Revert "Revert "add tiler for SkDraw""

This reverts commit 461ef7af88.

Prev CL to SkScan_Hairline.cpp fixed the bug that caused the earlier revert.

Bug: skia:
Change-Id: Ifd9a364c7546175be292f726e19465b72196b45e
Reviewed-on: https://skia-review.googlesource.com/112723
Reviewed-by: Mike Reed <reed@google.com>
Commit-Queue: Mike Reed <reed@google.com>
This commit is contained in:
Mike Reed 2018-03-07 14:16:52 -05:00 committed by Skia Commit-Bot
parent d2e9f767bb
commit b5e1f75580
9 changed files with 197 additions and 431 deletions

View File

@ -8,6 +8,7 @@
#include "gm.h"
#include "SkCanvas.h"
#include "SkPath.h"
#include "SkSurface.h"
DEF_SIMPLE_GM(path_huge_crbug_800804, canvas, 50, 600) {
SkPaint paint;
@ -35,3 +36,35 @@ DEF_SIMPLE_GM(path_huge_crbug_800804, canvas, 50, 600) {
}
}
// Test that we can draw into a huge surface ( > 64K ) and still retain paths and antialiasing.
DEF_SIMPLE_GM(path_huge_aa, canvas, 200, 200) {
auto proc = [](SkCanvas* canvas, int w, int h) {
SkAutoCanvasRestore acr(canvas, true);
auto surf = SkSurface::MakeRasterN32Premul(w, h);
auto can = surf->getCanvas();
SkPaint paint;
SkPath path;
path.addRoundRect(SkRect::MakeXYWH(4, 4, w - 8, h - 8), 12, 12);
canvas->save();
canvas->clipRect(SkRect::MakeXYWH(4, 4, 64, 64));
can->drawPath(path, paint);
surf->draw(canvas, 64 - w, 0, nullptr);
canvas->restore();
canvas->translate(80, 0);
canvas->save();
canvas->clipRect(SkRect::MakeXYWH(4, 4, 64, 64));
can->clear(0);
paint.setAntiAlias(true);
can->drawPath(path, paint);
surf->draw(canvas, 64 - w, 0, nullptr);
canvas->restore();
};
proc(canvas, 100, 60);
canvas->translate(0, 80);
proc(canvas, 100 * 1024, 60);
}

View File

@ -106,7 +106,6 @@ skia_core_sources = [
"$_src/core/SkDescriptor.h",
"$_src/core/SkDevice.cpp",
"$_src/core/SkDevice.h",
"$_src/core/SkDeviceLooper.cpp",
"$_src/core/SkDeviceProfile.cpp",
"$_src/core/SkDiscardableMemory.h",
"$_src/lazy/SkDiscardableMemoryPool.cpp",

View File

@ -53,7 +53,6 @@ tests_sources = [
"$_tests/DeferredDisplayListTest.cpp",
"$_tests/DequeTest.cpp",
"$_tests/DetermineDomainModeTest.cpp",
"$_tests/DeviceLooperTest.cpp",
"$_tests/DeviceTest.cpp",
"$_tests/DFPathRendererTest.cpp",
"$_tests/DiscardableMemoryPoolTest.cpp",

View File

@ -23,6 +23,116 @@
#include "SkTLazy.h"
#include "SkVertices.h"
class SkDrawTiler {
enum {
// 8K is 1 too big, since 8K << supersample == 32768 which is too big for SkFixed
kMaxDim = 8192 - 1
};
SkBitmapDevice* fDevice;
SkPixmap fRootPixmap;
// Used for tiling and non-tiling
SkDraw fDraw;
// fCurr... are only used if fNeedTiling
SkMatrix fTileMatrix;
SkRasterClip fTileRC;
SkIPoint fCurrOrigin, fOrigin;
bool fDone, fNeedsTiling;
public:
SkDrawTiler(SkBitmapDevice* dev) : fDevice(dev) {
// we need fDst to be set, and if we're actually drawing, to dirty the genID
if (!dev->accessPixels(&fRootPixmap)) {
// NoDrawDevice uses us (why?) so we have to catch this case w/ no pixels
fRootPixmap.reset(dev->imageInfo(), nullptr, 0);
}
fDone = false;
fNeedsTiling = fRootPixmap.width() > kMaxDim || fRootPixmap.height() > kMaxDim;
fOrigin.set(0, 0);
fCurrOrigin = fOrigin;
if (fNeedsTiling) {
// fDraw.fDst is reset each time in setupTileDraw()
fDraw.fMatrix = &fTileMatrix;
fDraw.fRC = &fTileRC;
} else {
fDraw.fDst = fRootPixmap;
fDraw.fMatrix = &dev->ctm();
fDraw.fRC = &dev->fRCStack.rc();
}
}
bool needsTiling() const { return fNeedsTiling; }
const SkDraw* next() {
if (fDone) {
return nullptr;
}
if (fNeedsTiling) {
do {
this->setupTileDraw(); // might set the clip to empty
this->stepOrigin(); // might set fDone to true
} while (!fDone && fTileRC.isEmpty());
// if we exit the loop and we're still empty, we're (past) done
if (fTileRC.isEmpty()) {
SkASSERT(fDone);
return nullptr;
}
SkASSERT(!fTileRC.isEmpty());
} else {
fDone = true; // only draw untiled once
}
return &fDraw;
}
int curr_x() const { return fCurrOrigin.x(); }
int curr_y() const { return fCurrOrigin.y(); }
private:
void setupTileDraw() {
SkASSERT(!fDone);
SkIRect bounds = SkIRect::MakeXYWH(fOrigin.x(), fOrigin.y(), kMaxDim, kMaxDim);
SkASSERT(!bounds.isEmpty());
bool success = fRootPixmap.extractSubset(&fDraw.fDst, bounds);
SkASSERT_RELEASE(success);
// now don't use bounds, since fDst has the clipped dimensions.
fTileMatrix = fDevice->ctm();
fTileMatrix.postTranslate(SkIntToScalar(-fOrigin.x()), SkIntToScalar(-fOrigin.y()));
fDevice->fRCStack.rc().translate(-fOrigin.x(), -fOrigin.y(), &fTileRC);
fTileRC.op(SkIRect::MakeWH(fDraw.fDst.width(), fDraw.fDst.height()),
SkRegion::kIntersect_Op);
fCurrOrigin = fOrigin;
}
void stepOrigin() {
SkASSERT(!fDone);
SkASSERT(fNeedsTiling);
fOrigin.fX += kMaxDim;
if (fOrigin.fX >= fRootPixmap.width()) { // too far
fOrigin.fX = 0;
fOrigin.fY += kMaxDim;
if (fOrigin.fY >= fRootPixmap.height()) {
fDone = true; // way too far
}
}
}
};
#define LOOP_TILER(code) \
SkDrawTiler priv_tiler(this); \
while (const SkDraw* priv_draw = priv_tiler.next()) { \
priv_draw->code; \
}
#define TILER_X(x) (x) - priv_tiler.curr_x()
#define TILER_Y(y) (y) - priv_tiler.curr_y()
class SkColorTable;
static bool valid_for_bitmap_device(const SkImageInfo& info,
@ -173,30 +283,17 @@ bool SkBitmapDevice::onReadPixels(const SkPixmap& pm, int x, int y) {
///////////////////////////////////////////////////////////////////////////////
class SkBitmapDevice::BDDraw : public SkDraw {
public:
BDDraw(SkBitmapDevice* dev) {
// we need fDst to be set, and if we're actually drawing, to dirty the genID
if (!dev->accessPixels(&fDst)) {
// NoDrawDevice uses us (why?) so we have to catch this case w/ no pixels
fDst.reset(dev->imageInfo(), nullptr, 0);
}
fMatrix = &dev->ctm();
fRC = &dev->fRCStack.rc();
}
};
void SkBitmapDevice::drawPaint(const SkPaint& paint) {
BDDraw(this).drawPaint(paint);
LOOP_TILER( drawPaint(paint))
}
void SkBitmapDevice::drawPoints(SkCanvas::PointMode mode, size_t count,
const SkPoint pts[], const SkPaint& paint) {
BDDraw(this).drawPoints(mode, count, pts, paint, nullptr);
LOOP_TILER( drawPoints(mode, count, pts, paint, nullptr))
}
void SkBitmapDevice::drawRect(const SkRect& r, const SkPaint& paint) {
BDDraw(this).drawRect(r, paint);
LOOP_TILER( drawRect(r, paint))
}
void SkBitmapDevice::drawOval(const SkRect& oval, const SkPaint& paint) {
@ -216,21 +313,27 @@ void SkBitmapDevice::drawRRect(const SkRRect& rrect, const SkPaint& paint) {
// required to override drawRRect.
this->drawPath(path, paint, nullptr, true);
#else
BDDraw(this).drawRRect(rrect, paint);
LOOP_TILER( drawRRect(rrect, paint))
#endif
}
void SkBitmapDevice::drawPath(const SkPath& path,
const SkPaint& paint, const SkMatrix* prePathMatrix,
bool pathIsMutable) {
BDDraw(this).drawPath(path, paint, prePathMatrix, pathIsMutable);
SkDrawTiler tiler(this);
if (tiler.needsTiling()) {
pathIsMutable = false;
}
while (const SkDraw* draw = tiler.next()) {
draw->drawPath(path, paint, prePathMatrix, pathIsMutable);
}
}
void SkBitmapDevice::drawBitmap(const SkBitmap& bitmap, SkScalar x, SkScalar y,
const SkPaint& paint) {
SkMatrix matrix = SkMatrix::MakeTrans(x, y);
LogDrawScaleFactor(SkMatrix::Concat(this->ctm(), matrix), paint.getFilterQuality());
BDDraw(this).drawBitmap(bitmap, matrix, nullptr, paint);
LOOP_TILER( drawBitmap(bitmap, matrix, nullptr, paint))
}
static inline bool CanApplyDstMatrixAsCTM(const SkMatrix& m, const SkPaint& paint) {
@ -325,7 +428,7 @@ void SkBitmapDevice::drawBitmapRect(const SkBitmap& bitmap,
// matrix with the CTM, and try to call drawSprite if it can. If not,
// it will make a shader and call drawRect, as we do below.
if (CanApplyDstMatrixAsCTM(matrix, paint)) {
BDDraw(this).drawBitmap(*bitmapPtr, matrix, dstPtr, paint);
LOOP_TILER( drawBitmap(*bitmapPtr, matrix, dstPtr, paint))
return;
}
}
@ -354,25 +457,25 @@ void SkBitmapDevice::drawBitmapRect(const SkBitmap& bitmap,
}
void SkBitmapDevice::drawSprite(const SkBitmap& bitmap, int x, int y, const SkPaint& paint) {
BDDraw(this).drawSprite(bitmap, x, y, paint);
LOOP_TILER( drawSprite(bitmap, TILER_X(x), TILER_Y(y), paint))
}
void SkBitmapDevice::drawText(const void* text, size_t len,
SkScalar x, SkScalar y, const SkPaint& paint) {
BDDraw(this).drawText((const char*)text, len, x, y, paint, &fSurfaceProps);
LOOP_TILER( drawText((const char*)text, len, x, y, paint, &fSurfaceProps))
}
void SkBitmapDevice::drawPosText(const void* text, size_t len, const SkScalar xpos[],
int scalarsPerPos, const SkPoint& offset, const SkPaint& paint) {
BDDraw(this).drawPosText((const char*)text, len, xpos, scalarsPerPos, offset, paint,
&fSurfaceProps);
LOOP_TILER( drawPosText((const char*)text, len, xpos, scalarsPerPos, offset, paint,
&fSurfaceProps))
}
void SkBitmapDevice::drawVertices(const SkVertices* vertices, SkBlendMode bmode,
const SkPaint& paint) {
BDDraw(this).drawVertices(vertices->mode(), vertices->vertexCount(), vertices->positions(),
vertices->texCoords(), vertices->colors(), bmode,
vertices->indices(), vertices->indexCount(), paint);
LOOP_TILER( drawVertices(vertices->mode(), vertices->vertexCount(), vertices->positions(),
vertices->texCoords(), vertices->colors(), bmode,
vertices->indices(), vertices->indexCount(), paint))
}
void SkBitmapDevice::drawDevice(SkBaseDevice* device, int x, int y, const SkPaint& origPaint) {
@ -384,7 +487,8 @@ void SkBitmapDevice::drawDevice(SkBaseDevice* device, int x, int y, const SkPain
paint.writable()->setMaskFilter(paint->getMaskFilter()->makeWithLocalMatrix(this->ctm()));
}
BDDraw(this).drawSprite(static_cast<SkBitmapDevice*>(device)->fBitmap, x, y, *paint);
LOOP_TILER( drawSprite(static_cast<SkBitmapDevice*>(device)->fBitmap,
TILER_X(x), TILER_Y(y), *paint))
}
///////////////////////////////////////////////////////////////////////////////

View File

@ -142,6 +142,7 @@ private:
friend struct DeviceCM; //for setMatrixClip
friend class SkDraw;
friend class SkDrawIter;
friend class SkDrawTiler;
friend class SkDeviceFilteredPaint;
friend class SkSurface_Raster;
friend class SkThreadedBMPDevice; // to copy fRCStack

View File

@ -1,126 +0,0 @@
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkDeviceLooper.h"
SkDeviceLooper::SkDeviceLooper(const SkPixmap& base, const SkRasterClip& rc, const SkIRect& bounds,
bool aa)
: fBaseDst(base)
, fBaseRC(rc)
, fDelta(aa ? kAA_Delta : kBW_Delta)
{
// sentinels that next() has not yet been called, and so our mapper functions
// should not be called either.
fCurrDst = nullptr;
fCurrRC = nullptr;
if (!rc.isEmpty()) {
// clip must be contained by the bitmap
SkASSERT(SkIRect::MakeWH(base.width(), base.height()).contains(rc.getBounds()));
}
if (rc.isEmpty() || !fClippedBounds.intersect(bounds, rc.getBounds())) {
fState = kDone_State;
} else if (this->fitsInDelta(fClippedBounds)) {
fState = kSimple_State;
} else {
// back up by 1 DX, so that next() will put us in a correct starting
// position.
fCurrOffset.set(fClippedBounds.left() - fDelta,
fClippedBounds.top());
fState = kComplex_State;
}
}
SkDeviceLooper::~SkDeviceLooper() {}
void SkDeviceLooper::mapRect(SkRect* dst, const SkRect& src) const {
SkASSERT(kDone_State != fState);
SkASSERT(fCurrDst);
SkASSERT(fCurrRC);
*dst = src;
dst->offset(SkIntToScalar(-fCurrOffset.fX),
SkIntToScalar(-fCurrOffset.fY));
}
void SkDeviceLooper::mapMatrix(SkMatrix* dst, const SkMatrix& src) const {
SkASSERT(kDone_State != fState);
SkASSERT(fCurrDst);
SkASSERT(fCurrRC);
*dst = src;
dst->postTranslate(SkIntToScalar(-fCurrOffset.fX), SkIntToScalar(-fCurrOffset.fY));
}
bool SkDeviceLooper::computeCurrBitmapAndClip() {
SkASSERT(kComplex_State == fState);
SkIRect r = SkIRect::MakeXYWH(fCurrOffset.x(), fCurrOffset.y(),
fDelta, fDelta);
if (!fBaseDst.extractSubset(&fSubsetDst, r)) {
fSubsetRC.setEmpty();
} else {
fBaseRC.translate(-r.left(), -r.top(), &fSubsetRC);
(void)fSubsetRC.op(SkIRect::MakeWH(fDelta, fDelta), SkRegion::kIntersect_Op);
}
fCurrDst = &fSubsetDst;
fCurrRC = &fSubsetRC;
return !fCurrRC->isEmpty();
}
static bool next_tile(const SkIRect& boundary, int delta, SkIPoint* offset) {
// can we move to the right?
if (offset->x() + delta < boundary.right()) {
offset->fX += delta;
return true;
}
// reset to the left, but move down a row
offset->fX = boundary.left();
if (offset->y() + delta < boundary.bottom()) {
offset->fY += delta;
return true;
}
// offset is now outside of boundary, so we're done
return false;
}
bool SkDeviceLooper::next() {
switch (fState) {
case kDone_State:
// in theory, we should not get called here, since we must have
// previously returned false, but we check anyway.
break;
case kSimple_State:
// first time for simple
if (nullptr == fCurrDst) {
fCurrDst = &fBaseDst;
fCurrRC = &fBaseRC;
fCurrOffset.set(0, 0);
return true;
}
// 2nd time for simple, we are done
break;
case kComplex_State:
// need to propogate fCurrOffset through clippedbounds
// left to right, until we wrap around and move down
while (next_tile(fClippedBounds, fDelta, &fCurrOffset)) {
if (this->computeCurrBitmapAndClip()) {
return true;
}
}
break;
}
fState = kDone_State;
return false;
}

View File

@ -1,95 +0,0 @@
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkDeviceLooper_DEFINED
#define SkDeviceLooper_DEFINED
#include "SkBitmap.h"
#include "SkMatrix.h"
#include "SkRasterClip.h"
/**
* Helper class to manage "tiling" a large coordinate space into managable
* chunks, where managable means areas that are <= some max critical coordinate
* size.
*
* The constructor takes an antialiasing bool, which affects what this maximum
* allowable size is: If we're drawing BW, then we need coordinates to stay
* safely within fixed-point range (we use +- 16K, to give ourselves room to
* add/subtract two fixed values and still be in range. If we're drawing AA,
* then we reduce that size by the amount that the supersampler scan converter
* needs (at the moment, that is 4X, so the "safe" range is +- 4K).
*
* For performance reasons, the class first checks to see if any help is needed
* at all, and if not (i.e. the specified bounds and base bitmap area already
* in the safe-zone, then the class does nothing (effectively).
*/
class SkDeviceLooper {
public:
SkDeviceLooper(const SkPixmap& base, const SkRasterClip&, const SkIRect& bounds, bool aa);
~SkDeviceLooper();
const SkPixmap& getPixmap() const {
SkASSERT(kDone_State != fState);
SkASSERT(fCurrDst);
return *fCurrDst;
}
const SkRasterClip& getRC() const {
SkASSERT(kDone_State != fState);
SkASSERT(fCurrRC);
return *fCurrRC;
}
void mapRect(SkRect* dst, const SkRect& src) const;
void mapMatrix(SkMatrix* dst, const SkMatrix& src) const;
/**
* Call next to setup the looper to return a valid coordinate chunk.
* Each time this returns true, it is safe to call mapRect() and
* mapMatrix(), to convert from "global" coordinate values to ones that
* are local to this chunk.
*
* When next() returns false, the list of chunks is done, and mapRect()
* and mapMatrix() should no longer be called.
*/
bool next();
private:
const SkPixmap& fBaseDst;
const SkRasterClip& fBaseRC;
enum State {
kDone_State, // iteration is complete, getters will assert
kSimple_State, // no translate/clip mods needed
kComplex_State
};
// storage for our tiled versions. Perhaps could use SkTLazy
SkPixmap fSubsetDst;
SkRasterClip fSubsetRC;
const SkPixmap* fCurrDst;
const SkRasterClip* fCurrRC;
SkIRect fClippedBounds;
SkIPoint fCurrOffset;
int fDelta;
State fState;
enum Delta {
kBW_Delta = 1 << 14, // 16K, gives room to spare for fixedpoint
kAA_Delta = kBW_Delta >> 2 // supersample 4x
};
bool fitsInDelta(const SkIRect& r) const {
return r.right() < fDelta && r.bottom() < fDelta;
}
bool computeCurrBitmapAndClip();
};
#endif

View File

@ -14,7 +14,6 @@
#include "SkCanvas.h"
#include "SkColorData.h"
#include "SkDevice.h"
#include "SkDeviceLooper.h"
#include "SkDraw.h"
#include "SkDrawProcs.h"
#include "SkFindAndPlaceGlyph.h"
@ -785,8 +784,7 @@ void SkDraw::drawRect(const SkRect& prePaintRect, const SkPaint& paint,
}
}
if (!SkRectPriv::MakeLargeS32().contains(bbox)) {
// bbox.roundOut() is undefined; use slow path.
if (!SkRectPriv::FitsInFixed(bbox) && rtype != kHair_RectType) {
draw_rect_as_path(*this, prePaintRect, paint, matrix);
return;
}
@ -796,45 +794,37 @@ void SkDraw::drawRect(const SkRect& prePaintRect, const SkPaint& paint,
return;
}
SkDeviceLooper looper(fDst, *fRC, ir, paint.isAntiAlias());
while (looper.next()) {
SkRect localDevRect;
looper.mapRect(&localDevRect, devRect);
SkMatrix localMatrix;
looper.mapMatrix(&localMatrix, *matrix);
SkAutoBlitterChoose blitterStorage(fDst, *matrix, paint);
const SkRasterClip& clip = *fRC;
SkBlitter* blitter = blitterStorage.get();
SkAutoBlitterChoose blitterStorage(looper.getPixmap(), localMatrix, paint);
const SkRasterClip& clip = looper.getRC();
SkBlitter* blitter = blitterStorage.get();
// we want to "fill" if we are kFill or kStrokeAndFill, since in the latter
// case we are also hairline (if we've gotten to here), which devolves to
// effectively just kFill
switch (rtype) {
case kFill_RectType:
if (paint.isAntiAlias()) {
SkScan::AntiFillRect(localDevRect, clip, blitter);
} else {
SkScan::FillRect(localDevRect, clip, blitter);
}
break;
case kStroke_RectType:
if (paint.isAntiAlias()) {
SkScan::AntiFrameRect(localDevRect, strokeSize, clip, blitter);
} else {
SkScan::FrameRect(localDevRect, strokeSize, clip, blitter);
}
break;
case kHair_RectType:
if (paint.isAntiAlias()) {
SkScan::AntiHairRect(localDevRect, clip, blitter);
} else {
SkScan::HairRect(localDevRect, clip, blitter);
}
break;
default:
SkDEBUGFAIL("bad rtype");
}
// we want to "fill" if we are kFill or kStrokeAndFill, since in the latter
// case we are also hairline (if we've gotten to here), which devolves to
// effectively just kFill
switch (rtype) {
case kFill_RectType:
if (paint.isAntiAlias()) {
SkScan::AntiFillRect(devRect, clip, blitter);
} else {
SkScan::FillRect(devRect, clip, blitter);
}
break;
case kStroke_RectType:
if (paint.isAntiAlias()) {
SkScan::AntiFrameRect(devRect, strokeSize, clip, blitter);
} else {
SkScan::FrameRect(devRect, strokeSize, clip, blitter);
}
break;
case kHair_RectType:
if (paint.isAntiAlias()) {
SkScan::AntiHairRect(devRect, clip, blitter);
} else {
SkScan::HairRect(devRect, clip, blitter);
}
break;
default:
SkDEBUGFAIL("bad rtype");
}
}

View File

@ -1,139 +0,0 @@
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkAutoPixmapStorage.h"
#include "SkDeviceLooper.h"
#include "SkRasterClip.h"
#include "Test.h"
static void make_pm(SkAutoPixmapStorage* pixmap, int w, int h) {
pixmap->alloc(SkImageInfo::Make(w, h, kAlpha_8_SkColorType, kPremul_SkAlphaType));
}
static bool equal(const SkRasterClip& a, const SkRasterClip& b) {
if (a.isBW()) {
return b.isBW() && a.bwRgn() == b.bwRgn();
} else {
return a.isAA() && a.aaRgn() == b.aaRgn();
}
}
static const struct {
SkISize fDevSize;
SkIRect fRCBounds;
SkIRect fRect;
} gRec[] = {
{ { 4000, 10 }, { 0, 0, 4000, 10 }, { 0, 0, 4000, 4000 } },
{ { 10, 4000 }, { 0, 0, 10, 4000 }, { 0, 0, 4000, 4000 } },
// very large devce, small rect
{ { 32000, 10 }, { 0, 0, 32000, 10 }, { 0, 0, 4000, 4000 } },
{ { 10, 32000 }, { 0, 0, 10, 32000 }, { 0, 0, 4000, 4000 } },
// very large device, small clip
{ { 32000, 10 }, { 0, 0, 4000, 10 }, { 0, 0, 32000, 32000 } },
{ { 10, 32000 }, { 0, 0, 10, 4000 }, { 0, 0, 32000, 32000 } },
};
static void test_simple(skiatest::Reporter* reporter) {
for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) {
SkAutoPixmapStorage pmap;
make_pm(&pmap, gRec[i].fDevSize.width(), gRec[i].fDevSize.height());
SkRasterClip rc(gRec[i].fRCBounds);
for (int aa = 0; aa <= 1; ++aa) {
SkDeviceLooper looper(pmap, rc, gRec[i].fRect, SkToBool(aa));
bool valid = looper.next();
REPORTER_ASSERT(reporter, valid);
if (valid) {
REPORTER_ASSERT(reporter, looper.getPixmap().width() == pmap.width());
REPORTER_ASSERT(reporter, looper.getPixmap().height() == pmap.height());
REPORTER_ASSERT(reporter, equal(looper.getRC(), rc));
REPORTER_ASSERT(reporter, !looper.next());
}
}
// test that a rect that doesn't intersect returns no loops
{
SkIRect r = rc.getBounds();
r.offset(r.width(), 0);
SkDeviceLooper looper(pmap, rc, r, false);
REPORTER_ASSERT(reporter, !looper.next());
}
}
}
// mask-bits are interpreted as the areas where the clip is visible
// [ 0x01 0x02 ]
// [ 0x04 0x08 ]
//
static void make_rgn(SkRegion* rgn, int w, int h, unsigned mask) {
SkASSERT(SkAlign2(w));
SkASSERT(SkAlign2(h));
w >>= 1;
h >>= 1;
const SkIRect baseR = SkIRect::MakeWH(w, h);
int bit = 1;
for (int y = 0; y <= 1; ++y) {
for (int x = 0; x <= 1; ++x) {
if (mask & bit) {
SkIRect r = baseR;
r.offset(x * w, y * h);
rgn->op(r, SkRegion::kUnion_Op);
}
bit <<= 1;
}
}
}
static void test_complex(skiatest::Reporter* reporter) {
// choose size values that will result in 4 quadrants, given fAA setting
const int BW_SIZE = 17 * 1000;
const int AA_SIZE = 7 * 1000;
struct {
SkISize fSize;
bool fAA;
} const gRec[] = {
{ { BW_SIZE, BW_SIZE }, false },
{ { AA_SIZE, AA_SIZE }, true },
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) {
const int w = gRec[i].fSize.width();
const int h = gRec[i].fSize.height();
SkAutoPixmapStorage pmap;
make_pm(&pmap, w, h);
const SkIRect rect = SkIRect::MakeWH(w, h);
// mask-bits are interpreted as the areas where the clip is visible
// [ 0x01 0x02 ]
// [ 0x04 0x08 ]
//
for (int mask = 0; mask <= 15; ++mask) {
SkRegion rgn;
make_rgn(&rgn, w, h, mask);
SkRasterClip rc;
rc.op(rgn, SkRegion::kReplace_Op);
SkDeviceLooper looper(pmap, rc, rect, gRec[i].fAA);
while (looper.next()) {
REPORTER_ASSERT(reporter, !looper.getRC().isEmpty());
}
}
}
}
DEF_TEST(DeviceLooper, reporter) {
test_simple(reporter);
test_complex(reporter);
}