Hide path tessellation shaders in private files

Replaces the public class definitions with factory methods. Separates
the class definitions into their own separate files.

Bug: skia:10419
Change-Id: I574d920d5a3d0dc98fa5eb231c9b510e04aebf78
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/413796
Commit-Queue: Chris Dalton <csmartdalton@google.com>
Reviewed-by: Robert Phillips <robertphillips@google.com>
This commit is contained in:
Chris Dalton 2021-06-01 14:52:02 -06:00 committed by Skia Commit-Bot
parent e79a6da3b5
commit b63711a6c4
9 changed files with 572 additions and 476 deletions

View File

@ -477,6 +477,8 @@ skia_gpu_sources = [
# tessellate/shaders
"$_src/gpu/tessellate/shaders/GrPathTessellationShader.cpp",
"$_src/gpu/tessellate/shaders/GrPathTessellationShader.h",
"$_src/gpu/tessellate/shaders/GrPathTessellationShader_Hardware.cpp",
"$_src/gpu/tessellate/shaders/GrPathTessellationShader_MiddleOut.cpp",
"$_src/gpu/tessellate/shaders/GrStrokeTessellationShader.cpp",
"$_src/gpu/tessellate/shaders/GrStrokeTessellationShader.h",
"$_src/gpu/tessellate/shaders/GrStrokeTessellationShader_HardwareImpl.cpp",

View File

@ -129,12 +129,12 @@ public:
kFwidthSquircleTestProcessor_ClassID,
kSwizzleFragmentProcessor_ClassID,
kTessellate_BoundingBoxShader_ClassID,
kTessellate_GrCurveMiddleOutShader_ClassID,
kTessellate_GrCurveTessellateShader_ClassID,
kTessellate_GrStrokeTessellationShader_ClassID,
kTessellate_GrTriangleShader_ClassID,
kTessellate_GrWedgeTessellateShader_ClassID,
kTessellate_HardwareCurveShader_ClassID,
kTessellate_HardwareWedgeShader_ClassID,
kTessellate_HullShader_ClassID,
kTessellate_MiddleOutShader_ClassID,
kTessellate_SimpleTriangleShader_ClassID,
kTessellationTestTriShader_ClassID,
kTessellationTestRectShader_ClassID,
kTestFP_ClassID,

View File

@ -34,7 +34,7 @@ public:
}
private:
const char* name() const final { return "HullShader"; }
const char* name() const final { return "tessellate_HullShader"; }
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const final {}
GrGLSLGeometryProcessor* createGLSLInstance(const GrShaderCaps&) const final;
};
@ -134,14 +134,16 @@ void GrPathInnerTriangulateOp::pushFanStencilProgram(const GrTessellationShader:
const GrPipeline* pipelineForStencils,
const GrUserStencilSettings* stencil) {
SkASSERT(pipelineForStencils);
auto shader = args.fArena->make<GrTriangleShader>(fViewMatrix, SK_PMColor4fTRANSPARENT);
auto shader = GrPathTessellationShader::MakeSimpleTriangleShader(args.fArena, fViewMatrix,
SK_PMColor4fTRANSPARENT);
fFanPrograms.push_back(GrTessellationShader::MakeProgram(args, shader, pipelineForStencils,
stencil)); }
void GrPathInnerTriangulateOp::pushFanFillProgram(const GrTessellationShader::ProgramArgs& args,
const GrUserStencilSettings* stencil) {
SkASSERT(fPipelineForFills);
auto* shader = args.fArena->make<GrTriangleShader>(fViewMatrix, fColor);
auto shader = GrPathTessellationShader::MakeSimpleTriangleShader(args.fArena, fViewMatrix,
fColor);
fFanPrograms.push_back(GrTessellationShader::MakeProgram(args, shader, fPipelineForFills,
stencil));
}

View File

@ -34,7 +34,7 @@ public:
}
private:
const char* name() const final { return "BoundingBoxShader"; }
const char* name() const final { return "tessellate_BoundingBoxShader"; }
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const final {}
GrGLSLGeometryProcessor* createGLSLInstance(const GrShaderCaps&) const final;
};
@ -110,7 +110,8 @@ void GrPathStencilFillOp::prePreparePrograms(const GrTessellationShader::Program
// Large complex paths do better with a dedicated triangle shader for the inner fan.
// This takes less PCI bus bandwidth (6 floats per triangle instead of 8) and allows us
// to make sure it has an efficient middle-out topology.
auto shader = args.fArena->make<GrTriangleShader>(fViewMatrix, SK_PMColor4fTRANSPARENT);
auto shader = GrPathTessellationShader::MakeSimpleTriangleShader(
args.fArena, fViewMatrix, SK_PMColor4fTRANSPARENT);
fStencilFanProgram = GrTessellationShader::MakeProgram(args, shader, stencilPipeline,
stencilPathSettings);
drawFanWithTessellator = GrPathTessellator::DrawInnerFan::kNo;

View File

@ -45,7 +45,7 @@ GrPathTessellator* GrPathIndirectTessellator::Make(SkArenaAlloc* arena, const Sk
const SkMatrix& viewMatrix,
const SkPMColor4f& color,
DrawInnerFan drawInnerFan) {
auto shader = arena->make<GrCurveMiddleOutShader>(viewMatrix, color);
auto shader = GrPathTessellationShader::MakeMiddleOutInstancedShader(arena, viewMatrix, color);
return arena->make<GrPathIndirectTessellator>(shader, path, drawInnerFan);
}
@ -119,6 +119,17 @@ static int write_breadcrumb_triangles(
return numWritten;
}
// How many vertices do we need to draw in order to triangulate a curve with 2^resolveLevel line
// segments?
constexpr static int num_vertices_at_resolve_level(int resolveLevel) {
// resolveLevel=0 -> 0 line segments -> 0 triangles -> 0 vertices
// resolveLevel=1 -> 2 line segments -> 1 triangle -> 3 vertices
// resolveLevel=2 -> 4 line segments -> 3 triangles -> 9 vertices
// resolveLevel=3 -> 8 line segments -> 7 triangles -> 21 vertices
// ...
return ((1 << resolveLevel) - 1) * 3;
}
void GrPathIndirectTessellator::prepare(GrMeshDrawOp::Target* target, const SkRect& /*cullBounds*/,
const SkPath& path,
const BreadcrumbTriangleList* breadcrumbTriangleList) {
@ -186,9 +197,11 @@ void GrPathIndirectTessellator::prepare(GrMeshDrawOp::Target* target, const SkRe
}
instanceLocations[resolveLevel] = instanceWriter.makeOffset(0);
SkASSERT(fIndirectDrawCount < indirectLockCnt);
GrCurveMiddleOutShader::WriteDrawIndirectCmd(&indirectWriter, resolveLevel,
instanceCountAtCurrLevel + numExtraInstances,
currentBaseInstance);
// The vertex shader determines the T value at which to draw each vertex. Since the
// triangles are arranged in "middle-out" order, we can conveniently control the
// resolveLevel by changing only the vertexCount.
indirectWriter.write(instanceCountAtCurrLevel + numExtraInstances, currentBaseInstance,
num_vertices_at_resolve_level(resolveLevel), 0);
++fIndirectDrawCount;
currentBaseInstance += instanceCountAtCurrLevel + numExtraInstances;
instanceWriter = instanceWriter.makeOffset(instanceCountAtCurrLevel * 4 * sizeof(SkPoint));
@ -283,7 +296,7 @@ GrPathTessellator* GrPathOuterCurveTessellator::Make(SkArenaAlloc* arena,
const SkMatrix& viewMatrix,
const SkPMColor4f& color,
DrawInnerFan drawInnerFan) {
auto shader = arena->make<GrCurveTessellateShader>(viewMatrix, color);
auto shader = GrPathTessellationShader::MakeHardwareCurveShader(arena, viewMatrix, color);
return arena->make<GrPathOuterCurveTessellator>(shader, drawInnerFan);
}
@ -451,7 +464,7 @@ void GrPathOuterCurveTessellator::prepare(GrMeshDrawOp::Target* target, const Sk
GrPathTessellator* GrPathWedgeTessellator::Make(SkArenaAlloc* arena, const SkMatrix& viewMatrix,
const SkPMColor4f& color) {
auto shader = arena->make<GrWedgeTessellateShader>(viewMatrix, color);
auto shader = GrPathTessellationShader::MakeHardwareWedgeShader(arena, viewMatrix, color);
return arena->make<GrPathWedgeTessellator>(shader);
}

View File

@ -7,12 +7,79 @@
#include "src/gpu/tessellate/shaders/GrPathTessellationShader.h"
#include "src/gpu/geometry/GrWangsFormula.h"
#include "src/gpu/glsl/GrGLSLGeometryProcessor.h"
#include "src/gpu/glsl/GrGLSLProgramBuilder.h"
#include "src/gpu/glsl/GrGLSLVarying.h"
#include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
namespace {
// Draws a simple array of triangles.
class SimpleTriangleShader : public GrPathTessellationShader {
public:
SimpleTriangleShader(const SkMatrix& viewMatrix, SkPMColor4f color)
: GrPathTessellationShader(kTessellate_SimpleTriangleShader_ClassID,
GrPrimitiveType::kTriangles, 0, viewMatrix, color) {
constexpr static Attribute kInputPointAttrib{"inputPoint", kFloat2_GrVertexAttribType,
kFloat2_GrSLType};
this->setVertexAttributes(&kInputPointAttrib, 1);
}
private:
const char* name() const final { return "tessellate_SimpleTriangleShader"; }
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const final {}
GrGLSLGeometryProcessor* createGLSLInstance(const GrShaderCaps&) const final;
};
GrGLSLGeometryProcessor* SimpleTriangleShader::createGLSLInstance(const GrShaderCaps&) const {
class Impl : public GrPathTessellationShader::Impl {
void emitVertexCode(GrGLSLVertexBuilder* v, GrGPArgs* gpArgs) override {
v->codeAppend(R"(
float2 localcoord = inputPoint;
float2 vertexpos = AFFINE_MATRIX * localcoord + TRANSLATE;)");
gpArgs->fLocalCoordVar.set(kFloat2_GrSLType, "localcoord");
gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertexpos");
}
};
return new Impl;
}
} // namespace
GrPathTessellationShader* GrPathTessellationShader::MakeSimpleTriangleShader(
SkArenaAlloc* arena, const SkMatrix& viewMatrix, const SkPMColor4f& color) {
return arena->make<SimpleTriangleShader>(viewMatrix, color);
}
// Converts a 4-point input patch into the rational cubic it intended to represent.
const char* GrPathTessellationShader::Impl::kUnpackRationalCubicFn = R"(
float4x3 unpack_rational_cubic(float2 p0, float2 p1, float2 p2, float2 p3) {
float4x3 P = float4x3(p0,1, p1,1, p2,1, p3,1);
if (isinf(P[3].y)) {
// This patch is actually a conic. Convert to a rational cubic.
float w = P[3].x;
float3 c = P[1] * ((2.0/3.0) * w);
P = float4x3(P[0], fma(P[0], float3(1.0/3.0), c), fma(P[2], float3(1.0/3.0), c), P[2]);
}
return P;
})";
// Evaluate our point of interest using numerically stable linear interpolations. We add our own
// "safe_mix" method to guarantee we get exactly "b" when T=1. The builtin mix() function seems
// spec'd to behave this way, but empirical results results have shown it does not always.
const char* GrPathTessellationShader::Impl::kEvalRationalCubicFn = R"(
float3 safe_mix(float3 a, float3 b, float T, float one_minus_T) {
return a*one_minus_T + b*T;
}
float2 eval_rational_cubic(float4x3 P, float T) {
float one_minus_T = 1.0 - T;
float3 ab = safe_mix(P[0], P[1], T, one_minus_T);
float3 bc = safe_mix(P[1], P[2], T, one_minus_T);
float3 cd = safe_mix(P[2], P[3], T, one_minus_T);
float3 abc = safe_mix(ab, bc, T, one_minus_T);
float3 bcd = safe_mix(bc, cd, T, one_minus_T);
float3 abcd = safe_mix(abc, bcd, T, one_minus_T);
return abcd.xy / abcd.z;
})";
void GrPathTessellationShader::Impl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
args.fVaryingHandler->emitAttributes(args.fGeomProc);
@ -45,347 +112,3 @@ void GrPathTessellationShader::Impl::setData(const GrGLSLProgramDataManager& pdm
const SkPMColor4f& color = shader.color();
pdman.set4f(fColorUniform, color.fR, color.fG, color.fB, color.fA);
}
constexpr static char kSkSLTypeDefs[] = R"(
#define float4x3 mat4x3
#define float2 vec2
#define float3 vec3
#define float4 vec4
)";
// Converts a 4-point input patch into the rational cubic it intended to represent.
constexpr static char kUnpackRationalCubicFn[] = R"(
float4x3 unpack_rational_cubic(float2 p0, float2 p1, float2 p2, float2 p3) {
float4x3 P = float4x3(p0,1, p1,1, p2,1, p3,1);
if (isinf(P[3].y)) {
// This patch is actually a conic. Convert to a rational cubic.
float w = P[3].x;
float3 c = P[1] * ((2.0/3.0) * w);
P = float4x3(P[0], fma(P[0], float3(1.0/3.0), c), fma(P[2], float3(1.0/3.0), c), P[2]);
}
return P;
})";
// Evaluate our point of interest using numerically stable linear interpolations. We add our own
// "safe_mix" method to guarantee we get exactly "b" when T=1. The builtin mix() function seems
// spec'd to behave this way, but empirical results results have shown it does not always.
constexpr static char kEvalRationalCubicFn[] = R"(
float3 safe_mix(float3 a, float3 b, float T, float one_minus_T) {
return a*one_minus_T + b*T;
}
float2 eval_rational_cubic(float4x3 P, float T) {
float one_minus_T = 1.0 - T;
float3 ab = safe_mix(P[0], P[1], T, one_minus_T);
float3 bc = safe_mix(P[1], P[2], T, one_minus_T);
float3 cd = safe_mix(P[2], P[3], T, one_minus_T);
float3 abc = safe_mix(ab, bc, T, one_minus_T);
float3 bcd = safe_mix(bc, cd, T, one_minus_T);
float3 abcd = safe_mix(abc, bcd, T, one_minus_T);
return abcd.xy / abcd.z;
})";
GrGLSLGeometryProcessor* GrTriangleShader::createGLSLInstance(const GrShaderCaps&) const {
class Impl : public GrPathTessellationShader::Impl {
void emitVertexCode(GrGLSLVertexBuilder* v, GrGPArgs* gpArgs) override {
v->codeAppend(R"(
float2 localcoord = inputPoint;
float2 vertexpos = AFFINE_MATRIX * localcoord + TRANSLATE;)");
gpArgs->fLocalCoordVar.set(kFloat2_GrSLType, "localcoord");
gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertexpos");
}
};
return new Impl;
}
GrGLSLGeometryProcessor* GrCurveTessellateShader::createGLSLInstance(const GrShaderCaps&) const {
class Impl : public GrPathTessellationShader::Impl {
void emitVertexCode(GrGLSLVertexBuilder* v, GrGPArgs*) override {
v->declareGlobal(GrShaderVar("P", kFloat2_GrSLType, GrShaderVar::TypeModifier::Out));
v->codeAppend(R"(
// If y is infinity then x is a conic weight. Don't transform.
P = (isinf(inputPoint.y)) ? inputPoint : AFFINE_MATRIX * inputPoint + TRANSLATE;)");
}
SkString getTessControlShaderGLSL(const GrGeometryProcessor&,
const char* versionAndExtensionDecls,
const GrGLSLUniformHandler&,
const GrShaderCaps& shaderCaps) const override {
SkString code(versionAndExtensionDecls);
code.appendf(R"(
#define MAX_TESSELLATION_SEGMENTS %i)", shaderCaps.maxTessellationSegments());
code.appendf(R"(
#define PRECISION %f)", GrTessellationPathRenderer::kLinearizationPrecision);
code.append(kSkSLTypeDefs);
code.append(GrWangsFormula::as_sksl());
code.append(kUnpackRationalCubicFn);
code.append(R"(
layout(vertices = 1) out;
in vec2 P[];
patch out mat4x2 rationalCubicXY;
patch out float rationalCubicW;
void main() {
float w = -1; // w<0 means a cubic.
vec2 p1w = P[1];
if (isinf(P[3].y)) {
// This patch is actually a conic. Project to homogeneous space.
w = P[3].x;
p1w *= w;
}
// Chop the curve at T=1/2.
vec2 ab = (P[0] + p1w) * .5;
vec2 bc = (p1w + P[2]) * .5;
vec2 cd = (P[2] + P[3]) * .5;
vec2 abc = (ab + bc) * .5;
vec2 bcd = (bc + cd) * .5;
vec2 abcd = (abc + bcd) * .5;
float n0, n1;
if (w < 0 || isinf(w)) {
if (w < 0) {
// The patch is a cubic. Calculate how many segments are required to
// linearize each half of the curve.
n0 = wangs_formula(PRECISION, P[0], ab, abc, abcd, -1); // w<0 means cubic.
n1 = wangs_formula(PRECISION, abcd, bcd, cd, P[3], -1);
rationalCubicW = 1;
} else {
// The patch is a triangle (a conic with infinite weight).
n0 = n1 = 1;
rationalCubicW = -1; // In the next stage, rationalCubicW<0 means triangle.
}
rationalCubicXY = mat4x2(P[0], P[1], P[2], P[3]);
} else {
// The patch is a conic. Unproject p0..5. w1 == w2 == w3 when chopping at .5.
// (See SkConic::chopAt().)
float r = 2.0 / (1.0 + w);
ab *= r, bc *= r, abc *= r;
// Put in "standard form" where w0 == w2 == w4 == 1.
float w_ = inversesqrt(r); // Both halves have the same w' when chopping at .5.
// Calculate how many segments are needed to linearize each half of the curve.
n0 = wangs_formula(PRECISION, P[0], ab, abc, float2(0), w_);
n1 = wangs_formula(PRECISION, abc, bc, P[2], float2(0), w_);
// Covert the conic to a rational cubic in projected form.
rationalCubicXY = mat4x2(P[0],
mix(float4(P[0],P[2]), p1w.xyxy, 2.0/3.0),
P[2]);
rationalCubicW = fma(w, 2.0/3.0, 1.0/3.0);
}
gl_TessLevelOuter[0] = min(n1, MAX_TESSELLATION_SEGMENTS);
gl_TessLevelOuter[1] = 1.0;
gl_TessLevelOuter[2] = min(n0, MAX_TESSELLATION_SEGMENTS);
// Changing the inner level to 1 when n0 == n1 == 1 collapses the entire patch to a
// single triangle. Otherwise, we need an inner level of 2 so our curve triangles
// have an interior point to originate from.
gl_TessLevelInner[0] = min(max(n0, n1), 2.0);
})");
return code;
}
SkString getTessEvaluationShaderGLSL(const GrGeometryProcessor&,
const char* versionAndExtensionDecls,
const GrGLSLUniformHandler&,
const GrShaderCaps&) const override {
SkString code(versionAndExtensionDecls);
code.append(kSkSLTypeDefs);
code.append(kEvalRationalCubicFn);
code.append(R"(
layout(triangles, equal_spacing, ccw) in;
uniform vec4 sk_RTAdjust;
patch in mat4x2 rationalCubicXY;
patch in float rationalCubicW;
void main() {
vec2 vertexpos;
if (rationalCubicW < 0) { // rationalCubicW < 0 means a triangle now.
vertexpos = (gl_TessCoord.x != 0) ? rationalCubicXY[0]
: (gl_TessCoord.y != 0) ? rationalCubicXY[1]
: rationalCubicXY[2];
} else {
// Locate our parametric point of interest. T ramps from [0..1/2] on the left
// edge of the triangle, and [1/2..1] on the right. If we are the patch's
// interior vertex, then we want T=1/2. Since the barycentric coords are
// (1/3, 1/3, 1/3) at the interior vertex, the below fma() works in all 3
// scenarios.
float T = fma(.5, gl_TessCoord.y, gl_TessCoord.z);
mat4x3 P = mat4x3(rationalCubicXY[0], 1,
rationalCubicXY[1], rationalCubicW,
rationalCubicXY[2], rationalCubicW,
rationalCubicXY[3], 1);
vertexpos = eval_rational_cubic(P, T);
if (all(notEqual(gl_TessCoord.xz, vec2(0)))) {
// We are the interior point of the patch; center it inside
// [C(0), C(.5), C(1)].
vertexpos = (P[0].xy + vertexpos + P[3].xy) / 3.0;
}
}
gl_Position = vec4(vertexpos * sk_RTAdjust.xz + sk_RTAdjust.yw, 0.0, 1.0);
})");
return code;
}
};
return new Impl;
}
GrGLSLGeometryProcessor* GrWedgeTessellateShader::createGLSLInstance(const GrShaderCaps&) const {
class Impl : public GrPathTessellationShader::Impl {
void emitVertexCode(GrGLSLVertexBuilder* v, GrGPArgs*) override {
v->declareGlobal(GrShaderVar("P", kFloat2_GrSLType, GrShaderVar::TypeModifier::Out));
v->codeAppend(R"(
// If y is infinity then x is a conic weight. Don't transform.
P = (isinf(inputPoint.y)) ? inputPoint : AFFINE_MATRIX * inputPoint + TRANSLATE;)");
}
SkString getTessControlShaderGLSL(const GrGeometryProcessor&,
const char* versionAndExtensionDecls,
const GrGLSLUniformHandler&,
const GrShaderCaps& shaderCaps) const override {
SkString code(versionAndExtensionDecls);
code.appendf(R"(
#define MAX_TESSELLATION_SEGMENTS %i)", shaderCaps.maxTessellationSegments());
code.appendf(R"(
#define PRECISION %f)", GrTessellationPathRenderer::kLinearizationPrecision);
code.append(kSkSLTypeDefs);
code.append(GrWangsFormula::as_sksl());
code.append(kUnpackRationalCubicFn);
code.append(R"(
layout(vertices = 1) out;
in vec2 P[];
patch out mat4x2 rationalCubicXY;
patch out float rationalCubicW;
patch out vec2 fanpoint;
void main() {
// Figure out how many segments to divide the curve into.
float w = isinf(P[3].y) ? P[3].x : -1; // w<0 means cubic.
float n = wangs_formula(PRECISION, P[0], P[1], P[2], P[3], w);
// Tessellate the first side of the patch into n triangles.
gl_TessLevelOuter[0] = min(n, MAX_TESSELLATION_SEGMENTS);
// Leave the other two sides of the patch as single segments.
gl_TessLevelOuter[1] = 1.0;
gl_TessLevelOuter[2] = 1.0;
// Changing the inner level to 1 when n == 1 collapses the entire
// patch to a single triangle. Otherwise, we need an inner level of 2 so our curve
// triangles have an interior point to originate from.
gl_TessLevelInner[0] = min(n, 2.0);
if (w < 0) {
rationalCubicXY = mat4x2(P[0], P[1], P[2], P[3]);
rationalCubicW = 1;
} else {
// Convert the conic to a rational cubic in projected form.
rationalCubicXY = mat4x2(P[0],
mix(vec4(P[0], P[2]), (P[1] * w).xyxy, 2.0/3.0),
P[2]);
rationalCubicW = fma(w, 2.0/3.0, 1.0/3.0);
}
fanpoint = P[4];
})");
return code;
}
SkString getTessEvaluationShaderGLSL(const GrGeometryProcessor&,
const char* versionAndExtensionDecls,
const GrGLSLUniformHandler&,
const GrShaderCaps&) const override {
SkString code(versionAndExtensionDecls);
code.append(kSkSLTypeDefs);
code.append(kEvalRationalCubicFn);
code.append(R"(
layout(triangles, equal_spacing, ccw) in;
uniform vec4 sk_RTAdjust;
patch in mat4x2 rationalCubicXY;
patch in float rationalCubicW;
patch in vec2 fanpoint[];
void main() {
// Locate our parametric point of interest. It is equal to the barycentric
// y-coordinate if we are a vertex on the tessellated edge of the triangle patch,
// 0.5 if we are the patch's interior vertex, or N/A if we are the fan point.
// NOTE: We are on the tessellated edge when the barycentric x-coordinate == 0.
float T = (gl_TessCoord.x == 0.0) ? gl_TessCoord.y : 0.5;
mat4x3 P = mat4x3(rationalCubicXY[0], 1,
rationalCubicXY[1], rationalCubicW,
rationalCubicXY[2], rationalCubicW,
rationalCubicXY[3], 1);
vec2 vertexpos = eval_rational_cubic(P, T);
if (gl_TessCoord.x == 1.0) {
// We are the anchor point that fans from the center of the curve's contour.
vertexpos = fanpoint[0];
} else if (gl_TessCoord.x != 0.0) {
// We are the interior point of the patch; center it inside [C(0), C(.5), C(1)].
vertexpos = (P[0].xy + vertexpos + P[3].xy) / 3.0;
}
gl_Position = vec4(vertexpos * sk_RTAdjust.xz + sk_RTAdjust.yw, 0.0, 1.0);
})");
return code;
}
};
return new Impl;
}
class GrCurveMiddleOutShader::Impl : public GrPathTessellationShader::Impl {
void emitVertexCode(GrGLSLVertexBuilder* v, GrGPArgs* gpArgs) override {
v->insertFunction(kUnpackRationalCubicFn);
v->insertFunction(kEvalRationalCubicFn);
if (v->getProgramBuilder()->shaderCaps()->bitManipulationSupport()) {
// Determines the T value at which to place the given vertex in a "middle-out" topology.
v->insertFunction(R"(
float find_middle_out_T() {
int totalTriangleIdx = sk_VertexID/3 + 1;
int depth = findMSB(totalTriangleIdx);
int firstTriangleAtDepth = (1 << depth);
int triangleIdxWithinDepth = totalTriangleIdx - firstTriangleAtDepth;
int vertexIdxWithinDepth = triangleIdxWithinDepth * 2 + sk_VertexID % 3;
return ldexp(float(vertexIdxWithinDepth), -1 - depth);
})");
} else {
// Determines the T value at which to place the given vertex in a "middle-out" topology.
v->insertFunction(R"(
float find_middle_out_T() {
float totalTriangleIdx = float(sk_VertexID/3) + 1;
float depth = floor(log2(totalTriangleIdx));
float firstTriangleAtDepth = exp2(depth);
float triangleIdxWithinDepth = totalTriangleIdx - firstTriangleAtDepth;
float vertexIdxWithinDepth = triangleIdxWithinDepth * 2 + float(sk_VertexID % 3);
return vertexIdxWithinDepth * exp2(-1 - depth);
})");
}
v->codeAppend(R"(
float2 localcoord;
if (isinf(inputPoints_2_3.z)) {
// A conic with w=Inf is an exact triangle.
localcoord = (sk_VertexID < 1) ? inputPoints_0_1.xy
: (sk_VertexID == 1) ? inputPoints_0_1.zw
: inputPoints_2_3.xy;
} else {
float4x3 P = unpack_rational_cubic(inputPoints_0_1.xy, inputPoints_0_1.zw,
inputPoints_2_3.xy, inputPoints_2_3.zw);
float T = find_middle_out_T();
localcoord = eval_rational_cubic(P, T);
}
float2 vertexpos = AFFINE_MATRIX * localcoord + TRANSLATE;)");
gpArgs->fLocalCoordVar.set(kFloat2_GrSLType, "localcoord");
gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertexpos");
}
};
GrGLSLGeometryProcessor* GrCurveMiddleOutShader::createGLSLInstance(const GrShaderCaps&) const {
return new Impl;
}

View File

@ -15,12 +15,37 @@
// This is the base class for shaders in the GPU tessellator that fill paths.
class GrPathTessellationShader : public GrTessellationShader {
public:
GrPathTessellationShader(ClassID classID, GrPrimitiveType primitiveType,
int tessellationPatchVertexCount, const SkMatrix& viewMatrix,
const SkPMColor4f& color)
: GrTessellationShader(classID, primitiveType, tessellationPatchVertexCount, viewMatrix,
color) {
}
// Draws a simple array of triangles.
static GrPathTessellationShader* MakeSimpleTriangleShader(SkArenaAlloc*,
const SkMatrix& viewMatrix,
const SkPMColor4f&);
// Uses instanced draws to triangulate standalone closed curves with a "middle-out" topology.
// Middle-out draws a triangle with vertices at T=[0, 1/2, 1] and then recurses breadth first:
//
// depth=0: T=[0, 1/2, 1]
// depth=1: T=[0, 1/4, 2/4], T=[2/4, 3/4, 1]
// depth=2: T=[0, 1/8, 2/8], T=[2/8, 3/8, 4/8], T=[4/8, 5/8, 6/8], T=[6/8, 7/8, 1]
// ...
//
// The caller may compute each cubic's resolveLevel on the CPU (i.e., the log2 number of line
// segments it will be divided into; see GrWangsFormula::cubic_log2/quadratic_log2/conic_log2),
// and then sort the instance buffer by resolveLevel for efficient batching of indirect draws.
static GrPathTessellationShader* MakeMiddleOutInstancedShader(SkArenaAlloc*,
const SkMatrix& viewMatrix,
const SkPMColor4f&);
// Uses GPU tessellation shaders to linearize, triangulate, and render cubic "wedge" patches. A
// wedge is a 5-point patch consisting of 4 cubic control points, plus an anchor point fanning
// from the center of the curve's resident contour.
static GrPathTessellationShader* MakeHardwareWedgeShader(SkArenaAlloc*,
const SkMatrix& viewMatrix,
const SkPMColor4f&);
// Uses GPU tessellation shaders to linearize, triangulate, and render standalone closed cubics.
static GrPathTessellationShader* MakeHardwareCurveShader(SkArenaAlloc*,
const SkMatrix& viewMatrix,
const SkPMColor4f&);
// Returns the stencil settings to use for a standard Redbook "stencil" pass.
static const GrUserStencilSettings* StencilPathSettings(SkPathFillType fillType) {
@ -84,6 +109,13 @@ public:
}
protected:
GrPathTessellationShader(ClassID classID, GrPrimitiveType primitiveType,
int tessellationPatchVertexCount, const SkMatrix& viewMatrix,
const SkPMColor4f& color)
: GrTessellationShader(classID, primitiveType, tessellationPatchVertexCount, viewMatrix,
color) {
}
// Default path tessellation shader implementation that manages a uniform matrix and color.
class Impl : public GrGLSLGeometryProcessor {
public:
@ -92,6 +124,19 @@ protected:
const GrGeometryProcessor&) override;
protected:
// float2 eval_rational_cubic(float4x3 P, float T) { ...
//
// Converts a 4-point input patch into the rational cubic it intended to represent.
static const char* kUnpackRationalCubicFn;
// float4x3 unpack_rational_cubic(float2 p0, float2 p1, float2 p2, float2 p3) { ...
//
// Evaluate our point of interest using numerically stable linear interpolations. We add our
// own "safe_mix" method to guarantee we get exactly "b" when T=1. The builtin mix()
// function seems spec'd to behave this way, but empirical results results have shown it
// does not always.
static const char* kEvalRationalCubicFn;
virtual void emitVertexCode(GrGLSLVertexBuilder*, GrGPArgs*) = 0;
GrGLSLUniformHandler::UniformHandle fAffineMatrixUniform;
@ -100,112 +145,4 @@ protected:
};
};
// Draws a simple array of triangles.
class GrTriangleShader : public GrPathTessellationShader {
public:
GrTriangleShader(const SkMatrix& viewMatrix, SkPMColor4f color)
: GrPathTessellationShader(kTessellate_GrTriangleShader_ClassID,
GrPrimitiveType::kTriangles, 0, viewMatrix, color) {
constexpr static Attribute kInputPointAttrib{"inputPoint", kFloat2_GrVertexAttribType,
kFloat2_GrSLType};
this->setVertexAttributes(&kInputPointAttrib, 1);
}
private:
const char* name() const final { return "tessellate_GrTriangleShader"; }
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const final {}
GrGLSLGeometryProcessor* createGLSLInstance(const GrShaderCaps&) const final;
};
// Uses GPU tessellation shaders to linearize, triangulate, and render standalone closed cubics.
// TODO: Eventually we want to use rational cubic wedges in order to support perspective and conics.
class GrCurveTessellateShader : public GrPathTessellationShader {
public:
GrCurveTessellateShader(const SkMatrix& viewMatrix, const SkPMColor4f& color)
: GrPathTessellationShader(kTessellate_GrCurveTessellateShader_ClassID,
GrPrimitiveType::kPatches, 4, viewMatrix, color) {
constexpr static Attribute kInputPointAttrib{"inputPoint", kFloat2_GrVertexAttribType,
kFloat2_GrSLType};
this->setVertexAttributes(&kInputPointAttrib, 1);
}
private:
const char* name() const final { return "tessellate_GrCurveTessellateShader"; }
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const final {}
GrGLSLGeometryProcessor* createGLSLInstance(const GrShaderCaps&) const final;
};
// Uses GPU tessellation shaders to linearize, triangulate, and render cubic "wedge" patches. A
// wedge is a 5-point patch consisting of 4 cubic control points, plus an anchor point fanning from
// the center of the curve's resident contour.
// TODO: Eventually we want to use rational cubic wedges in order to support perspective and conics.
class GrWedgeTessellateShader : public GrPathTessellationShader {
public:
GrWedgeTessellateShader(const SkMatrix& viewMatrix, const SkPMColor4f& color)
: GrPathTessellationShader(kTessellate_GrWedgeTessellateShader_ClassID,
GrPrimitiveType::kPatches, 5, viewMatrix, color) {
constexpr static Attribute kInputPointAttrib{"inputPoint", kFloat2_GrVertexAttribType,
kFloat2_GrSLType};
this->setVertexAttributes(&kInputPointAttrib, 1);
}
private:
const char* name() const final { return "tessellate_GrWedgeTessellateShader"; }
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const final {}
GrGLSLGeometryProcessor* createGLSLInstance(const GrShaderCaps&) const final;
};
// Uses instanced draws to triangulate standalone closed curves with a "middle-out" topology.
// Middle-out draws a triangle with vertices at T=[0, 1/2, 1] and then recurses breadth first:
//
// depth=0: T=[0, 1/2, 1]
// depth=1: T=[0, 1/4, 2/4], T=[2/4, 3/4, 1]
// depth=2: T=[0, 1/8, 2/8], T=[2/8, 3/8, 4/8], T=[4/8, 5/8, 6/8], T=[6/8, 7/8, 1]
// ...
//
// The caller may compute each cubic's resolveLevel on the CPU (i.e., the log2 number of line
// segments it will be divided into; see GrWangsFormula::cubic_log2/quadratic_log2/conic_log2), and
// then sort the instance buffer by resolveLevel for efficient batching of indirect draws.
class GrCurveMiddleOutShader : public GrPathTessellationShader {
public:
// How many vertices do we need to draw in order to triangulate a cubic with 2^resolveLevel
// line segments?
constexpr static int NumVerticesAtResolveLevel(int resolveLevel) {
// resolveLevel=0 -> 0 line segments -> 0 triangles -> 0 vertices
// resolveLevel=1 -> 2 line segments -> 1 triangle -> 3 vertices
// resolveLevel=2 -> 4 line segments -> 3 triangles -> 9 vertices
// resolveLevel=3 -> 8 line segments -> 7 triangles -> 21 vertices
// ...
return ((1 << resolveLevel) - 1) * 3;
}
// Configures an indirect draw to render cubic instances with 2^resolveLevel evenly-spaced (in
// the parametric sense) line segments.
static void WriteDrawIndirectCmd(GrDrawIndirectWriter* indirectWriter, int resolveLevel,
uint32_t instanceCount, uint32_t baseInstance) {
SkASSERT(resolveLevel > 0 && resolveLevel <= GrTessellationPathRenderer::kMaxResolveLevel);
// The vertex shader determines the T value at which to draw each vertex. Since the
// triangles are arranged in "middle-out" order, we can conveniently control the
// resolveLevel by changing only the vertexCount.
uint32_t vertexCount = NumVerticesAtResolveLevel(resolveLevel);
indirectWriter->write(instanceCount, baseInstance, vertexCount, 0);
}
GrCurveMiddleOutShader(const SkMatrix& viewMatrix, const SkPMColor4f& color)
: GrPathTessellationShader(kTessellate_GrCurveMiddleOutShader_ClassID,
GrPrimitiveType::kTriangles, 0, viewMatrix, color) {
constexpr static Attribute kInputPtsAttribs[] = {
{"inputPoints_0_1", kFloat4_GrVertexAttribType, kFloat4_GrSLType},
{"inputPoints_2_3", kFloat4_GrVertexAttribType, kFloat4_GrSLType}};
this->setInstanceAttributes(kInputPtsAttribs, 2);
}
private:
const char* name() const final { return "tessellate_GrCurveMiddleOutShader"; }
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const final {}
GrGLSLGeometryProcessor* createGLSLInstance(const GrShaderCaps&) const final;
class Impl;
};
#endif

View File

@ -0,0 +1,319 @@
/*
* Copyright 2019 Google LLC.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/tessellate/shaders/GrPathTessellationShader.h"
#include "src/gpu/geometry/GrWangsFormula.h"
#include "src/gpu/glsl/GrGLSLGeometryProcessor.h"
#include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
// Converts keywords from shared SkSL strings to native GLSL keywords.
constexpr static char kSkSLTypeDefs[] = R"(
#define float4x3 mat4x3
#define float2 vec2
#define float3 vec3
#define float4 vec4
)";
namespace {
// Uses GPU tessellation shaders to linearize, triangulate, and render cubic "wedge" patches. A
// wedge is a 5-point patch consisting of 4 cubic control points, plus an anchor point fanning from
// the center of the curve's resident contour.
// TODO: Eventually we want to use rational cubic wedges in order to support perspective and conics.
class HardwareWedgeShader : public GrPathTessellationShader {
public:
HardwareWedgeShader(const SkMatrix& viewMatrix, const SkPMColor4f& color)
: GrPathTessellationShader(kTessellate_HardwareWedgeShader_ClassID,
GrPrimitiveType::kPatches, 5, viewMatrix, color) {
constexpr static Attribute kInputPointAttrib{"inputPoint", kFloat2_GrVertexAttribType,
kFloat2_GrSLType};
this->setVertexAttributes(&kInputPointAttrib, 1);
}
private:
const char* name() const final { return "tessellate_HardwareWedgeShader"; }
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const final {}
GrGLSLGeometryProcessor* createGLSLInstance(const GrShaderCaps&) const final;
};
GrGLSLGeometryProcessor* HardwareWedgeShader::createGLSLInstance(const GrShaderCaps&) const {
class Impl : public GrPathTessellationShader::Impl {
void emitVertexCode(GrGLSLVertexBuilder* v, GrGPArgs*) override {
v->declareGlobal(GrShaderVar("P", kFloat2_GrSLType, GrShaderVar::TypeModifier::Out));
v->codeAppend(R"(
// If y is infinity then x is a conic weight. Don't transform.
P = (isinf(inputPoint.y)) ? inputPoint : AFFINE_MATRIX * inputPoint + TRANSLATE;)");
}
SkString getTessControlShaderGLSL(const GrGeometryProcessor&,
const char* versionAndExtensionDecls,
const GrGLSLUniformHandler&,
const GrShaderCaps& shaderCaps) const override {
SkString code(versionAndExtensionDecls);
code.appendf(R"(
#define MAX_TESSELLATION_SEGMENTS %i)", shaderCaps.maxTessellationSegments());
code.appendf(R"(
#define PRECISION %f)", GrTessellationPathRenderer::kLinearizationPrecision);
code.append(kSkSLTypeDefs);
code.append(GrWangsFormula::as_sksl());
code.append(kUnpackRationalCubicFn);
code.append(R"(
layout(vertices = 1) out;
in vec2 P[];
patch out mat4x2 rationalCubicXY;
patch out float rationalCubicW;
patch out vec2 fanpoint;
void main() {
// Figure out how many segments to divide the curve into.
float w = isinf(P[3].y) ? P[3].x : -1; // w<0 means cubic.
float n = wangs_formula(PRECISION, P[0], P[1], P[2], P[3], w);
// Tessellate the first side of the patch into n triangles.
gl_TessLevelOuter[0] = min(n, MAX_TESSELLATION_SEGMENTS);
// Leave the other two sides of the patch as single segments.
gl_TessLevelOuter[1] = 1.0;
gl_TessLevelOuter[2] = 1.0;
// Changing the inner level to 1 when n == 1 collapses the entire
// patch to a single triangle. Otherwise, we need an inner level of 2 so our curve
// triangles have an interior point to originate from.
gl_TessLevelInner[0] = min(n, 2.0);
if (w < 0) {
rationalCubicXY = mat4x2(P[0], P[1], P[2], P[3]);
rationalCubicW = 1;
} else {
// Convert the conic to a rational cubic in projected form.
rationalCubicXY = mat4x2(P[0],
mix(vec4(P[0], P[2]), (P[1] * w).xyxy, 2.0/3.0),
P[2]);
rationalCubicW = fma(w, 2.0/3.0, 1.0/3.0);
}
fanpoint = P[4];
})");
return code;
}
SkString getTessEvaluationShaderGLSL(const GrGeometryProcessor&,
const char* versionAndExtensionDecls,
const GrGLSLUniformHandler&,
const GrShaderCaps&) const override {
SkString code(versionAndExtensionDecls);
code.append(kSkSLTypeDefs);
code.append(kEvalRationalCubicFn);
code.append(R"(
layout(triangles, equal_spacing, ccw) in;
uniform vec4 sk_RTAdjust;
patch in mat4x2 rationalCubicXY;
patch in float rationalCubicW;
patch in vec2 fanpoint[];
void main() {
// Locate our parametric point of interest. It is equal to the barycentric
// y-coordinate if we are a vertex on the tessellated edge of the triangle patch,
// 0.5 if we are the patch's interior vertex, or N/A if we are the fan point.
// NOTE: We are on the tessellated edge when the barycentric x-coordinate == 0.
float T = (gl_TessCoord.x == 0.0) ? gl_TessCoord.y : 0.5;
mat4x3 P = mat4x3(rationalCubicXY[0], 1,
rationalCubicXY[1], rationalCubicW,
rationalCubicXY[2], rationalCubicW,
rationalCubicXY[3], 1);
vec2 vertexpos = eval_rational_cubic(P, T);
if (gl_TessCoord.x == 1.0) {
// We are the anchor point that fans from the center of the curve's contour.
vertexpos = fanpoint[0];
} else if (gl_TessCoord.x != 0.0) {
// We are the interior point of the patch; center it inside [C(0), C(.5), C(1)].
vertexpos = (P[0].xy + vertexpos + P[3].xy) / 3.0;
}
gl_Position = vec4(vertexpos * sk_RTAdjust.xz + sk_RTAdjust.yw, 0.0, 1.0);
})");
return code;
}
};
return new Impl;
}
} // namespace
GrPathTessellationShader* GrPathTessellationShader::MakeHardwareWedgeShader(
SkArenaAlloc* arena, const SkMatrix& viewMatrix, const SkPMColor4f& color) {
return arena->make<HardwareWedgeShader>(viewMatrix, color);
}
namespace {
// Uses GPU tessellation shaders to linearize, triangulate, and render standalone closed cubics.
// TODO: Eventually we want to use rational cubic wedges in order to support perspective and conics.
class HardwareCurveShader : public GrPathTessellationShader {
public:
HardwareCurveShader(const SkMatrix& viewMatrix, const SkPMColor4f& color)
: GrPathTessellationShader(kTessellate_HardwareCurveShader_ClassID,
GrPrimitiveType::kPatches, 4, viewMatrix, color) {
constexpr static Attribute kInputPointAttrib{"inputPoint", kFloat2_GrVertexAttribType,
kFloat2_GrSLType};
this->setVertexAttributes(&kInputPointAttrib, 1);
}
private:
const char* name() const final { return "tessellate_HardwareCurveShader"; }
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const final {}
GrGLSLGeometryProcessor* createGLSLInstance(const GrShaderCaps&) const final;
};
GrGLSLGeometryProcessor* HardwareCurveShader::createGLSLInstance(const GrShaderCaps&) const {
class Impl : public GrPathTessellationShader::Impl {
void emitVertexCode(GrGLSLVertexBuilder* v, GrGPArgs*) override {
v->declareGlobal(GrShaderVar("P", kFloat2_GrSLType, GrShaderVar::TypeModifier::Out));
v->codeAppend(R"(
// If y is infinity then x is a conic weight. Don't transform.
P = (isinf(inputPoint.y)) ? inputPoint : AFFINE_MATRIX * inputPoint + TRANSLATE;)");
}
SkString getTessControlShaderGLSL(const GrGeometryProcessor&,
const char* versionAndExtensionDecls,
const GrGLSLUniformHandler&,
const GrShaderCaps& shaderCaps) const override {
SkString code(versionAndExtensionDecls);
code.appendf(R"(
#define MAX_TESSELLATION_SEGMENTS %i)", shaderCaps.maxTessellationSegments());
code.appendf(R"(
#define PRECISION %f)", GrTessellationPathRenderer::kLinearizationPrecision);
code.append(kSkSLTypeDefs);
code.append(GrWangsFormula::as_sksl());
code.append(kUnpackRationalCubicFn);
code.append(R"(
layout(vertices = 1) out;
in vec2 P[];
patch out mat4x2 rationalCubicXY;
patch out float rationalCubicW;
void main() {
float w = -1; // w<0 means a cubic.
vec2 p1w = P[1];
if (isinf(P[3].y)) {
// This patch is actually a conic. Project to homogeneous space.
w = P[3].x;
p1w *= w;
}
// Chop the curve at T=1/2.
vec2 ab = (P[0] + p1w) * .5;
vec2 bc = (p1w + P[2]) * .5;
vec2 cd = (P[2] + P[3]) * .5;
vec2 abc = (ab + bc) * .5;
vec2 bcd = (bc + cd) * .5;
vec2 abcd = (abc + bcd) * .5;
float n0, n1;
if (w < 0 || isinf(w)) {
if (w < 0) {
// The patch is a cubic. Calculate how many segments are required to
// linearize each half of the curve.
n0 = wangs_formula(PRECISION, P[0], ab, abc, abcd, -1); // w<0 means cubic.
n1 = wangs_formula(PRECISION, abcd, bcd, cd, P[3], -1);
rationalCubicW = 1;
} else {
// The patch is a triangle (a conic with infinite weight).
n0 = n1 = 1;
rationalCubicW = -1; // In the next stage, rationalCubicW<0 means triangle.
}
rationalCubicXY = mat4x2(P[0], P[1], P[2], P[3]);
} else {
// The patch is a conic. Unproject p0..5. w1 == w2 == w3 when chopping at .5.
// (See SkConic::chopAt().)
float r = 2.0 / (1.0 + w);
ab *= r, bc *= r, abc *= r;
// Put in "standard form" where w0 == w2 == w4 == 1.
float w_ = inversesqrt(r); // Both halves have the same w' when chopping at .5.
// Calculate how many segments are needed to linearize each half of the curve.
n0 = wangs_formula(PRECISION, P[0], ab, abc, float2(0), w_);
n1 = wangs_formula(PRECISION, abc, bc, P[2], float2(0), w_);
// Covert the conic to a rational cubic in projected form.
rationalCubicXY = mat4x2(P[0],
mix(float4(P[0],P[2]), p1w.xyxy, 2.0/3.0),
P[2]);
rationalCubicW = fma(w, 2.0/3.0, 1.0/3.0);
}
gl_TessLevelOuter[0] = min(n1, MAX_TESSELLATION_SEGMENTS);
gl_TessLevelOuter[1] = 1.0;
gl_TessLevelOuter[2] = min(n0, MAX_TESSELLATION_SEGMENTS);
// Changing the inner level to 1 when n0 == n1 == 1 collapses the entire patch to a
// single triangle. Otherwise, we need an inner level of 2 so our curve triangles
// have an interior point to originate from.
gl_TessLevelInner[0] = min(max(n0, n1), 2.0);
})");
return code;
}
SkString getTessEvaluationShaderGLSL(const GrGeometryProcessor&,
const char* versionAndExtensionDecls,
const GrGLSLUniformHandler&,
const GrShaderCaps&) const override {
SkString code(versionAndExtensionDecls);
code.append(kSkSLTypeDefs);
code.append(kEvalRationalCubicFn);
code.append(R"(
layout(triangles, equal_spacing, ccw) in;
uniform vec4 sk_RTAdjust;
patch in mat4x2 rationalCubicXY;
patch in float rationalCubicW;
void main() {
vec2 vertexpos;
if (rationalCubicW < 0) { // rationalCubicW < 0 means a triangle now.
vertexpos = (gl_TessCoord.x != 0) ? rationalCubicXY[0]
: (gl_TessCoord.y != 0) ? rationalCubicXY[1]
: rationalCubicXY[2];
} else {
// Locate our parametric point of interest. T ramps from [0..1/2] on the left
// edge of the triangle, and [1/2..1] on the right. If we are the patch's
// interior vertex, then we want T=1/2. Since the barycentric coords are
// (1/3, 1/3, 1/3) at the interior vertex, the below fma() works in all 3
// scenarios.
float T = fma(.5, gl_TessCoord.y, gl_TessCoord.z);
mat4x3 P = mat4x3(rationalCubicXY[0], 1,
rationalCubicXY[1], rationalCubicW,
rationalCubicXY[2], rationalCubicW,
rationalCubicXY[3], 1);
vertexpos = eval_rational_cubic(P, T);
if (all(notEqual(gl_TessCoord.xz, vec2(0)))) {
// We are the interior point of the patch; center it inside
// [C(0), C(.5), C(1)].
vertexpos = (P[0].xy + vertexpos + P[3].xy) / 3.0;
}
}
gl_Position = vec4(vertexpos * sk_RTAdjust.xz + sk_RTAdjust.yw, 0.0, 1.0);
})");
return code;
}
};
return new Impl;
}
} // namespace
GrPathTessellationShader* GrPathTessellationShader::MakeHardwareCurveShader(
SkArenaAlloc* arena, const SkMatrix& viewMatrix, const SkPMColor4f& color) {
return arena->make<HardwareCurveShader>(viewMatrix, color);
}

View File

@ -0,0 +1,99 @@
/*
* Copyright 2019 Google LLC.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/tessellate/shaders/GrPathTessellationShader.h"
#include "src/gpu/glsl/GrGLSLProgramBuilder.h"
#include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
namespace {
// Uses instanced draws to triangulate standalone closed curves with a "middle-out" topology.
// Middle-out draws a triangle with vertices at T=[0, 1/2, 1] and then recurses breadth first:
//
// depth=0: T=[0, 1/2, 1]
// depth=1: T=[0, 1/4, 2/4], T=[2/4, 3/4, 1]
// depth=2: T=[0, 1/8, 2/8], T=[2/8, 3/8, 4/8], T=[4/8, 5/8, 6/8], T=[6/8, 7/8, 1]
// ...
//
// The caller may compute each cubic's resolveLevel on the CPU (i.e., the log2 number of line
// segments it will be divided into; see GrWangsFormula::cubic_log2/quadratic_log2/conic_log2), and
// then sort the instance buffer by resolveLevel for efficient batching of indirect draws.
class MiddleOutShader : public GrPathTessellationShader {
public:
MiddleOutShader(const SkMatrix& viewMatrix, const SkPMColor4f& color)
: GrPathTessellationShader(kTessellate_MiddleOutShader_ClassID,
GrPrimitiveType::kTriangles, 0, viewMatrix, color) {
constexpr static Attribute kInputPtsAttribs[] = {
{"inputPoints_0_1", kFloat4_GrVertexAttribType, kFloat4_GrSLType},
{"inputPoints_2_3", kFloat4_GrVertexAttribType, kFloat4_GrSLType}};
this->setInstanceAttributes(kInputPtsAttribs, 2);
}
private:
const char* name() const final { return "tessellate_MiddleOutShader"; }
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const final {}
GrGLSLGeometryProcessor* createGLSLInstance(const GrShaderCaps&) const final;
};
GrGLSLGeometryProcessor* MiddleOutShader::createGLSLInstance(const GrShaderCaps&) const {
class Impl : public GrPathTessellationShader::Impl {
void emitVertexCode(GrGLSLVertexBuilder* v, GrGPArgs* gpArgs) override {
v->insertFunction(kUnpackRationalCubicFn);
v->insertFunction(kEvalRationalCubicFn);
if (v->getProgramBuilder()->shaderCaps()->bitManipulationSupport()) {
// Determines the T value at which to place the given vertex in a "middle-out"
// topology.
v->insertFunction(R"(
float find_middle_out_T() {
int totalTriangleIdx = sk_VertexID/3 + 1;
int depth = findMSB(totalTriangleIdx);
int firstTriangleAtDepth = (1 << depth);
int triangleIdxWithinDepth = totalTriangleIdx - firstTriangleAtDepth;
int vertexIdxWithinDepth = triangleIdxWithinDepth * 2 + sk_VertexID % 3;
return ldexp(float(vertexIdxWithinDepth), -1 - depth);
})");
} else {
// Determines the T value at which to place the given vertex in a "middle-out"
// topology.
v->insertFunction(R"(
float find_middle_out_T() {
float totalTriangleIdx = float(sk_VertexID/3) + 1;
float depth = floor(log2(totalTriangleIdx));
float firstTriangleAtDepth = exp2(depth);
float triangleIdxWithinDepth = totalTriangleIdx - firstTriangleAtDepth;
float vertexIdxWithinDepth = triangleIdxWithinDepth*2 + float(sk_VertexID % 3);
return vertexIdxWithinDepth * exp2(-1 - depth);
})");
}
v->codeAppend(R"(
float2 localcoord;
if (isinf(inputPoints_2_3.z)) {
// A conic with w=Inf is an exact triangle.
localcoord = (sk_VertexID < 1) ? inputPoints_0_1.xy
: (sk_VertexID == 1) ? inputPoints_0_1.zw
: inputPoints_2_3.xy;
} else {
float4x3 P = unpack_rational_cubic(inputPoints_0_1.xy, inputPoints_0_1.zw,
inputPoints_2_3.xy, inputPoints_2_3.zw);
float T = find_middle_out_T();
localcoord = eval_rational_cubic(P, T);
}
float2 vertexpos = AFFINE_MATRIX * localcoord + TRANSLATE;)");
gpArgs->fLocalCoordVar.set(kFloat2_GrSLType, "localcoord");
gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertexpos");
}
};
return new Impl;
}
} // namespace
GrPathTessellationShader* GrPathTessellationShader::MakeMiddleOutInstancedShader(
SkArenaAlloc* arena, const SkMatrix& viewMatrix, const SkPMColor4f& color) {
return arena->make<MiddleOutShader>(viewMatrix, color);
}