|x|^2 + (6 - 2B) if |x| < 1
* k(x) = 1/6 { (-B - 6C)|x|^3 + (6B + 30C)|x|^2 + (-12B - 48C)|x| + (8B + 24C) if 1 <= |x| < 2
* { 0 otherwise
*
* Various well-known cubic splines can be generated, and the authors select (1/3, 1/3) as their
* favorite overall spline - this is now commonly known as the Mitchell filter, and is the source
* of the specific weights below.
*
* These weights are in column-major order (ie this matrix is transposed from what you'd expect),
* so we can upload them directly via setMatrix4f.
*/
static constexpr float kMitchellCoefficients[16] = {
1.0f / 18.0f, 16.0f / 18.0f, 1.0f / 18.0f, 0.0f / 18.0f,
-9.0f / 18.0f, 0.0f / 18.0f, 9.0f / 18.0f, 0.0f / 18.0f,
15.0f / 18.0f, -36.0f / 18.0f, 27.0f / 18.0f, -6.0f / 18.0f,
-7.0f / 18.0f, 21.0f / 18.0f, -21.0f / 18.0f, 7.0f / 18.0f,
};
class GrGLBicubicEffect : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs&) override;
@ -30,6 +56,7 @@ protected:
private:
typedef GrGLSLProgramDataManager::UniformHandle UniformHandle;
UniformHandle fCoefficientsUni;
UniformHandle fImageIncrementUni;
UniformHandle fColorSpaceXformUni;
GrTextureDomain::GLDomain fDomain;
@ -41,52 +68,48 @@ void GrGLBicubicEffect::emitCode(EmitArgs& args) {
const GrBicubicEffect& bicubicEffect = args.fFp.cast<GrBicubicEffect>();
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fCoefficientsUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kMat44f_GrSLType, kDefault_GrSLPrecision,
"Coefficients");
fImageIncrementUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"ImageIncrement");
const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni);
const char* coeff = uniformHandler->getUniformCStr(fCoefficientsUni);
GrGLSLColorSpaceXformHelper colorSpaceHelper(uniformHandler, bicubicEffect.colorSpaceXform(),
&fColorSpaceXformUni);
SkString cubicBlendName;
static const GrShaderVar gCubicBlendArgs[] = {
GrShaderVar("coefficients", kMat44f_GrSLType),
GrShaderVar("t", kFloat_GrSLType),
GrShaderVar("c0", kVec4f_GrSLType),
GrShaderVar("c1", kVec4f_GrSLType),
GrShaderVar("c2", kVec4f_GrSLType),
GrShaderVar("c3", kVec4f_GrSLType),
};
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
/*
* Filter weights come from Don Mitchell & Arun Netravali's 'Reconstruction Filters in Computer
* Graphics', ACM SIGGRAPH Computer Graphics 22, 4 (Aug. 1988).
* ACM DL: http://dl.acm.org/citation.cfm?id=378514
* Free : http://www.cs.utexas.edu/users/fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
*
* The authors define a family of cubic filters with two free parameters (B and C):
*
* { (12 - 9B - 6C)|x|^3 + (-18 + 12B + 6C)|x|^2 + (6 - 2B) if |x| < 1
* k(x) = 1/6 { (-B - 6C)|x|^3 + (6B + 30C)|x|^2 + (-12B - 48C)|x| + (8B + 24C) if 1 <= |x| < 2
* { 0 otherwise
*
* Various well-known cubic splines can be generated, and the authors select (1/3, 1/3) as their
* favorite overall spline - this is now commonly known as the Mitchell filter, and is the
* source of the specific weights below.
*
* This is GLSL, so the matrix is column-major (transposed from standard matrix notation).
*/
fragBuilder->codeAppend("mat4 kMitchellCoefficients = mat4("
" 1.0 / 18.0, 16.0 / 18.0, 1.0 / 18.0, 0.0 / 18.0,"
"-9.0 / 18.0, 0.0 / 18.0, 9.0 / 18.0, 0.0 / 18.0,"
"15.0 / 18.0, -36.0 / 18.0, 27.0 / 18.0, -6.0 / 18.0,"
"-7.0 / 18.0, 21.0 / 18.0, -21.0 / 18.0, 7.0 / 18.0);");
fragBuilder->codeAppendf("vec2 coord = %s - %s * vec2(0.5);", coords2D.c_str(), imgInc);
fragBuilder->emitFunction(kVec4f_GrSLType,
"cubicBlend",
SK_ARRAY_COUNT(gCubicBlendArgs),
gCubicBlendArgs,
"\tvec4 ts = vec4(1.0, t, t * t, t * t * t);\n"
"\tvec4 c = coefficients * ts;\n"
"\treturn c.x * c0 + c.y * c1 + c.z * c2 + c.w * c3;\n",
&cubicBlendName);
fragBuilder->codeAppendf("\tvec2 coord = %s - %s * vec2(0.5);\n", coords2D.c_str(), imgInc);
// We unnormalize the coord in order to determine our fractional offset (f) within the texel
// We then snap coord to a texel center and renormalize. The snap prevents cases where the
// starting coords are near a texel boundary and accumulations of imgInc would cause us to skip/
// double hit a texel.
fragBuilder->codeAppendf("coord /= %s;", imgInc);
fragBuilder->codeAppend("vec2 f = fract(coord);");
fragBuilder->codeAppendf("coord = (coord - f + vec2(0.5)) * %s;", imgInc);
fragBuilder->codeAppend("vec4 wx = kMitchellCoefficients * vec4(1.0, f.x, f.x * f.x, f.x * f.x * f.x);");
fragBuilder->codeAppend("vec4 wy = kMitchellCoefficients * vec4(1.0, f.y, f.y * f.y, f.y * f.y * f.y);");
fragBuilder->codeAppend("vec4 rowColors[4];");
fragBuilder->codeAppendf("\tcoord /= %s;\n", imgInc);
fragBuilder->codeAppend("\tvec2 f = fract(coord);\n");
fragBuilder->codeAppendf("\tcoord = (coord - f + vec2(0.5)) * %s;\n", imgInc);
fragBuilder->codeAppend("\tvec4 rowColors[4];\n");
for (int y = 0; y < 4; ++y) {
for (int x = 0; x < 4; ++x) {
SkString coord;
@ -102,16 +125,17 @@ void GrGLBicubicEffect::emitCode(EmitArgs& args) {
args.fTexSamplers[0]);
}
fragBuilder->codeAppendf(
"vec4 s%d = wx.x * rowColors[0] + wx.y * rowColors[1] + wx.z * rowColors[2] + wx.w * rowColors[3];",
y);
"\tvec4 s%d = %s(%s, f.x, rowColors[0], rowColors[1], rowColors[2], rowColors[3]);\n",
y, cubicBlendName.c_str(), coeff);
}
SkString bicubicColor("(wy.x * s0 + wy.y * s1 + wy.z * s2 + wy.w * s3)");
SkString bicubicColor;
bicubicColor.printf("%s(%s, f.y, s0, s1, s2, s3)", cubicBlendName.c_str(), coeff);
if (colorSpaceHelper.getXformMatrix()) {
SkString xformedColor;
fragBuilder->appendColorGamutXform(&xformedColor, bicubicColor.c_str(), &colorSpaceHelper);
bicubicColor.swap(xformedColor);
}
fragBuilder->codeAppendf("%s = %s;",
fragBuilder->codeAppendf("\t%s = %s;\n",
args.fOutputColor, (GrGLSLExpr4(bicubicColor.c_str()) *
GrGLSLExpr4(args.fInputColor)).c_str());
}
@ -124,6 +148,7 @@ void GrGLBicubicEffect::onSetData(const GrGLSLProgramDataManager& pdman,
imageIncrement[0] = 1.0f / texture->width();
imageIncrement[1] = 1.0f / texture->height();
pdman.set2fv(fImageIncrementUni, 1, imageIncrement);
pdman.setMatrix4f(fCoefficientsUni, kMitchellCoefficients);
fDomain.setData(pdman, bicubicEffect.domain(), texture->origin());
if (SkToBool(bicubicEffect.colorSpaceXform())) {
pdman.setSkMatrix44(fColorSpaceXformUni, bicubicEffect.colorSpaceXform()->srcToDst());