ccpr: Clean up GrCCGeometry

Gets rid of the ugly template functions, rearranges a few static
methods, and adds a benchmark.

Bug: skia:
Change-Id: I442f3a581ba7faf7601ae5be0c7e07327df09496
Reviewed-on: https://skia-review.googlesource.com/122128
Reviewed-by: Brian Salomon <bsalomon@google.com>
Commit-Queue: Chris Dalton <csmartdalton@google.com>
This commit is contained in:
Chris Dalton 2018-04-18 14:10:22 -06:00 committed by Skia Commit-Bot
parent e68c4fbf60
commit b3a6959408
4 changed files with 357 additions and 339 deletions

View File

@ -0,0 +1,96 @@
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Benchmark.h"
#if SK_SUPPORT_GPU
#include "ccpr/GrCCGeometry.h"
#include "SkGeometry.h"
static int kNumBaseLoops = 50000;
class GrCCGeometryBench : public Benchmark {
public:
GrCCGeometryBench(float x0, float y0, float x1, float y1,
float x2, float y2, float x3, float y3, const char* extraName) {
fPoints[0].set(x0, y0);
fPoints[1].set(x1, y1);
fPoints[2].set(x2, y2);
fPoints[3].set(x3, y3);
fName = "ccprgeometry";
switch (SkClassifyCubic(fPoints)) {
case SkCubicType::kSerpentine:
fName.append("_serp");
break;
case SkCubicType::kLoop:
fName.append("_loop");
break;
default:
SK_ABORT("Unexpected cubic type");
break;
}
fName.appendf("_%s", extraName);
}
bool isSuitableFor(Backend backend) override {
return backend == kNonRendering_Backend;
}
const char* onGetName() override {
return fName.c_str();
}
void onDraw(int loops, SkCanvas*) override {
for (int j = 0; j < loops; ++j) {
fGeometry.beginContour(fPoints[0]);
for (int i = 0; i < kNumBaseLoops; ++i) {
fGeometry.cubicTo(fPoints);
fGeometry.lineTo(fPoints[0]);
}
fGeometry.endContour();
fGeometry.reset();
}
}
private:
SkPoint fPoints[4];
SkString fName;
GrCCGeometry fGeometry{4*100*kNumBaseLoops, 2*100*kNumBaseLoops};
typedef Benchmark INHERITED;
};
// Loops.
DEF_BENCH( return new GrCCGeometryBench(529.049988f, 637.050049f, 335.750000f, -135.950012f,
912.750000f, 560.949951f, 59.049988f, 295.950012f,
"2_roots"); )
DEF_BENCH( return new GrCCGeometryBench(182.050003f, 300.049988f, 490.750000f, 111.049988f,
482.750000f, 500.950012f, 451.049988f, 553.950012f,
"1_root"); )
DEF_BENCH( return new GrCCGeometryBench(498.049988f, 476.049988f, 330.750000f, 330.049988f,
222.750000f, 389.950012f, 169.049988f, 542.950012f,
"0_roots"); )
// Serpentines.
DEF_BENCH( return new GrCCGeometryBench(529.049988f, 714.049988f, 315.750000f, 196.049988f,
484.750000f, 110.950012f, 349.049988f, 630.950012f,
"2_roots"); )
DEF_BENCH( return new GrCCGeometryBench(513.049988f, 245.049988f, 73.750000f, 137.049988f,
508.750000f, 657.950012f, 99.049988f, 601.950012f,
"1_root"); )
DEF_BENCH( return new GrCCGeometryBench(560.049988f, 364.049988f, 217.750000f, 314.049988f,
21.750000f, 364.950012f, 83.049988f, 624.950012f,
"0_roots"); )
#endif

View File

@ -50,6 +50,7 @@ bench_sources = [
"$_bench/GeometryBench.cpp",
"$_bench/GMBench.cpp",
"$_bench/GradientBench.cpp",
"$_bench/GrCCGeometryBench.cpp",
"$_bench/GrMemoryPoolBench.cpp",
"$_bench/GrMipMapBench.cpp",
"$_bench/GrResourceCacheBench.cpp",

View File

@ -144,17 +144,16 @@ void GrCCGeometry::quadraticTo(const SkPoint P[3]) {
return;
}
this->appendMonotonicQuadratics(p0, p1, p2);
this->appendQuadratics(p0, p1, p2);
}
inline void GrCCGeometry::appendMonotonicQuadratics(const Sk2f& p0, const Sk2f& p1,
const Sk2f& p2) {
inline void GrCCGeometry::appendQuadratics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) {
Sk2f tan0 = p1 - p0;
Sk2f tan1 = p2 - p1;
// This should almost always be this case for well-behaved curves in the real world.
if (is_convex_curve_monotonic(p0, tan0, p2, tan1)) {
this->appendSingleMonotonicQuadratic(p0, p1, p2);
this->appendMonotonicQuadratic(p0, p1, p2);
return;
}
@ -182,38 +181,68 @@ inline void GrCCGeometry::appendMonotonicQuadratics(const Sk2f& p0, const Sk2f&
Sk2f p12 = SkNx_fma(t, tan1, p1);
Sk2f p012 = lerp(p01, p12, t);
this->appendSingleMonotonicQuadratic(p0, p01, p012);
this->appendSingleMonotonicQuadratic(p012, p12, p2);
this->appendMonotonicQuadratic(p0, p01, p012);
this->appendMonotonicQuadratic(p012, p12, p2);
}
inline void GrCCGeometry::appendSingleMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1,
const Sk2f& p2) {
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
inline void GrCCGeometry::appendMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) {
// Don't send curves to the GPU if we know they are nearly flat (or just very small).
if (are_collinear(p0, p1, p2)) {
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
this->appendLine(p2);
return;
}
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
p1.store(&fPoints.push_back());
p2.store(&fPoints.push_back());
fVerbs.push_back(Verb::kMonotonicQuadraticTo);
++fCurrContourTallies.fQuadratics;
}
static inline Sk2f first_unless_nearly_zero(const Sk2f& a, const Sk2f& b) {
Sk2f aa = a*a;
aa += SkNx_shuffle<1,0>(aa);
SkASSERT(aa[0] == aa[1]);
Sk2f bb = b*b;
bb += SkNx_shuffle<1,0>(bb);
SkASSERT(bb[0] == bb[1]);
return (aa > bb * SK_ScalarNearlyZero).thenElse(a, b);
}
static inline void get_cubic_tangents(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, Sk2f* tan0, Sk2f* tan1) {
*tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
*tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1);
}
static inline bool is_cubic_nearly_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, const Sk2f& tan0, const Sk2f& tan1,
Sk2f* c) {
Sk2f c1 = SkNx_fma(Sk2f(1.5f), tan0, p0);
Sk2f c2 = SkNx_fma(Sk2f(-1.5f), tan1, p3);
*c = (c1 + c2) * .5f; // Hopefully optimized out if not used?
return ((c1 - c2).abs() <= 1).allTrue();
}
using ExcludedTerm = GrPathUtils::ExcludedTerm;
// Calculates the padding to apply around inflection points, in homogeneous parametric coordinates.
// Finds where to chop a non-loop around its inflection points. The resulting cubic segments will be
// chopped such that a box of radius 'padRadius', centered at any point along the curve segment, is
// guaranteed to not cross the tangent lines at the inflection points (a.k.a lines L & M).
//
// More specifically, if the inflection point lies at C(t/s), then C((t +/- returnValue) / s) will
// be the two points on the curve at which a square box with radius "padRadius" will have a corner
// that touches the inflection point's tangent line.
// 'chops' will be filled with 4 T values. The segments between T0..T1 and T2..T3 must be drawn with
// flat lines instead of cubics.
//
// A serpentine cubic has two inflection points, so this method takes Sk2f and computes the padding
// for both in SIMD.
static inline Sk2f calc_inflect_homogeneous_padding(float padRadius, const Sk2f& t, const Sk2f& s,
const SkMatrix& CIT, ExcludedTerm skipTerm) {
static inline void find_chops_around_inflection_points(float padRadius, const Sk2f& t,
const Sk2f& s, const SkMatrix& CIT,
ExcludedTerm skipTerm,
SkSTArray<4, float>* chops) {
SkASSERT(chops->empty());
SkASSERT(padRadius >= 0);
Sk2f Clx = s*s*s;
@ -222,13 +251,13 @@ static inline Sk2f calc_inflect_homogeneous_padding(float padRadius, const Sk2f&
Sk2f Lx = CIT[0] * Clx + CIT[3] * Cly;
Sk2f Ly = CIT[1] * Clx + CIT[4] * Cly;
float ret[2];
Sk2f bloat = padRadius * (Lx.abs() + Ly.abs());
(bloat * s >= 0).thenElse(bloat, -bloat).store(ret);
Sk2f pad = padRadius * (Lx.abs() + Ly.abs());
pad = (pad * s >= 0).thenElse(pad, -pad);
pad = Sk2f(std::cbrt(pad[0]), std::cbrt(pad[1]));
ret[0] = cbrtf(ret[0]);
ret[1] = cbrtf(ret[1]);
return Sk2f::Load(ret);
Sk2f leftT = (t - pad) / s;
Sk2f rightT = (t + pad) / s;
Sk2f::Store2(chops->push_back_n(4), leftT, rightT);
}
static inline void swap_if_greater(float& a, float& b) {
@ -237,22 +266,23 @@ static inline void swap_if_greater(float& a, float& b) {
}
}
// Calculates all parameter values for a loop at which points a square box with radius "padRadius"
// will have a corner that touches a tangent line from the intersection.
// Finds where to chop a non-loop around its intersection point. The resulting cubic segments will
// be chopped such that a box of radius 'padRadius', centered at any point along the curve segment,
// is guaranteed to not cross the tangent lines at the intersection point (a.k.a lines L & M).
//
// T2 must contain the lesser parameter value of the loop intersection in its first component, and
// the greater in its second.
// 'chops' will be filled with 0, 2, or 4 T values. The segments between T0..T1 and T2..T3 must be
// drawn with quadratic splines instead of cubics.
//
// roots[0] will be filled with 1 or 3 sorted parameter values, representing the padding points
// around the first tangent. roots[1] will be filled with the padding points for the second tangent.
static inline void calc_loop_intersect_padding_pts(float padRadius, const Sk2f& T2,
const SkMatrix& CIT, ExcludedTerm skipTerm,
SkSTArray<3, float, true> roots[2]) {
// A loop intersection falls at two different T values, so this method takes Sk2f and computes the
// padding for both in SIMD.
static inline void find_chops_around_loop_intersection(float padRadius, const Sk2f& t,
const Sk2f& s, const SkMatrix& CIT,
ExcludedTerm skipTerm,
SkSTArray<4, float>* chops) {
SkASSERT(chops->empty());
SkASSERT(padRadius >= 0);
SkASSERT(T2[0] <= T2[1]);
SkASSERT(roots[0].empty());
SkASSERT(roots[1].empty());
Sk2f T2 = t/s;
Sk2f T1 = SkNx_shuffle<1,0>(T2);
Sk2f Cl = (ExcludedTerm::kLinearTerm == skipTerm) ? T2*-2 - T1 : T2*T2 + T2*T1*2;
Sk2f Lx = Cl * CIT[3] + CIT[0];
@ -286,47 +316,197 @@ static inline void calc_loop_intersect_padding_pts(float padRadius, const Sk2f&
for (int i = 0; i < 2; ++i) {
if (1 == numRoots[i]) {
// When there is only one root, line L chops from root..1, line M chops from 0..root.
if (1 == i) {
chops->push_back(0);
}
float A = cbrtf(R[i]);
float B = A != 0 ? QQ[i]/A : 0;
roots[i].push_back(A + B + D[i]);
chops->push_back(A + B + D[i]);
if (0 == i) {
chops->push_back(1);
}
continue;
}
static constexpr float k2PiOver3 = 2 * SK_ScalarPI / 3;
float theta = std::acos(cosTheta3[i]) * (1.f/3);
roots[i].push_back(P[i] * std::cos(theta) + D[i]);
roots[i].push_back(P[i] * std::cos(theta + k2PiOver3) + D[i]);
roots[i].push_back(P[i] * std::cos(theta - k2PiOver3) + D[i]);
float roots[3] = {P[i] * std::cos(theta) + D[i],
P[i] * std::cos(theta + k2PiOver3) + D[i],
P[i] * std::cos(theta - k2PiOver3) + D[i]};
// Sort the three roots.
swap_if_greater(roots[i][0], roots[i][1]);
swap_if_greater(roots[i][1], roots[i][2]);
swap_if_greater(roots[i][0], roots[i][1]);
swap_if_greater(roots[0], roots[1]);
swap_if_greater(roots[1], roots[2]);
swap_if_greater(roots[0], roots[1]);
// Line L chops around the first 2 roots, line M chops around the second 2.
chops->push_back_n(2, &roots[i]);
}
}
static inline Sk2f first_unless_nearly_zero(const Sk2f& a, const Sk2f& b) {
Sk2f aa = a*a;
aa += SkNx_shuffle<1,0>(aa);
SkASSERT(aa[0] == aa[1]);
void GrCCGeometry::cubicTo(const SkPoint P[4], float inflectPad, float loopIntersectPad) {
SkASSERT(fBuildingContour);
SkASSERT(P[0] == fPoints.back());
Sk2f bb = b*b;
bb += SkNx_shuffle<1,0>(bb);
SkASSERT(bb[0] == bb[1]);
// Don't crunch on the curve or inflate geometry if it is nearly flat (or just very small).
// Flat curves can break the math below.
if (are_collinear(P)) {
this->lineTo(P[3]);
return;
}
return (aa > bb * SK_ScalarNearlyZero).thenElse(a, b);
Sk2f p0 = Sk2f::Load(P);
Sk2f p1 = Sk2f::Load(P+1);
Sk2f p2 = Sk2f::Load(P+2);
Sk2f p3 = Sk2f::Load(P+3);
// Also detect near-quadratics ahead of time.
Sk2f tan0, tan1, c;
get_cubic_tangents(p0, p1, p2, p3, &tan0, &tan1);
if (is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, &c)) {
this->appendQuadratics(p0, c, p3);
return;
}
double tt[2], ss[2], D[4];
fCurrCubicType = SkClassifyCubic(P, tt, ss, D);
SkASSERT(!SkCubicIsDegenerate(fCurrCubicType));
Sk2f t = Sk2f(static_cast<float>(tt[0]), static_cast<float>(tt[1]));
Sk2f s = Sk2f(static_cast<float>(ss[0]), static_cast<float>(ss[1]));
SkMatrix CIT;
ExcludedTerm skipTerm = GrPathUtils::calcCubicInverseTransposePowerBasisMatrix(P, &CIT);
SkASSERT(ExcludedTerm::kNonInvertible != skipTerm); // Should have been caught above.
SkASSERT(0 == CIT[6]);
SkASSERT(0 == CIT[7]);
SkASSERT(1 == CIT[8]);
SkSTArray<4, float> chops;
if (SkCubicType::kLoop != fCurrCubicType) {
find_chops_around_inflection_points(inflectPad, t, s, CIT, skipTerm, &chops);
} else {
find_chops_around_loop_intersection(loopIntersectPad, t, s, CIT, skipTerm, &chops);
}
if (chops[1] >= chops[2]) {
// This just the means the KLM roots are so close that their paddings overlap. We will
// approximate the entire middle section, but still have it chopped midway. For loops this
// chop guarantees the append code only sees convex segments. Otherwise, it means we are (at
// least almost) a cusp and the chop makes sure we get a sharp point.
Sk2f ts = t * SkNx_shuffle<1,0>(s);
chops[1] = chops[2] = (ts[0] + ts[1]) / (2*s[0]*s[1]);
}
#ifdef SK_DEBUG
for (int i = 1; i < chops.count(); ++i) {
SkASSERT(chops[i] >= chops[i - 1]);
}
#endif
this->appendCubics(AppendCubicMode::kLiteral, p0, p1, p2, p3, chops.begin(), chops.count());
}
static inline bool is_cubic_nearly_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, Sk2f& tan0, Sk2f& tan1, Sk2f& c) {
tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1);
static inline void chop_cubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
float T, Sk2f* ab, Sk2f* abc, Sk2f* abcd, Sk2f* bcd, Sk2f* cd) {
Sk2f TT = T;
*ab = lerp(p0, p1, TT);
Sk2f bc = lerp(p1, p2, TT);
*cd = lerp(p2, p3, TT);
*abc = lerp(*ab, bc, TT);
*bcd = lerp(bc, *cd, TT);
*abcd = lerp(*abc, *bcd, TT);
}
Sk2f c1 = SkNx_fma(Sk2f(1.5f), tan0, p0);
Sk2f c2 = SkNx_fma(Sk2f(-1.5f), tan1, p3);
c = (c1 + c2) * .5f; // Hopefully optimized out if not used?
void GrCCGeometry::appendCubics(AppendCubicMode mode, const Sk2f& p0, const Sk2f& p1,
const Sk2f& p2, const Sk2f& p3, const float chops[], int numChops,
float localT0, float localT1) {
if (numChops) {
SkASSERT(numChops > 0);
int midChopIdx = numChops/2;
float T = chops[midChopIdx];
// Chops alternate between literal and approximate mode.
AppendCubicMode rightMode = (AppendCubicMode)((bool)mode ^ (midChopIdx & 1) ^ 1);
return ((c1 - c2).abs() <= 1).allTrue();
if (T <= localT0) {
// T is outside 0..1. Append the right side only.
this->appendCubics(rightMode, p0, p1, p2, p3, &chops[midChopIdx + 1],
numChops - midChopIdx - 1, localT0, localT1);
return;
}
if (T >= localT1) {
// T is outside 0..1. Append the left side only.
this->appendCubics(mode, p0, p1, p2, p3, chops, midChopIdx, localT0, localT1);
return;
}
float localT = (T - localT0) / (localT1 - localT0);
Sk2f p01, p02, pT, p11, p12;
chop_cubic(p0, p1, p2, p3, localT, &p01, &p02, &pT, &p11, &p12);
this->appendCubics(mode, p0, p01, p02, pT, chops, midChopIdx, localT0, T);
this->appendCubics(rightMode, pT, p11, p12, p3, &chops[midChopIdx + 1],
numChops - midChopIdx - 1, T, localT1);
return;
}
this->appendCubics(mode, p0, p1, p2, p3);
}
void GrCCGeometry::appendCubics(AppendCubicMode mode, const Sk2f& p0, const Sk2f& p1,
const Sk2f& p2, const Sk2f& p3, int maxSubdivisions) {
if ((p0 == p3).allTrue()) {
return;
}
if (SkCubicType::kLoop != fCurrCubicType) {
// Serpentines and cusps are always monotonic after chopping around inflection points.
SkASSERT(!SkCubicIsDegenerate(fCurrCubicType));
if (AppendCubicMode::kApproximate == mode) {
// This section passes through an inflection point, so we can get away with a flat line.
// This can cause some curves to feel slightly more flat when inspected rigorously back
// and forth against another renderer, but for now this seems acceptable given the
// simplicity.
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
this->appendLine(p3);
return;
}
} else {
Sk2f tan0, tan1;
get_cubic_tangents(p0, p1, p2, p3, &tan0, &tan1);
if (maxSubdivisions && !is_convex_curve_monotonic(p0, tan0, p3, tan1)) {
this->chopAndAppendCubicAtMidTangent(mode, p0, p1, p2, p3, tan0, tan1,
maxSubdivisions - 1);
return;
}
if (AppendCubicMode::kApproximate == mode) {
Sk2f c;
if (!is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, &c) && maxSubdivisions) {
this->chopAndAppendCubicAtMidTangent(mode, p0, p1, p2, p3, tan0, tan1,
maxSubdivisions - 1);
return;
}
this->appendMonotonicQuadratic(p0, c, p3);
return;
}
}
// Don't send curves to the GPU if we know they are nearly flat (or just very small).
// Since the cubic segment is known to be convex at this point, our flatness check is simple.
if (are_collinear(p0, (p1 + p2) * .5f, p3)) {
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
this->appendLine(p3);
return;
}
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
p1.store(&fPoints.push_back());
p2.store(&fPoints.push_back());
p3.store(&fPoints.push_back());
fVerbs.push_back(Verb::kMonotonicCubicTo);
++fCurrContourTallies.fCubics;
}
// Given a convex curve segment with the following order-2 tangent function:
@ -377,177 +557,11 @@ static inline float find_midtangent(const Sk2f& tan0, const Sk2f& tan1,
return std::abs(q*q - r) < std::abs(a*c - r) ? q/a : c/q;
}
void GrCCGeometry::cubicTo(const SkPoint P[4], float inflectPad, float loopIntersectPad) {
SkASSERT(fBuildingContour);
SkASSERT(P[0] == fPoints.back());
// Don't crunch on the curve or inflate geometry if it is nearly flat (or just very small).
// Flat curves can break the math below.
if (are_collinear(P)) {
this->lineTo(P[3]);
return;
}
Sk2f p0 = Sk2f::Load(P);
Sk2f p1 = Sk2f::Load(P+1);
Sk2f p2 = Sk2f::Load(P+2);
Sk2f p3 = Sk2f::Load(P+3);
// Also detect near-quadratics ahead of time.
Sk2f tan0, tan1, c;
if (is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, c)) {
this->appendMonotonicQuadratics(p0, c, p3);
return;
}
double tt[2], ss[2];
fCurrCubicType = SkClassifyCubic(P, tt, ss);
SkASSERT(!SkCubicIsDegenerate(fCurrCubicType)); // Should have been caught above.
SkMatrix CIT;
ExcludedTerm skipTerm = GrPathUtils::calcCubicInverseTransposePowerBasisMatrix(P, &CIT);
SkASSERT(ExcludedTerm::kNonInvertible != skipTerm); // Should have been caught above.
SkASSERT(0 == CIT[6]);
SkASSERT(0 == CIT[7]);
SkASSERT(1 == CIT[8]);
// Each cubic has five different sections (not always inside t=[0..1]):
//
// 1. The section before the first inflection or loop intersection point, with padding.
// 2. The section that passes through the first inflection/intersection (aka the K,L
// intersection point or T=tt[0]/ss[0]).
// 3. The section between the two inflections/intersections, with padding.
// 4. The section that passes through the second inflection/intersection (aka the K,M
// intersection point or T=tt[1]/ss[1]).
// 5. The section after the second inflection/intersection, with padding.
//
// Sections 1,3,5 can be rendered directly using the CCPR cubic shader.
//
// Sections 2 & 4 must be approximated. For loop intersections we render them with
// quadratic(s), and when passing through an inflection point we use a plain old flat line.
//
// We find T0..T3 below to be the dividing points between these five sections.
float T0, T1, T2, T3;
if (SkCubicType::kLoop != fCurrCubicType) {
Sk2f t = Sk2f(static_cast<float>(tt[0]), static_cast<float>(tt[1]));
Sk2f s = Sk2f(static_cast<float>(ss[0]), static_cast<float>(ss[1]));
Sk2f pad = calc_inflect_homogeneous_padding(inflectPad, t, s, CIT, skipTerm);
float T[2];
((t - pad) / s).store(T);
T0 = T[0];
T2 = T[1];
((t + pad) / s).store(T);
T1 = T[0];
T3 = T[1];
} else {
const float T[2] = {static_cast<float>(tt[0]/ss[0]), static_cast<float>(tt[1]/ss[1])};
SkSTArray<3, float, true> roots[2];
calc_loop_intersect_padding_pts(loopIntersectPad, Sk2f::Load(T), CIT, skipTerm, roots);
T0 = roots[0].front();
if (1 == roots[0].count() || 1 == roots[1].count()) {
// The loop is tighter than our desired padding. Collapse the middle section to a point
// somewhere in the middle-ish of the loop and Sections 2 & 4 will approximate the the
// whole thing with quadratics.
T1 = T2 = (T[0] + T[1]) * .5f;
} else {
T1 = roots[0][1];
T2 = roots[1][1];
}
T3 = roots[1].back();
}
// Guarantee that T0..T3 are monotonic.
if (T0 > T3) {
// This is not a mathematically valid scenario. The only reason it would happen is if
// padding is very small and we have encountered FP rounding error.
T0 = T1 = T2 = T3 = (T0 + T3) / 2;
} else if (T1 > T2) {
// This just means padding before the middle section overlaps the padding after it. We
// collapse the middle section to a single point that splits the difference between the
// overlap in padding.
T1 = T2 = (T1 + T2) / 2;
}
// Clamp T1 & T2 inside T0..T3. The only reason this would be necessary is if we have
// encountered FP rounding error.
T1 = std::max(T0, std::min(T1, T3));
T2 = std::max(T0, std::min(T2, T3));
// Next we chop the cubic up at all T0..T3 inside 0..1 and store the resulting segments.
if (T1 >= 1) {
// Only sections 1 & 2 can be in 0..1.
this->chopCubic<&GrCCGeometry::appendMonotonicCubics,
&GrCCGeometry::appendCubicApproximation>(p0, p1, p2, p3, T0);
return;
}
if (T2 <= 0) {
// Only sections 4 & 5 can be in 0..1.
this->chopCubic<&GrCCGeometry::appendCubicApproximation,
&GrCCGeometry::appendMonotonicCubics>(p0, p1, p2, p3, T3);
return;
}
Sk2f midp0, midp1; // These hold the first two bezier points of the middle section, if needed.
if (T1 > 0) {
Sk2f T1T1 = Sk2f(T1);
Sk2f ab1 = lerp(p0, p1, T1T1);
Sk2f bc1 = lerp(p1, p2, T1T1);
Sk2f cd1 = lerp(p2, p3, T1T1);
Sk2f abc1 = lerp(ab1, bc1, T1T1);
Sk2f bcd1 = lerp(bc1, cd1, T1T1);
Sk2f abcd1 = lerp(abc1, bcd1, T1T1);
// Sections 1 & 2.
this->chopCubic<&GrCCGeometry::appendMonotonicCubics,
&GrCCGeometry::appendCubicApproximation>(p0, ab1, abc1, abcd1, T0/T1);
if (T2 >= 1) {
// The rest of the curve is Section 3 (middle section).
this->appendMonotonicCubics(abcd1, bcd1, cd1, p3);
return;
}
// Now calculate the first two bezier points of the middle section. The final two will come
// from when we chop the other side, as that is numerically more stable.
midp0 = abcd1;
midp1 = lerp(abcd1, bcd1, Sk2f((T2 - T1) / (1 - T1)));
} else if (T2 >= 1) {
// The entire cubic is Section 3 (middle section).
this->appendMonotonicCubics(p0, p1, p2, p3);
return;
}
SkASSERT(T2 > 0 && T2 < 1);
Sk2f T2T2 = Sk2f(T2);
Sk2f ab2 = lerp(p0, p1, T2T2);
Sk2f bc2 = lerp(p1, p2, T2T2);
Sk2f cd2 = lerp(p2, p3, T2T2);
Sk2f abc2 = lerp(ab2, bc2, T2T2);
Sk2f bcd2 = lerp(bc2, cd2, T2T2);
Sk2f abcd2 = lerp(abc2, bcd2, T2T2);
if (T1 <= 0) {
// The curve begins at Section 3 (middle section).
this->appendMonotonicCubics(p0, ab2, abc2, abcd2);
} else if (T2 > T1) {
// Section 3 (middle section).
Sk2f midp2 = lerp(abc2, abcd2, Sk2f(T1/T2));
this->appendMonotonicCubics(midp0, midp1, midp2, abcd2);
}
// Sections 4 & 5.
this->chopCubic<&GrCCGeometry::appendCubicApproximation,
&GrCCGeometry::appendMonotonicCubics>(abcd2, bcd2, cd2, p3, (T3-T2) / (1-T2));
}
template<GrCCGeometry::AppendCubicFn AppendLeftRight>
inline void GrCCGeometry::chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, const Sk2f& tan0,
const Sk2f& tan1, int maxFutureSubdivisions) {
inline void GrCCGeometry::chopAndAppendCubicAtMidTangent(AppendCubicMode mode, const Sk2f& p0,
const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, const Sk2f& tan0,
const Sk2f& tan1,
int maxFutureSubdivisions) {
float midT = find_midtangent(tan0, tan1, 3, p3 + (p1 - p2)*3 - p0,
6, p0 - p1*2 + p2,
3, p1 - p0);
@ -559,97 +573,10 @@ inline void GrCCGeometry::chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1,
return;
}
this->chopCubic<AppendLeftRight, AppendLeftRight>(p0, p1, p2, p3, midT, maxFutureSubdivisions);
}
template<GrCCGeometry::AppendCubicFn AppendLeft, GrCCGeometry::AppendCubicFn AppendRight>
inline void GrCCGeometry::chopCubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, float T, int maxFutureSubdivisions) {
if (T >= 1) {
(this->*AppendLeft)(p0, p1, p2, p3, maxFutureSubdivisions);
return;
}
if (T <= 0) {
(this->*AppendRight)(p0, p1, p2, p3, maxFutureSubdivisions);
return;
}
Sk2f TT = T;
Sk2f ab = lerp(p0, p1, TT);
Sk2f bc = lerp(p1, p2, TT);
Sk2f cd = lerp(p2, p3, TT);
Sk2f abc = lerp(ab, bc, TT);
Sk2f bcd = lerp(bc, cd, TT);
Sk2f abcd = lerp(abc, bcd, TT);
(this->*AppendLeft)(p0, ab, abc, abcd, maxFutureSubdivisions);
(this->*AppendRight)(abcd, bcd, cd, p3, maxFutureSubdivisions);
}
void GrCCGeometry::appendMonotonicCubics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, int maxSubdivisions) {
SkASSERT(maxSubdivisions >= 0);
if ((p0 == p3).allTrue()) {
return;
}
if (maxSubdivisions) {
Sk2f tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
Sk2f tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1);
if (!is_convex_curve_monotonic(p0, tan0, p3, tan1)) {
this->chopCubicAtMidTangent<&GrCCGeometry::appendMonotonicCubics>(p0, p1, p2, p3,
tan0, tan1,
maxSubdivisions - 1);
return;
}
}
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
// Don't send curves to the GPU if we know they are nearly flat (or just very small).
// Since the cubic segment is known to be convex at this point, our flatness check is simple.
if (are_collinear(p0, (p1 + p2) * .5f, p3)) {
this->appendLine(p3);
return;
}
p1.store(&fPoints.push_back());
p2.store(&fPoints.push_back());
p3.store(&fPoints.push_back());
fVerbs.push_back(Verb::kMonotonicCubicTo);
++fCurrContourTallies.fCubics;
}
void GrCCGeometry::appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, int maxSubdivisions) {
SkASSERT(maxSubdivisions >= 0);
if ((p0 == p3).allTrue()) {
return;
}
if (SkCubicType::kLoop != fCurrCubicType && SkCubicType::kQuadratic != fCurrCubicType) {
// This section passes through an inflection point, so we can get away with a flat line.
// This can cause some curves to feel slightly more flat when inspected rigorously back and
// forth against another renderer, but for now this seems acceptable given the simplicity.
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
this->appendLine(p3);
return;
}
Sk2f tan0, tan1, c;
if (!is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, c) && maxSubdivisions) {
this->chopCubicAtMidTangent<&GrCCGeometry::appendCubicApproximation>(p0, p1, p2, p3,
tan0, tan1,
maxSubdivisions - 1);
return;
}
if (maxSubdivisions) {
this->appendMonotonicQuadratics(p0, c, p3);
} else {
this->appendSingleMonotonicQuadratic(p0, c, p3);
}
Sk2f p01, p02, pT, p11, p12;
chop_cubic(p0, p1, p2, p3, midT, &p01, &p02, &pT, &p11, &p12);
this->appendCubics(mode, p0, p01, p02, pT, maxFutureSubdivisions);
this->appendCubics(mode, pT, p11, p12, p3, maxFutureSubdivisions);
}
void GrCCGeometry::conicTo(const SkPoint P[3], float w) {

View File

@ -99,27 +99,21 @@ public:
private:
inline void appendLine(const Sk2f& endpt);
inline void appendMonotonicQuadratics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2);
inline void appendSingleMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2);
inline void appendQuadratics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2);
inline void appendMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2);
using AppendCubicFn = void(GrCCGeometry::*)(const Sk2f& p0, const Sk2f& p1,
const Sk2f& p2, const Sk2f& p3,
int maxSubdivisions);
static constexpr int kMaxSubdivionsPerCubicSection = 2;
template<AppendCubicFn AppendLeftRight>
inline void chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, const Sk2f& tan0, const Sk2f& tan3,
int maxFutureSubdivisions = kMaxSubdivionsPerCubicSection);
template<AppendCubicFn AppendLeft, AppendCubicFn AppendRight>
inline void chopCubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
float T, int maxFutureSubdivisions = kMaxSubdivionsPerCubicSection);
void appendMonotonicCubics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
int maxSubdivisions = kMaxSubdivionsPerCubicSection);
void appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
int maxSubdivisions = kMaxSubdivionsPerCubicSection);
enum class AppendCubicMode : bool {
kLiteral,
kApproximate
};
void appendCubics(AppendCubicMode, const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, const float chops[], int numChops, float localT0 = 0,
float localT1 = 1);
void appendCubics(AppendCubicMode, const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, int maxSubdivisions = 2);
void chopAndAppendCubicAtMidTangent(AppendCubicMode, const Sk2f& p0, const Sk2f& p1,
const Sk2f& p2, const Sk2f& p3, const Sk2f& tan0,
const Sk2f& tan1, int maxFutureSubdivisions);
void appendMonotonicConic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, float w);