ccpr: Clean up GrCCGeometry
Gets rid of the ugly template functions, rearranges a few static methods, and adds a benchmark. Bug: skia: Change-Id: I442f3a581ba7faf7601ae5be0c7e07327df09496 Reviewed-on: https://skia-review.googlesource.com/122128 Reviewed-by: Brian Salomon <bsalomon@google.com> Commit-Queue: Chris Dalton <csmartdalton@google.com>
This commit is contained in:
parent
e68c4fbf60
commit
b3a6959408
96
bench/GrCCGeometryBench.cpp
Normal file
96
bench/GrCCGeometryBench.cpp
Normal file
@ -0,0 +1,96 @@
|
||||
/*
|
||||
* Copyright 2018 Google Inc.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#include "Benchmark.h"
|
||||
|
||||
#if SK_SUPPORT_GPU
|
||||
|
||||
#include "ccpr/GrCCGeometry.h"
|
||||
#include "SkGeometry.h"
|
||||
|
||||
static int kNumBaseLoops = 50000;
|
||||
|
||||
class GrCCGeometryBench : public Benchmark {
|
||||
public:
|
||||
GrCCGeometryBench(float x0, float y0, float x1, float y1,
|
||||
float x2, float y2, float x3, float y3, const char* extraName) {
|
||||
fPoints[0].set(x0, y0);
|
||||
fPoints[1].set(x1, y1);
|
||||
fPoints[2].set(x2, y2);
|
||||
fPoints[3].set(x3, y3);
|
||||
|
||||
fName = "ccprgeometry";
|
||||
switch (SkClassifyCubic(fPoints)) {
|
||||
case SkCubicType::kSerpentine:
|
||||
fName.append("_serp");
|
||||
break;
|
||||
case SkCubicType::kLoop:
|
||||
fName.append("_loop");
|
||||
break;
|
||||
default:
|
||||
SK_ABORT("Unexpected cubic type");
|
||||
break;
|
||||
}
|
||||
|
||||
fName.appendf("_%s", extraName);
|
||||
}
|
||||
|
||||
bool isSuitableFor(Backend backend) override {
|
||||
return backend == kNonRendering_Backend;
|
||||
}
|
||||
|
||||
const char* onGetName() override {
|
||||
return fName.c_str();
|
||||
}
|
||||
|
||||
void onDraw(int loops, SkCanvas*) override {
|
||||
for (int j = 0; j < loops; ++j) {
|
||||
fGeometry.beginContour(fPoints[0]);
|
||||
for (int i = 0; i < kNumBaseLoops; ++i) {
|
||||
fGeometry.cubicTo(fPoints);
|
||||
fGeometry.lineTo(fPoints[0]);
|
||||
}
|
||||
fGeometry.endContour();
|
||||
fGeometry.reset();
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
SkPoint fPoints[4];
|
||||
SkString fName;
|
||||
GrCCGeometry fGeometry{4*100*kNumBaseLoops, 2*100*kNumBaseLoops};
|
||||
|
||||
typedef Benchmark INHERITED;
|
||||
};
|
||||
|
||||
// Loops.
|
||||
DEF_BENCH( return new GrCCGeometryBench(529.049988f, 637.050049f, 335.750000f, -135.950012f,
|
||||
912.750000f, 560.949951f, 59.049988f, 295.950012f,
|
||||
"2_roots"); )
|
||||
|
||||
DEF_BENCH( return new GrCCGeometryBench(182.050003f, 300.049988f, 490.750000f, 111.049988f,
|
||||
482.750000f, 500.950012f, 451.049988f, 553.950012f,
|
||||
"1_root"); )
|
||||
|
||||
DEF_BENCH( return new GrCCGeometryBench(498.049988f, 476.049988f, 330.750000f, 330.049988f,
|
||||
222.750000f, 389.950012f, 169.049988f, 542.950012f,
|
||||
"0_roots"); )
|
||||
|
||||
// Serpentines.
|
||||
DEF_BENCH( return new GrCCGeometryBench(529.049988f, 714.049988f, 315.750000f, 196.049988f,
|
||||
484.750000f, 110.950012f, 349.049988f, 630.950012f,
|
||||
"2_roots"); )
|
||||
|
||||
DEF_BENCH( return new GrCCGeometryBench(513.049988f, 245.049988f, 73.750000f, 137.049988f,
|
||||
508.750000f, 657.950012f, 99.049988f, 601.950012f,
|
||||
"1_root"); )
|
||||
|
||||
DEF_BENCH( return new GrCCGeometryBench(560.049988f, 364.049988f, 217.750000f, 314.049988f,
|
||||
21.750000f, 364.950012f, 83.049988f, 624.950012f,
|
||||
"0_roots"); )
|
||||
|
||||
#endif
|
@ -50,6 +50,7 @@ bench_sources = [
|
||||
"$_bench/GeometryBench.cpp",
|
||||
"$_bench/GMBench.cpp",
|
||||
"$_bench/GradientBench.cpp",
|
||||
"$_bench/GrCCGeometryBench.cpp",
|
||||
"$_bench/GrMemoryPoolBench.cpp",
|
||||
"$_bench/GrMipMapBench.cpp",
|
||||
"$_bench/GrResourceCacheBench.cpp",
|
||||
|
@ -144,17 +144,16 @@ void GrCCGeometry::quadraticTo(const SkPoint P[3]) {
|
||||
return;
|
||||
}
|
||||
|
||||
this->appendMonotonicQuadratics(p0, p1, p2);
|
||||
this->appendQuadratics(p0, p1, p2);
|
||||
}
|
||||
|
||||
inline void GrCCGeometry::appendMonotonicQuadratics(const Sk2f& p0, const Sk2f& p1,
|
||||
const Sk2f& p2) {
|
||||
inline void GrCCGeometry::appendQuadratics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) {
|
||||
Sk2f tan0 = p1 - p0;
|
||||
Sk2f tan1 = p2 - p1;
|
||||
|
||||
// This should almost always be this case for well-behaved curves in the real world.
|
||||
if (is_convex_curve_monotonic(p0, tan0, p2, tan1)) {
|
||||
this->appendSingleMonotonicQuadratic(p0, p1, p2);
|
||||
this->appendMonotonicQuadratic(p0, p1, p2);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -182,38 +181,68 @@ inline void GrCCGeometry::appendMonotonicQuadratics(const Sk2f& p0, const Sk2f&
|
||||
Sk2f p12 = SkNx_fma(t, tan1, p1);
|
||||
Sk2f p012 = lerp(p01, p12, t);
|
||||
|
||||
this->appendSingleMonotonicQuadratic(p0, p01, p012);
|
||||
this->appendSingleMonotonicQuadratic(p012, p12, p2);
|
||||
this->appendMonotonicQuadratic(p0, p01, p012);
|
||||
this->appendMonotonicQuadratic(p012, p12, p2);
|
||||
}
|
||||
|
||||
inline void GrCCGeometry::appendSingleMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1,
|
||||
const Sk2f& p2) {
|
||||
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
|
||||
|
||||
inline void GrCCGeometry::appendMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) {
|
||||
// Don't send curves to the GPU if we know they are nearly flat (or just very small).
|
||||
if (are_collinear(p0, p1, p2)) {
|
||||
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
|
||||
this->appendLine(p2);
|
||||
return;
|
||||
}
|
||||
|
||||
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
|
||||
p1.store(&fPoints.push_back());
|
||||
p2.store(&fPoints.push_back());
|
||||
fVerbs.push_back(Verb::kMonotonicQuadraticTo);
|
||||
++fCurrContourTallies.fQuadratics;
|
||||
}
|
||||
|
||||
static inline Sk2f first_unless_nearly_zero(const Sk2f& a, const Sk2f& b) {
|
||||
Sk2f aa = a*a;
|
||||
aa += SkNx_shuffle<1,0>(aa);
|
||||
SkASSERT(aa[0] == aa[1]);
|
||||
|
||||
Sk2f bb = b*b;
|
||||
bb += SkNx_shuffle<1,0>(bb);
|
||||
SkASSERT(bb[0] == bb[1]);
|
||||
|
||||
return (aa > bb * SK_ScalarNearlyZero).thenElse(a, b);
|
||||
}
|
||||
|
||||
static inline void get_cubic_tangents(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
|
||||
const Sk2f& p3, Sk2f* tan0, Sk2f* tan1) {
|
||||
*tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
|
||||
*tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1);
|
||||
}
|
||||
|
||||
static inline bool is_cubic_nearly_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
|
||||
const Sk2f& p3, const Sk2f& tan0, const Sk2f& tan1,
|
||||
Sk2f* c) {
|
||||
Sk2f c1 = SkNx_fma(Sk2f(1.5f), tan0, p0);
|
||||
Sk2f c2 = SkNx_fma(Sk2f(-1.5f), tan1, p3);
|
||||
*c = (c1 + c2) * .5f; // Hopefully optimized out if not used?
|
||||
return ((c1 - c2).abs() <= 1).allTrue();
|
||||
}
|
||||
|
||||
using ExcludedTerm = GrPathUtils::ExcludedTerm;
|
||||
|
||||
// Calculates the padding to apply around inflection points, in homogeneous parametric coordinates.
|
||||
// Finds where to chop a non-loop around its inflection points. The resulting cubic segments will be
|
||||
// chopped such that a box of radius 'padRadius', centered at any point along the curve segment, is
|
||||
// guaranteed to not cross the tangent lines at the inflection points (a.k.a lines L & M).
|
||||
//
|
||||
// More specifically, if the inflection point lies at C(t/s), then C((t +/- returnValue) / s) will
|
||||
// be the two points on the curve at which a square box with radius "padRadius" will have a corner
|
||||
// that touches the inflection point's tangent line.
|
||||
// 'chops' will be filled with 4 T values. The segments between T0..T1 and T2..T3 must be drawn with
|
||||
// flat lines instead of cubics.
|
||||
//
|
||||
// A serpentine cubic has two inflection points, so this method takes Sk2f and computes the padding
|
||||
// for both in SIMD.
|
||||
static inline Sk2f calc_inflect_homogeneous_padding(float padRadius, const Sk2f& t, const Sk2f& s,
|
||||
const SkMatrix& CIT, ExcludedTerm skipTerm) {
|
||||
static inline void find_chops_around_inflection_points(float padRadius, const Sk2f& t,
|
||||
const Sk2f& s, const SkMatrix& CIT,
|
||||
ExcludedTerm skipTerm,
|
||||
SkSTArray<4, float>* chops) {
|
||||
SkASSERT(chops->empty());
|
||||
SkASSERT(padRadius >= 0);
|
||||
|
||||
Sk2f Clx = s*s*s;
|
||||
@ -222,13 +251,13 @@ static inline Sk2f calc_inflect_homogeneous_padding(float padRadius, const Sk2f&
|
||||
Sk2f Lx = CIT[0] * Clx + CIT[3] * Cly;
|
||||
Sk2f Ly = CIT[1] * Clx + CIT[4] * Cly;
|
||||
|
||||
float ret[2];
|
||||
Sk2f bloat = padRadius * (Lx.abs() + Ly.abs());
|
||||
(bloat * s >= 0).thenElse(bloat, -bloat).store(ret);
|
||||
Sk2f pad = padRadius * (Lx.abs() + Ly.abs());
|
||||
pad = (pad * s >= 0).thenElse(pad, -pad);
|
||||
pad = Sk2f(std::cbrt(pad[0]), std::cbrt(pad[1]));
|
||||
|
||||
ret[0] = cbrtf(ret[0]);
|
||||
ret[1] = cbrtf(ret[1]);
|
||||
return Sk2f::Load(ret);
|
||||
Sk2f leftT = (t - pad) / s;
|
||||
Sk2f rightT = (t + pad) / s;
|
||||
Sk2f::Store2(chops->push_back_n(4), leftT, rightT);
|
||||
}
|
||||
|
||||
static inline void swap_if_greater(float& a, float& b) {
|
||||
@ -237,22 +266,23 @@ static inline void swap_if_greater(float& a, float& b) {
|
||||
}
|
||||
}
|
||||
|
||||
// Calculates all parameter values for a loop at which points a square box with radius "padRadius"
|
||||
// will have a corner that touches a tangent line from the intersection.
|
||||
// Finds where to chop a non-loop around its intersection point. The resulting cubic segments will
|
||||
// be chopped such that a box of radius 'padRadius', centered at any point along the curve segment,
|
||||
// is guaranteed to not cross the tangent lines at the intersection point (a.k.a lines L & M).
|
||||
//
|
||||
// T2 must contain the lesser parameter value of the loop intersection in its first component, and
|
||||
// the greater in its second.
|
||||
// 'chops' will be filled with 0, 2, or 4 T values. The segments between T0..T1 and T2..T3 must be
|
||||
// drawn with quadratic splines instead of cubics.
|
||||
//
|
||||
// roots[0] will be filled with 1 or 3 sorted parameter values, representing the padding points
|
||||
// around the first tangent. roots[1] will be filled with the padding points for the second tangent.
|
||||
static inline void calc_loop_intersect_padding_pts(float padRadius, const Sk2f& T2,
|
||||
const SkMatrix& CIT, ExcludedTerm skipTerm,
|
||||
SkSTArray<3, float, true> roots[2]) {
|
||||
// A loop intersection falls at two different T values, so this method takes Sk2f and computes the
|
||||
// padding for both in SIMD.
|
||||
static inline void find_chops_around_loop_intersection(float padRadius, const Sk2f& t,
|
||||
const Sk2f& s, const SkMatrix& CIT,
|
||||
ExcludedTerm skipTerm,
|
||||
SkSTArray<4, float>* chops) {
|
||||
SkASSERT(chops->empty());
|
||||
SkASSERT(padRadius >= 0);
|
||||
SkASSERT(T2[0] <= T2[1]);
|
||||
SkASSERT(roots[0].empty());
|
||||
SkASSERT(roots[1].empty());
|
||||
|
||||
Sk2f T2 = t/s;
|
||||
Sk2f T1 = SkNx_shuffle<1,0>(T2);
|
||||
Sk2f Cl = (ExcludedTerm::kLinearTerm == skipTerm) ? T2*-2 - T1 : T2*T2 + T2*T1*2;
|
||||
Sk2f Lx = Cl * CIT[3] + CIT[0];
|
||||
@ -286,47 +316,197 @@ static inline void calc_loop_intersect_padding_pts(float padRadius, const Sk2f&
|
||||
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
if (1 == numRoots[i]) {
|
||||
// When there is only one root, line L chops from root..1, line M chops from 0..root.
|
||||
if (1 == i) {
|
||||
chops->push_back(0);
|
||||
}
|
||||
float A = cbrtf(R[i]);
|
||||
float B = A != 0 ? QQ[i]/A : 0;
|
||||
roots[i].push_back(A + B + D[i]);
|
||||
chops->push_back(A + B + D[i]);
|
||||
if (0 == i) {
|
||||
chops->push_back(1);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
static constexpr float k2PiOver3 = 2 * SK_ScalarPI / 3;
|
||||
float theta = std::acos(cosTheta3[i]) * (1.f/3);
|
||||
roots[i].push_back(P[i] * std::cos(theta) + D[i]);
|
||||
roots[i].push_back(P[i] * std::cos(theta + k2PiOver3) + D[i]);
|
||||
roots[i].push_back(P[i] * std::cos(theta - k2PiOver3) + D[i]);
|
||||
float roots[3] = {P[i] * std::cos(theta) + D[i],
|
||||
P[i] * std::cos(theta + k2PiOver3) + D[i],
|
||||
P[i] * std::cos(theta - k2PiOver3) + D[i]};
|
||||
|
||||
// Sort the three roots.
|
||||
swap_if_greater(roots[i][0], roots[i][1]);
|
||||
swap_if_greater(roots[i][1], roots[i][2]);
|
||||
swap_if_greater(roots[i][0], roots[i][1]);
|
||||
swap_if_greater(roots[0], roots[1]);
|
||||
swap_if_greater(roots[1], roots[2]);
|
||||
swap_if_greater(roots[0], roots[1]);
|
||||
|
||||
// Line L chops around the first 2 roots, line M chops around the second 2.
|
||||
chops->push_back_n(2, &roots[i]);
|
||||
}
|
||||
}
|
||||
|
||||
static inline Sk2f first_unless_nearly_zero(const Sk2f& a, const Sk2f& b) {
|
||||
Sk2f aa = a*a;
|
||||
aa += SkNx_shuffle<1,0>(aa);
|
||||
SkASSERT(aa[0] == aa[1]);
|
||||
void GrCCGeometry::cubicTo(const SkPoint P[4], float inflectPad, float loopIntersectPad) {
|
||||
SkASSERT(fBuildingContour);
|
||||
SkASSERT(P[0] == fPoints.back());
|
||||
|
||||
Sk2f bb = b*b;
|
||||
bb += SkNx_shuffle<1,0>(bb);
|
||||
SkASSERT(bb[0] == bb[1]);
|
||||
// Don't crunch on the curve or inflate geometry if it is nearly flat (or just very small).
|
||||
// Flat curves can break the math below.
|
||||
if (are_collinear(P)) {
|
||||
this->lineTo(P[3]);
|
||||
return;
|
||||
}
|
||||
|
||||
return (aa > bb * SK_ScalarNearlyZero).thenElse(a, b);
|
||||
Sk2f p0 = Sk2f::Load(P);
|
||||
Sk2f p1 = Sk2f::Load(P+1);
|
||||
Sk2f p2 = Sk2f::Load(P+2);
|
||||
Sk2f p3 = Sk2f::Load(P+3);
|
||||
|
||||
// Also detect near-quadratics ahead of time.
|
||||
Sk2f tan0, tan1, c;
|
||||
get_cubic_tangents(p0, p1, p2, p3, &tan0, &tan1);
|
||||
if (is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, &c)) {
|
||||
this->appendQuadratics(p0, c, p3);
|
||||
return;
|
||||
}
|
||||
|
||||
double tt[2], ss[2], D[4];
|
||||
fCurrCubicType = SkClassifyCubic(P, tt, ss, D);
|
||||
SkASSERT(!SkCubicIsDegenerate(fCurrCubicType));
|
||||
Sk2f t = Sk2f(static_cast<float>(tt[0]), static_cast<float>(tt[1]));
|
||||
Sk2f s = Sk2f(static_cast<float>(ss[0]), static_cast<float>(ss[1]));
|
||||
|
||||
SkMatrix CIT;
|
||||
ExcludedTerm skipTerm = GrPathUtils::calcCubicInverseTransposePowerBasisMatrix(P, &CIT);
|
||||
SkASSERT(ExcludedTerm::kNonInvertible != skipTerm); // Should have been caught above.
|
||||
SkASSERT(0 == CIT[6]);
|
||||
SkASSERT(0 == CIT[7]);
|
||||
SkASSERT(1 == CIT[8]);
|
||||
|
||||
SkSTArray<4, float> chops;
|
||||
if (SkCubicType::kLoop != fCurrCubicType) {
|
||||
find_chops_around_inflection_points(inflectPad, t, s, CIT, skipTerm, &chops);
|
||||
} else {
|
||||
find_chops_around_loop_intersection(loopIntersectPad, t, s, CIT, skipTerm, &chops);
|
||||
}
|
||||
if (chops[1] >= chops[2]) {
|
||||
// This just the means the KLM roots are so close that their paddings overlap. We will
|
||||
// approximate the entire middle section, but still have it chopped midway. For loops this
|
||||
// chop guarantees the append code only sees convex segments. Otherwise, it means we are (at
|
||||
// least almost) a cusp and the chop makes sure we get a sharp point.
|
||||
Sk2f ts = t * SkNx_shuffle<1,0>(s);
|
||||
chops[1] = chops[2] = (ts[0] + ts[1]) / (2*s[0]*s[1]);
|
||||
}
|
||||
|
||||
#ifdef SK_DEBUG
|
||||
for (int i = 1; i < chops.count(); ++i) {
|
||||
SkASSERT(chops[i] >= chops[i - 1]);
|
||||
}
|
||||
#endif
|
||||
this->appendCubics(AppendCubicMode::kLiteral, p0, p1, p2, p3, chops.begin(), chops.count());
|
||||
}
|
||||
|
||||
static inline bool is_cubic_nearly_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
|
||||
const Sk2f& p3, Sk2f& tan0, Sk2f& tan1, Sk2f& c) {
|
||||
tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
|
||||
tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1);
|
||||
static inline void chop_cubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
|
||||
float T, Sk2f* ab, Sk2f* abc, Sk2f* abcd, Sk2f* bcd, Sk2f* cd) {
|
||||
Sk2f TT = T;
|
||||
*ab = lerp(p0, p1, TT);
|
||||
Sk2f bc = lerp(p1, p2, TT);
|
||||
*cd = lerp(p2, p3, TT);
|
||||
*abc = lerp(*ab, bc, TT);
|
||||
*bcd = lerp(bc, *cd, TT);
|
||||
*abcd = lerp(*abc, *bcd, TT);
|
||||
}
|
||||
|
||||
Sk2f c1 = SkNx_fma(Sk2f(1.5f), tan0, p0);
|
||||
Sk2f c2 = SkNx_fma(Sk2f(-1.5f), tan1, p3);
|
||||
c = (c1 + c2) * .5f; // Hopefully optimized out if not used?
|
||||
void GrCCGeometry::appendCubics(AppendCubicMode mode, const Sk2f& p0, const Sk2f& p1,
|
||||
const Sk2f& p2, const Sk2f& p3, const float chops[], int numChops,
|
||||
float localT0, float localT1) {
|
||||
if (numChops) {
|
||||
SkASSERT(numChops > 0);
|
||||
int midChopIdx = numChops/2;
|
||||
float T = chops[midChopIdx];
|
||||
// Chops alternate between literal and approximate mode.
|
||||
AppendCubicMode rightMode = (AppendCubicMode)((bool)mode ^ (midChopIdx & 1) ^ 1);
|
||||
|
||||
return ((c1 - c2).abs() <= 1).allTrue();
|
||||
if (T <= localT0) {
|
||||
// T is outside 0..1. Append the right side only.
|
||||
this->appendCubics(rightMode, p0, p1, p2, p3, &chops[midChopIdx + 1],
|
||||
numChops - midChopIdx - 1, localT0, localT1);
|
||||
return;
|
||||
}
|
||||
|
||||
if (T >= localT1) {
|
||||
// T is outside 0..1. Append the left side only.
|
||||
this->appendCubics(mode, p0, p1, p2, p3, chops, midChopIdx, localT0, localT1);
|
||||
return;
|
||||
}
|
||||
|
||||
float localT = (T - localT0) / (localT1 - localT0);
|
||||
Sk2f p01, p02, pT, p11, p12;
|
||||
chop_cubic(p0, p1, p2, p3, localT, &p01, &p02, &pT, &p11, &p12);
|
||||
this->appendCubics(mode, p0, p01, p02, pT, chops, midChopIdx, localT0, T);
|
||||
this->appendCubics(rightMode, pT, p11, p12, p3, &chops[midChopIdx + 1],
|
||||
numChops - midChopIdx - 1, T, localT1);
|
||||
return;
|
||||
}
|
||||
|
||||
this->appendCubics(mode, p0, p1, p2, p3);
|
||||
}
|
||||
|
||||
void GrCCGeometry::appendCubics(AppendCubicMode mode, const Sk2f& p0, const Sk2f& p1,
|
||||
const Sk2f& p2, const Sk2f& p3, int maxSubdivisions) {
|
||||
if ((p0 == p3).allTrue()) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (SkCubicType::kLoop != fCurrCubicType) {
|
||||
// Serpentines and cusps are always monotonic after chopping around inflection points.
|
||||
SkASSERT(!SkCubicIsDegenerate(fCurrCubicType));
|
||||
|
||||
if (AppendCubicMode::kApproximate == mode) {
|
||||
// This section passes through an inflection point, so we can get away with a flat line.
|
||||
// This can cause some curves to feel slightly more flat when inspected rigorously back
|
||||
// and forth against another renderer, but for now this seems acceptable given the
|
||||
// simplicity.
|
||||
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
|
||||
this->appendLine(p3);
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
Sk2f tan0, tan1;
|
||||
get_cubic_tangents(p0, p1, p2, p3, &tan0, &tan1);
|
||||
|
||||
if (maxSubdivisions && !is_convex_curve_monotonic(p0, tan0, p3, tan1)) {
|
||||
this->chopAndAppendCubicAtMidTangent(mode, p0, p1, p2, p3, tan0, tan1,
|
||||
maxSubdivisions - 1);
|
||||
return;
|
||||
}
|
||||
|
||||
if (AppendCubicMode::kApproximate == mode) {
|
||||
Sk2f c;
|
||||
if (!is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, &c) && maxSubdivisions) {
|
||||
this->chopAndAppendCubicAtMidTangent(mode, p0, p1, p2, p3, tan0, tan1,
|
||||
maxSubdivisions - 1);
|
||||
return;
|
||||
}
|
||||
|
||||
this->appendMonotonicQuadratic(p0, c, p3);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Don't send curves to the GPU if we know they are nearly flat (or just very small).
|
||||
// Since the cubic segment is known to be convex at this point, our flatness check is simple.
|
||||
if (are_collinear(p0, (p1 + p2) * .5f, p3)) {
|
||||
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
|
||||
this->appendLine(p3);
|
||||
return;
|
||||
}
|
||||
|
||||
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
|
||||
p1.store(&fPoints.push_back());
|
||||
p2.store(&fPoints.push_back());
|
||||
p3.store(&fPoints.push_back());
|
||||
fVerbs.push_back(Verb::kMonotonicCubicTo);
|
||||
++fCurrContourTallies.fCubics;
|
||||
}
|
||||
|
||||
// Given a convex curve segment with the following order-2 tangent function:
|
||||
@ -377,177 +557,11 @@ static inline float find_midtangent(const Sk2f& tan0, const Sk2f& tan1,
|
||||
return std::abs(q*q - r) < std::abs(a*c - r) ? q/a : c/q;
|
||||
}
|
||||
|
||||
void GrCCGeometry::cubicTo(const SkPoint P[4], float inflectPad, float loopIntersectPad) {
|
||||
SkASSERT(fBuildingContour);
|
||||
SkASSERT(P[0] == fPoints.back());
|
||||
|
||||
// Don't crunch on the curve or inflate geometry if it is nearly flat (or just very small).
|
||||
// Flat curves can break the math below.
|
||||
if (are_collinear(P)) {
|
||||
this->lineTo(P[3]);
|
||||
return;
|
||||
}
|
||||
|
||||
Sk2f p0 = Sk2f::Load(P);
|
||||
Sk2f p1 = Sk2f::Load(P+1);
|
||||
Sk2f p2 = Sk2f::Load(P+2);
|
||||
Sk2f p3 = Sk2f::Load(P+3);
|
||||
|
||||
// Also detect near-quadratics ahead of time.
|
||||
Sk2f tan0, tan1, c;
|
||||
if (is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, c)) {
|
||||
this->appendMonotonicQuadratics(p0, c, p3);
|
||||
return;
|
||||
}
|
||||
|
||||
double tt[2], ss[2];
|
||||
fCurrCubicType = SkClassifyCubic(P, tt, ss);
|
||||
SkASSERT(!SkCubicIsDegenerate(fCurrCubicType)); // Should have been caught above.
|
||||
|
||||
SkMatrix CIT;
|
||||
ExcludedTerm skipTerm = GrPathUtils::calcCubicInverseTransposePowerBasisMatrix(P, &CIT);
|
||||
SkASSERT(ExcludedTerm::kNonInvertible != skipTerm); // Should have been caught above.
|
||||
SkASSERT(0 == CIT[6]);
|
||||
SkASSERT(0 == CIT[7]);
|
||||
SkASSERT(1 == CIT[8]);
|
||||
|
||||
// Each cubic has five different sections (not always inside t=[0..1]):
|
||||
//
|
||||
// 1. The section before the first inflection or loop intersection point, with padding.
|
||||
// 2. The section that passes through the first inflection/intersection (aka the K,L
|
||||
// intersection point or T=tt[0]/ss[0]).
|
||||
// 3. The section between the two inflections/intersections, with padding.
|
||||
// 4. The section that passes through the second inflection/intersection (aka the K,M
|
||||
// intersection point or T=tt[1]/ss[1]).
|
||||
// 5. The section after the second inflection/intersection, with padding.
|
||||
//
|
||||
// Sections 1,3,5 can be rendered directly using the CCPR cubic shader.
|
||||
//
|
||||
// Sections 2 & 4 must be approximated. For loop intersections we render them with
|
||||
// quadratic(s), and when passing through an inflection point we use a plain old flat line.
|
||||
//
|
||||
// We find T0..T3 below to be the dividing points between these five sections.
|
||||
float T0, T1, T2, T3;
|
||||
if (SkCubicType::kLoop != fCurrCubicType) {
|
||||
Sk2f t = Sk2f(static_cast<float>(tt[0]), static_cast<float>(tt[1]));
|
||||
Sk2f s = Sk2f(static_cast<float>(ss[0]), static_cast<float>(ss[1]));
|
||||
Sk2f pad = calc_inflect_homogeneous_padding(inflectPad, t, s, CIT, skipTerm);
|
||||
|
||||
float T[2];
|
||||
((t - pad) / s).store(T);
|
||||
T0 = T[0];
|
||||
T2 = T[1];
|
||||
|
||||
((t + pad) / s).store(T);
|
||||
T1 = T[0];
|
||||
T3 = T[1];
|
||||
} else {
|
||||
const float T[2] = {static_cast<float>(tt[0]/ss[0]), static_cast<float>(tt[1]/ss[1])};
|
||||
SkSTArray<3, float, true> roots[2];
|
||||
calc_loop_intersect_padding_pts(loopIntersectPad, Sk2f::Load(T), CIT, skipTerm, roots);
|
||||
T0 = roots[0].front();
|
||||
if (1 == roots[0].count() || 1 == roots[1].count()) {
|
||||
// The loop is tighter than our desired padding. Collapse the middle section to a point
|
||||
// somewhere in the middle-ish of the loop and Sections 2 & 4 will approximate the the
|
||||
// whole thing with quadratics.
|
||||
T1 = T2 = (T[0] + T[1]) * .5f;
|
||||
} else {
|
||||
T1 = roots[0][1];
|
||||
T2 = roots[1][1];
|
||||
}
|
||||
T3 = roots[1].back();
|
||||
}
|
||||
|
||||
// Guarantee that T0..T3 are monotonic.
|
||||
if (T0 > T3) {
|
||||
// This is not a mathematically valid scenario. The only reason it would happen is if
|
||||
// padding is very small and we have encountered FP rounding error.
|
||||
T0 = T1 = T2 = T3 = (T0 + T3) / 2;
|
||||
} else if (T1 > T2) {
|
||||
// This just means padding before the middle section overlaps the padding after it. We
|
||||
// collapse the middle section to a single point that splits the difference between the
|
||||
// overlap in padding.
|
||||
T1 = T2 = (T1 + T2) / 2;
|
||||
}
|
||||
// Clamp T1 & T2 inside T0..T3. The only reason this would be necessary is if we have
|
||||
// encountered FP rounding error.
|
||||
T1 = std::max(T0, std::min(T1, T3));
|
||||
T2 = std::max(T0, std::min(T2, T3));
|
||||
|
||||
// Next we chop the cubic up at all T0..T3 inside 0..1 and store the resulting segments.
|
||||
if (T1 >= 1) {
|
||||
// Only sections 1 & 2 can be in 0..1.
|
||||
this->chopCubic<&GrCCGeometry::appendMonotonicCubics,
|
||||
&GrCCGeometry::appendCubicApproximation>(p0, p1, p2, p3, T0);
|
||||
return;
|
||||
}
|
||||
|
||||
if (T2 <= 0) {
|
||||
// Only sections 4 & 5 can be in 0..1.
|
||||
this->chopCubic<&GrCCGeometry::appendCubicApproximation,
|
||||
&GrCCGeometry::appendMonotonicCubics>(p0, p1, p2, p3, T3);
|
||||
return;
|
||||
}
|
||||
|
||||
Sk2f midp0, midp1; // These hold the first two bezier points of the middle section, if needed.
|
||||
|
||||
if (T1 > 0) {
|
||||
Sk2f T1T1 = Sk2f(T1);
|
||||
Sk2f ab1 = lerp(p0, p1, T1T1);
|
||||
Sk2f bc1 = lerp(p1, p2, T1T1);
|
||||
Sk2f cd1 = lerp(p2, p3, T1T1);
|
||||
Sk2f abc1 = lerp(ab1, bc1, T1T1);
|
||||
Sk2f bcd1 = lerp(bc1, cd1, T1T1);
|
||||
Sk2f abcd1 = lerp(abc1, bcd1, T1T1);
|
||||
|
||||
// Sections 1 & 2.
|
||||
this->chopCubic<&GrCCGeometry::appendMonotonicCubics,
|
||||
&GrCCGeometry::appendCubicApproximation>(p0, ab1, abc1, abcd1, T0/T1);
|
||||
|
||||
if (T2 >= 1) {
|
||||
// The rest of the curve is Section 3 (middle section).
|
||||
this->appendMonotonicCubics(abcd1, bcd1, cd1, p3);
|
||||
return;
|
||||
}
|
||||
|
||||
// Now calculate the first two bezier points of the middle section. The final two will come
|
||||
// from when we chop the other side, as that is numerically more stable.
|
||||
midp0 = abcd1;
|
||||
midp1 = lerp(abcd1, bcd1, Sk2f((T2 - T1) / (1 - T1)));
|
||||
} else if (T2 >= 1) {
|
||||
// The entire cubic is Section 3 (middle section).
|
||||
this->appendMonotonicCubics(p0, p1, p2, p3);
|
||||
return;
|
||||
}
|
||||
|
||||
SkASSERT(T2 > 0 && T2 < 1);
|
||||
|
||||
Sk2f T2T2 = Sk2f(T2);
|
||||
Sk2f ab2 = lerp(p0, p1, T2T2);
|
||||
Sk2f bc2 = lerp(p1, p2, T2T2);
|
||||
Sk2f cd2 = lerp(p2, p3, T2T2);
|
||||
Sk2f abc2 = lerp(ab2, bc2, T2T2);
|
||||
Sk2f bcd2 = lerp(bc2, cd2, T2T2);
|
||||
Sk2f abcd2 = lerp(abc2, bcd2, T2T2);
|
||||
|
||||
if (T1 <= 0) {
|
||||
// The curve begins at Section 3 (middle section).
|
||||
this->appendMonotonicCubics(p0, ab2, abc2, abcd2);
|
||||
} else if (T2 > T1) {
|
||||
// Section 3 (middle section).
|
||||
Sk2f midp2 = lerp(abc2, abcd2, Sk2f(T1/T2));
|
||||
this->appendMonotonicCubics(midp0, midp1, midp2, abcd2);
|
||||
}
|
||||
|
||||
// Sections 4 & 5.
|
||||
this->chopCubic<&GrCCGeometry::appendCubicApproximation,
|
||||
&GrCCGeometry::appendMonotonicCubics>(abcd2, bcd2, cd2, p3, (T3-T2) / (1-T2));
|
||||
}
|
||||
|
||||
template<GrCCGeometry::AppendCubicFn AppendLeftRight>
|
||||
inline void GrCCGeometry::chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
|
||||
const Sk2f& p3, const Sk2f& tan0,
|
||||
const Sk2f& tan1, int maxFutureSubdivisions) {
|
||||
inline void GrCCGeometry::chopAndAppendCubicAtMidTangent(AppendCubicMode mode, const Sk2f& p0,
|
||||
const Sk2f& p1, const Sk2f& p2,
|
||||
const Sk2f& p3, const Sk2f& tan0,
|
||||
const Sk2f& tan1,
|
||||
int maxFutureSubdivisions) {
|
||||
float midT = find_midtangent(tan0, tan1, 3, p3 + (p1 - p2)*3 - p0,
|
||||
6, p0 - p1*2 + p2,
|
||||
3, p1 - p0);
|
||||
@ -559,97 +573,10 @@ inline void GrCCGeometry::chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1,
|
||||
return;
|
||||
}
|
||||
|
||||
this->chopCubic<AppendLeftRight, AppendLeftRight>(p0, p1, p2, p3, midT, maxFutureSubdivisions);
|
||||
}
|
||||
|
||||
template<GrCCGeometry::AppendCubicFn AppendLeft, GrCCGeometry::AppendCubicFn AppendRight>
|
||||
inline void GrCCGeometry::chopCubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
|
||||
const Sk2f& p3, float T, int maxFutureSubdivisions) {
|
||||
if (T >= 1) {
|
||||
(this->*AppendLeft)(p0, p1, p2, p3, maxFutureSubdivisions);
|
||||
return;
|
||||
}
|
||||
|
||||
if (T <= 0) {
|
||||
(this->*AppendRight)(p0, p1, p2, p3, maxFutureSubdivisions);
|
||||
return;
|
||||
}
|
||||
|
||||
Sk2f TT = T;
|
||||
Sk2f ab = lerp(p0, p1, TT);
|
||||
Sk2f bc = lerp(p1, p2, TT);
|
||||
Sk2f cd = lerp(p2, p3, TT);
|
||||
Sk2f abc = lerp(ab, bc, TT);
|
||||
Sk2f bcd = lerp(bc, cd, TT);
|
||||
Sk2f abcd = lerp(abc, bcd, TT);
|
||||
(this->*AppendLeft)(p0, ab, abc, abcd, maxFutureSubdivisions);
|
||||
(this->*AppendRight)(abcd, bcd, cd, p3, maxFutureSubdivisions);
|
||||
}
|
||||
|
||||
void GrCCGeometry::appendMonotonicCubics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
|
||||
const Sk2f& p3, int maxSubdivisions) {
|
||||
SkASSERT(maxSubdivisions >= 0);
|
||||
if ((p0 == p3).allTrue()) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (maxSubdivisions) {
|
||||
Sk2f tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
|
||||
Sk2f tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1);
|
||||
|
||||
if (!is_convex_curve_monotonic(p0, tan0, p3, tan1)) {
|
||||
this->chopCubicAtMidTangent<&GrCCGeometry::appendMonotonicCubics>(p0, p1, p2, p3,
|
||||
tan0, tan1,
|
||||
maxSubdivisions - 1);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
|
||||
|
||||
// Don't send curves to the GPU if we know they are nearly flat (or just very small).
|
||||
// Since the cubic segment is known to be convex at this point, our flatness check is simple.
|
||||
if (are_collinear(p0, (p1 + p2) * .5f, p3)) {
|
||||
this->appendLine(p3);
|
||||
return;
|
||||
}
|
||||
|
||||
p1.store(&fPoints.push_back());
|
||||
p2.store(&fPoints.push_back());
|
||||
p3.store(&fPoints.push_back());
|
||||
fVerbs.push_back(Verb::kMonotonicCubicTo);
|
||||
++fCurrContourTallies.fCubics;
|
||||
}
|
||||
|
||||
void GrCCGeometry::appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
|
||||
const Sk2f& p3, int maxSubdivisions) {
|
||||
SkASSERT(maxSubdivisions >= 0);
|
||||
if ((p0 == p3).allTrue()) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (SkCubicType::kLoop != fCurrCubicType && SkCubicType::kQuadratic != fCurrCubicType) {
|
||||
// This section passes through an inflection point, so we can get away with a flat line.
|
||||
// This can cause some curves to feel slightly more flat when inspected rigorously back and
|
||||
// forth against another renderer, but for now this seems acceptable given the simplicity.
|
||||
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
|
||||
this->appendLine(p3);
|
||||
return;
|
||||
}
|
||||
|
||||
Sk2f tan0, tan1, c;
|
||||
if (!is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, c) && maxSubdivisions) {
|
||||
this->chopCubicAtMidTangent<&GrCCGeometry::appendCubicApproximation>(p0, p1, p2, p3,
|
||||
tan0, tan1,
|
||||
maxSubdivisions - 1);
|
||||
return;
|
||||
}
|
||||
|
||||
if (maxSubdivisions) {
|
||||
this->appendMonotonicQuadratics(p0, c, p3);
|
||||
} else {
|
||||
this->appendSingleMonotonicQuadratic(p0, c, p3);
|
||||
}
|
||||
Sk2f p01, p02, pT, p11, p12;
|
||||
chop_cubic(p0, p1, p2, p3, midT, &p01, &p02, &pT, &p11, &p12);
|
||||
this->appendCubics(mode, p0, p01, p02, pT, maxFutureSubdivisions);
|
||||
this->appendCubics(mode, pT, p11, p12, p3, maxFutureSubdivisions);
|
||||
}
|
||||
|
||||
void GrCCGeometry::conicTo(const SkPoint P[3], float w) {
|
||||
|
@ -99,27 +99,21 @@ public:
|
||||
private:
|
||||
inline void appendLine(const Sk2f& endpt);
|
||||
|
||||
inline void appendMonotonicQuadratics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2);
|
||||
inline void appendSingleMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2);
|
||||
inline void appendQuadratics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2);
|
||||
inline void appendMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2);
|
||||
|
||||
using AppendCubicFn = void(GrCCGeometry::*)(const Sk2f& p0, const Sk2f& p1,
|
||||
const Sk2f& p2, const Sk2f& p3,
|
||||
int maxSubdivisions);
|
||||
static constexpr int kMaxSubdivionsPerCubicSection = 2;
|
||||
|
||||
template<AppendCubicFn AppendLeftRight>
|
||||
inline void chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
|
||||
const Sk2f& p3, const Sk2f& tan0, const Sk2f& tan3,
|
||||
int maxFutureSubdivisions = kMaxSubdivionsPerCubicSection);
|
||||
|
||||
template<AppendCubicFn AppendLeft, AppendCubicFn AppendRight>
|
||||
inline void chopCubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
|
||||
float T, int maxFutureSubdivisions = kMaxSubdivionsPerCubicSection);
|
||||
|
||||
void appendMonotonicCubics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
|
||||
int maxSubdivisions = kMaxSubdivionsPerCubicSection);
|
||||
void appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
|
||||
int maxSubdivisions = kMaxSubdivionsPerCubicSection);
|
||||
enum class AppendCubicMode : bool {
|
||||
kLiteral,
|
||||
kApproximate
|
||||
};
|
||||
void appendCubics(AppendCubicMode, const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
|
||||
const Sk2f& p3, const float chops[], int numChops, float localT0 = 0,
|
||||
float localT1 = 1);
|
||||
void appendCubics(AppendCubicMode, const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
|
||||
const Sk2f& p3, int maxSubdivisions = 2);
|
||||
void chopAndAppendCubicAtMidTangent(AppendCubicMode, const Sk2f& p0, const Sk2f& p1,
|
||||
const Sk2f& p2, const Sk2f& p3, const Sk2f& tan0,
|
||||
const Sk2f& tan1, int maxFutureSubdivisions);
|
||||
|
||||
void appendMonotonicConic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, float w);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user