fix circular dashing

Path measure cannot use the same code approach for quadratics
and cubics. Subdividing cubics repeatedly does not result in
subdivided t values, e.g. a quarter circle cubic divided in
half twice does not have a t value equivalent to 1/4.

Instead, always compute the cubic segment from a pair of
t values.

When finding the length of the cubic through recursive measures,
it is enough to carry the point at a given t to the next
subdivision.

(Chrome suppression has landed already.)

R=reed@google.com
GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1602153002

Review URL: https://codereview.chromium.org/1602153002
This commit is contained in:
caryclark 2016-01-19 08:07:49 -08:00 committed by Commit bot
parent a913275bda
commit b6474dd1a5
7 changed files with 425 additions and 47 deletions

78
gm/dashcircle.cpp Normal file
View File

@ -0,0 +1,78 @@
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm.h"
#include "SkPath.h"
#include "SkDashPathEffect.h"
int dash1[] = { 1, 1 };
int dash2[] = { 1, 3 };
int dash3[] = { 1, 1, 3, 3 };
int dash4[] = { 1, 3, 2, 4 };
struct DashExample {
int* pattern;
int length;
} dashExamples[] = {
{ dash1, SK_ARRAY_COUNT(dash1) },
{ dash2, SK_ARRAY_COUNT(dash2) },
{ dash3, SK_ARRAY_COUNT(dash3) },
{ dash4, SK_ARRAY_COUNT(dash4) }
};
DEF_SIMPLE_GM(dashcircle, canvas, 900, 1200) {
SkPaint refPaint;
refPaint.setAntiAlias(true);
refPaint.setColor(0xFFbf3f7f);
refPaint.setStyle(SkPaint::kStroke_Style);
refPaint.setStrokeWidth(1);
const SkScalar radius = 125;
SkRect oval = SkRect::MakeLTRB(-radius - 20, -radius - 20, radius + 20, radius + 20);
SkPath circle;
circle.addCircle(0, 0, radius);
SkScalar circumference = radius * SK_ScalarPI * 2;
int wedges[] = { 6, 12, 36 };
canvas->translate(radius + 20, radius + 20);
for (int wedge : wedges) {
SkScalar arcLength = 360.f / wedge;
canvas->save();
for (const DashExample& dashExample : dashExamples) {
SkPath refPath;
int dashUnits = 0;
for (int index = 0; index < dashExample.length; ++index) {
dashUnits += dashExample.pattern[index];
}
SkScalar unitLength = arcLength / dashUnits;
SkScalar angle = 0;
for (int index = 0; index < wedge; ++index) {
for (int i2 = 0; i2 < dashExample.length; i2 += 2) {
SkScalar span = dashExample.pattern[i2] * unitLength;
refPath.moveTo(0, 0);
refPath.arcTo(oval, angle, span, false);
refPath.close();
angle += span + (dashExample.pattern[i2 + 1]) * unitLength;
}
}
canvas->drawPath(refPath, refPaint);
SkPaint p;
p.setAntiAlias(true);
p.setStyle(SkPaint::kStroke_Style);
p.setStrokeWidth(10);
SkScalar intervals[4];
int intervalCount = dashExample.length;
SkScalar dashLength = circumference / wedge / dashUnits;
for (int index = 0; index < dashExample.length; ++index) {
intervals[index] = dashExample.pattern[index] * dashLength;
}
p.setPathEffect(SkDashPathEffect::Create(intervals, intervalCount, 0))->unref();
canvas->drawPath(circle, p);
canvas->translate(0, radius * 2 + 50);
}
canvas->restore();
canvas->translate(radius * 2 + 50, 0);
}
}

View File

@ -107,7 +107,13 @@ private:
void buildSegments(); void buildSegments();
SkScalar compute_quad_segs(const SkPoint pts[3], SkScalar distance, SkScalar compute_quad_segs(const SkPoint pts[3], SkScalar distance,
int mint, int maxt, int ptIndex); int mint, int maxt, int ptIndex);
#ifdef SK_SUPPORT_LEGACY_CONIC_MEASURE
SkScalar compute_conic_segs(const SkConic&, SkScalar distance, int mint, int maxt, int ptIndex); SkScalar compute_conic_segs(const SkConic&, SkScalar distance, int mint, int maxt, int ptIndex);
#else
SkScalar compute_conic_segs(const SkConic&, SkScalar distance,
int mint, const SkPoint& minPt,
int maxt, const SkPoint& maxPt, int ptIndex);
#endif
SkScalar compute_cubic_segs(const SkPoint pts[3], SkScalar distance, SkScalar compute_cubic_segs(const SkPoint pts[3], SkScalar distance,
int mint, int maxt, int ptIndex); int mint, int maxt, int ptIndex);
const Segment* distanceToSegment(SkScalar distance, SkScalar* t); const Segment* distanceToSegment(SkScalar distance, SkScalar* t);

View File

@ -9,6 +9,7 @@
#include "SampleCode.h" #include "SampleCode.h"
#include "SkView.h" #include "SkView.h"
#include "SkCanvas.h" #include "SkCanvas.h"
#include "SkGeometry.h"
#include "SkPathMeasure.h" #include "SkPathMeasure.h"
#include "SkRandom.h" #include "SkRandom.h"
#include "SkRRect.h" #include "SkRRect.h"
@ -122,6 +123,7 @@ class QuadStrokerView : public SampleView {
bool fAnimate; bool fAnimate;
bool fDrawRibs; bool fDrawRibs;
bool fDrawTangents; bool fDrawTangents;
bool fDrawTDivs;
#ifdef SK_DEBUG #ifdef SK_DEBUG
#define kStrokerErrorMin 0.001f #define kStrokerErrorMin 0.001f
#define kStrokerErrorMax 5 #define kStrokerErrorMax 5
@ -288,16 +290,84 @@ protected:
SkScalar total = meas.getLength(); SkScalar total = meas.getLength();
SkScalar delta = 8; SkScalar delta = 8;
SkPaint paint; SkPaint paint, labelP;
paint.setColor(color); paint.setColor(color);
labelP.setColor(color & 0xff5f9f5f);
SkPoint pos, tan; SkPoint pos, tan;
int index = 0;
for (SkScalar dist = 0; dist <= total; dist += delta) { for (SkScalar dist = 0; dist <= total; dist += delta) {
if (meas.getPosTan(dist, &pos, &tan)) { if (meas.getPosTan(dist, &pos, &tan)) {
tan.scale(radius); tan.scale(radius);
tan.rotateCCW(); tan.rotateCCW();
canvas->drawLine(pos.x() + tan.x(), pos.y() + tan.y(), canvas->drawLine(pos.x() + tan.x(), pos.y() + tan.y(),
pos.x() - tan.x(), pos.y() - tan.y(), paint); pos.x() - tan.x(), pos.y() - tan.y(), paint);
if (0 == index % 10) {
SkString label;
label.appendS32(index);
SkRect dot = SkRect::MakeXYWH(pos.x() - 2, pos.y() - 2, 4, 4);
canvas->drawRect(dot, labelP);
canvas->drawText(label.c_str(), label.size(),
pos.x() - tan.x() * 1.25f, pos.y() - tan.y() * 1.25f, labelP);
}
}
++index;
}
}
void draw_t_divs(SkCanvas* canvas, const SkPath& path, SkScalar width, SkColor color) {
const SkScalar radius = width / 2;
SkPaint paint;
paint.setColor(color);
SkPathMeasure meas(path, false);
SkScalar total = meas.getLength();
SkScalar delta = 8;
int ribs = 0;
for (SkScalar dist = 0; dist <= total; dist += delta) {
++ribs;
}
SkPath::RawIter iter(path);
SkPoint pts[4];
if (SkPath::kMove_Verb != iter.next(pts)) {
SkASSERT(0);
return;
}
SkPath::Verb verb = iter.next(pts);
SkASSERT(SkPath::kLine_Verb <= verb && verb <= SkPath::kCubic_Verb);
SkPoint pos, tan;
for (int index = 0; index < ribs; ++index) {
SkScalar t = (SkScalar) index / ribs;
switch (verb) {
case SkPath::kLine_Verb:
tan = pts[1] - pts[0];
pos = pts[0];
pos.fX += tan.fX * t;
pos.fY += tan.fY * t;
break;
case SkPath::kQuad_Verb:
pos = SkEvalQuadAt(pts, t);
tan = SkEvalQuadTangentAt(pts, t);
break;
case SkPath::kConic_Verb: {
SkConic conic(pts, iter.conicWeight());
pos = conic.evalAt(t);
tan = conic.evalTangentAt(t);
} break;
case SkPath::kCubic_Verb:
SkEvalCubicAt(pts, t, &pos, &tan, nullptr);
break;
default:
SkASSERT(0);
return;
}
tan.setLength(radius);
tan.rotateCCW();
canvas->drawLine(pos.x() + tan.x(), pos.y() + tan.y(),
pos.x() - tan.x(), pos.y() - tan.y(), paint);
if (0 == index % 10) {
SkString label;
label.appendS32(index);
canvas->drawText(label.c_str(), label.size(),
pos.x() + tan.x() * 1.25f, pos.y() + tan.y() * 1.25f, paint);
} }
} }
} }
@ -343,6 +413,10 @@ protected:
draw_ribs(canvas, scaled, width, 0xFF00FF00); draw_ribs(canvas, scaled, width, 0xFF00FF00);
} }
if (fDrawTDivs) {
draw_t_divs(canvas, scaled, width, 0xFF3F3F00);
}
SkPath fill; SkPath fill;
SkPaint p; SkPaint p;
@ -428,17 +502,24 @@ protected:
void setForGeometry() { void setForGeometry() {
fDrawRibs = true; fDrawRibs = true;
fDrawTangents = true; fDrawTangents = true;
fDrawTDivs = false;
fWidthScale = 1; fWidthScale = 1;
} }
void setForText() { void setForText() {
fDrawRibs = fDrawTangents = false; fDrawRibs = fDrawTangents = fDrawTDivs = false;
fWidthScale = 0.002f; fWidthScale = 0.002f;
} }
void setForSingles() {
setForGeometry();
fDrawTDivs = true;
}
void setAsNeeded() { void setAsNeeded() {
if (fConicButton.fEnabled || fCubicButton.fEnabled || fQuadButton.fEnabled if (fConicButton.fEnabled || fCubicButton.fEnabled || fQuadButton.fEnabled) {
|| fRRectButton.fEnabled || fCircleButton.fEnabled) { setForSingles();
} else if (fRRectButton.fEnabled || fCircleButton.fEnabled) {
setForGeometry(); setForGeometry();
} else { } else {
setForText(); setForText();
@ -452,14 +533,15 @@ protected:
if (fCubicButton.fEnabled) { if (fCubicButton.fEnabled) {
path.moveTo(fPts[0]); path.moveTo(fPts[0]);
path.cubicTo(fPts[1], fPts[2], fPts[3]); path.cubicTo(fPts[1], fPts[2], fPts[3]);
setForGeometry(); setForSingles();
draw_stroke(canvas, path, width, 950, false); draw_stroke(canvas, path, width, 950, false);
} }
if (fConicButton.fEnabled) { if (fConicButton.fEnabled) {
path.reset();
path.moveTo(fPts[4]); path.moveTo(fPts[4]);
path.conicTo(fPts[5], fPts[6], fWeight); path.conicTo(fPts[5], fPts[6], fWeight);
setForGeometry(); setForSingles();
draw_stroke(canvas, path, width, 950, false); draw_stroke(canvas, path, width, 950, false);
} }
@ -467,7 +549,7 @@ protected:
path.reset(); path.reset();
path.moveTo(fPts[7]); path.moveTo(fPts[7]);
path.quadTo(fPts[8], fPts[9]); path.quadTo(fPts[8], fPts[9]);
setForGeometry(); setForSingles();
draw_stroke(canvas, path, width, 950, false); draw_stroke(canvas, path, width, 950, false);
} }

View File

@ -9,18 +9,6 @@
#include "SkMatrix.h" #include "SkMatrix.h"
#include "SkNx.h" #include "SkNx.h"
#if 0
static Sk2s from_point(const SkPoint& point) {
return Sk2s::Load(&point.fX);
}
static SkPoint to_point(const Sk2s& x) {
SkPoint point;
x.store(&point.fX);
return point;
}
#endif
static SkVector to_vector(const Sk2s& x) { static SkVector to_vector(const Sk2s& x) {
SkVector vector; SkVector vector;
x.store(&vector.fX); x.store(&vector.fX);
@ -220,7 +208,7 @@ void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
} }
void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) { void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
SkChopQuadAt(src, dst, 0.5f); return; SkChopQuadAt(src, dst, 0.5f);
} }
/** Quad'(t) = At + B, where /** Quad'(t) = At + B, where
@ -1246,8 +1234,34 @@ void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
dst[1].fW = tmp2[2].fZ / root; dst[1].fW = tmp2[2].fZ / root;
} }
static Sk2s times_2(const Sk2s& value) { void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const {
return value + value; if (0 == t1 || 1 == t2) {
if (0 == t1 && 1 == t2) {
*dst = *this;
} else {
SkConic pair[2];
this->chopAt(t1 ? t1 : t2, pair);
*dst = pair[SkToBool(t1)];
}
return;
}
SkConicCoeff coeff(*this);
Sk2s tt1(t1);
Sk2s aXY = coeff.fNumer.eval(tt1);
Sk2s aZZ = coeff.fDenom.eval(tt1);
Sk2s midTT((t1 + t2) / 2);
Sk2s dXY = coeff.fNumer.eval(midTT);
Sk2s dZZ = coeff.fDenom.eval(midTT);
Sk2s tt2(t2);
Sk2s cXY = coeff.fNumer.eval(tt2);
Sk2s cZZ = coeff.fDenom.eval(tt2);
Sk2s bXY = times_2(dXY) - (aXY + cXY) * Sk2s(0.5f);
Sk2s bZZ = times_2(dZZ) - (aZZ + cZZ) * Sk2s(0.5f);
dst->fPts[0] = to_point(aXY / aZZ);
dst->fPts[1] = to_point(bXY / bZZ);
dst->fPts[2] = to_point(cXY / cZZ);
Sk2s ww = bZZ / (aZZ * cZZ).sqrt();
dst->fW = ww.kth<0>();
} }
SkPoint SkConic::evalAt(SkScalar t) const { SkPoint SkConic::evalAt(SkScalar t) const {

View File

@ -23,7 +23,11 @@ static inline SkPoint to_point(const Sk2s& x) {
static inline Sk2s sk2s_cubic_eval(const Sk2s& A, const Sk2s& B, const Sk2s& C, const Sk2s& D, static inline Sk2s sk2s_cubic_eval(const Sk2s& A, const Sk2s& B, const Sk2s& C, const Sk2s& D,
const Sk2s& t) { const Sk2s& t) {
return ((A * t + B) * t + C) * t + D; return ((A * t + B) * t + C) * t + D;
}
static Sk2s times_2(const Sk2s& value) {
return value + value;
} }
/** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
@ -42,10 +46,10 @@ SkPoint SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t);
void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = nullptr); void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = nullptr);
/** /**
* output is : eval(t) == coeff[0] * t^2 + coeff[1] * t + coeff[2] * output is : eval(t) == coeff[0] * t^2 + coeff[1] * t + coeff[2]
*/ */
void SkQuadToCoeff(const SkPoint pts[3], SkPoint coeff[3]); void SkQuadToCoeff(const SkPoint pts[3], SkPoint coeff[3]);
/** /**
* output is : eval(t) == coeff[0] * t^3 + coeff[1] * t^2 + coeff[2] * t + coeff[3] * output is : eval(t) == coeff[0] * t^3 + coeff[1] * t^2 + coeff[2] * t + coeff[3]
*/ */
@ -241,6 +245,7 @@ struct SkConic {
*/ */
void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = nullptr) const; void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = nullptr) const;
void chopAt(SkScalar t, SkConic dst[2]) const; void chopAt(SkScalar t, SkConic dst[2]) const;
void chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const;
void chop(SkConic dst[2]) const; void chop(SkConic dst[2]) const;
SkPoint evalAt(SkScalar t) const; SkPoint evalAt(SkScalar t) const;
@ -287,6 +292,102 @@ struct SkConic {
const SkMatrix*, SkConic conics[kMaxConicsForArc]); const SkMatrix*, SkConic conics[kMaxConicsForArc]);
}; };
// inline helpers are contained in a namespace to avoid external leakage to fragile SkNx members
namespace {
/**
* use for : eval(t) == A * t^2 + B * t + C
*/
struct SkQuadCoeff {
SkQuadCoeff() {}
SkQuadCoeff(const Sk2s& A, const Sk2s& B, const Sk2s& C)
: fA(A)
, fB(B)
, fC(C)
{
}
SkQuadCoeff(const SkPoint src[3]) {
fC = from_point(src[0]);
Sk2s P1 = from_point(src[1]);
Sk2s P2 = from_point(src[2]);
fB = times_2(P1 - fC);
fA = P2 - times_2(P1) + fC;
}
Sk2s eval(SkScalar t) {
Sk2s tt(t);
return eval(tt);
}
Sk2s eval(const Sk2s& tt) {
return (fA * tt + fB) * tt + fC;
}
Sk2s fA;
Sk2s fB;
Sk2s fC;
};
struct SkConicCoeff {
SkConicCoeff(const SkConic& conic) {
Sk2s p0 = from_point(conic.fPts[0]);
Sk2s p1 = from_point(conic.fPts[1]);
Sk2s p2 = from_point(conic.fPts[2]);
Sk2s ww(conic.fW);
Sk2s p1w = p1 * ww;
fNumer.fC = p0;
fNumer.fA = p2 - times_2(p1w) + p0;
fNumer.fB = times_2(p1w - p0);
fDenom.fC = Sk2s(1);
fDenom.fB = times_2(ww - fDenom.fC);
fDenom.fA = Sk2s(0) - fDenom.fB;
}
Sk2s eval(SkScalar t) {
Sk2s tt(t);
Sk2s numer = fNumer.eval(tt);
Sk2s denom = fDenom.eval(tt);
return numer / denom;
}
SkQuadCoeff fNumer;
SkQuadCoeff fDenom;
};
struct SkCubicCoeff {
SkCubicCoeff(const SkPoint src[4]) {
Sk2s P0 = from_point(src[0]);
Sk2s P1 = from_point(src[1]);
Sk2s P2 = from_point(src[2]);
Sk2s P3 = from_point(src[3]);
Sk2s three(3);
fA = P3 + three * (P1 - P2) - P0;
fB = three * (P2 - times_2(P1) + P0);
fC = three * (P1 - P0);
fD = P0;
}
Sk2s eval(SkScalar t) {
Sk2s tt(t);
return eval(tt);
}
Sk2s eval(const Sk2s& t) {
return ((fA * t + fB) * t + fC) * t + fD;
}
Sk2s fA;
Sk2s fB;
Sk2s fC;
Sk2s fD;
};
}
#include "SkTemplates.h" #include "SkTemplates.h"
/** /**

View File

@ -73,6 +73,15 @@ static bool quad_too_curvy(const SkPoint pts[3]) {
return dist > CHEAP_DIST_LIMIT; return dist > CHEAP_DIST_LIMIT;
} }
static bool conic_too_curvy(const SkPoint& firstPt, const SkPoint& midTPt,
const SkPoint& lastPt) {
SkPoint midEnds = firstPt + lastPt;
midEnds *= 0.5f;
SkVector dxy = midTPt - midEnds;
SkScalar dist = SkMaxScalar(SkScalarAbs(dxy.fX), SkScalarAbs(dxy.fY));
return dist > CHEAP_DIST_LIMIT;
}
static bool cheap_dist_exceeds_limit(const SkPoint& pt, static bool cheap_dist_exceeds_limit(const SkPoint& pt,
SkScalar x, SkScalar y) { SkScalar x, SkScalar y) {
SkScalar dist = SkMaxScalar(SkScalarAbs(x - pt.fX), SkScalarAbs(y - pt.fY)); SkScalar dist = SkMaxScalar(SkScalarAbs(x - pt.fX), SkScalarAbs(y - pt.fY));
@ -90,27 +99,57 @@ static bool cubic_too_curvy(const SkPoint pts[4]) {
SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1*2/3)); SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1*2/3));
} }
/* from http://www.malczak.linuxpl.com/blog/quadratic-bezier-curve-length/ */ static SkScalar quad_folded_len(const SkPoint pts[3]) {
static SkScalar compute_quad_len(const SkPoint pts[3]) { SkScalar t = SkFindQuadMaxCurvature(pts);
SkPoint a,b; SkPoint pt = SkEvalQuadAt(pts, t);
a.fX = pts[0].fX - 2 * pts[1].fX + pts[2].fX; SkVector a = pts[2] - pt;
a.fY = pts[0].fY - 2 * pts[1].fY + pts[2].fY; SkScalar result = a.length();
b.fX = 2 * (pts[1].fX - pts[0].fX); if (0 != t) {
b.fY = 2 * (pts[1].fY - pts[0].fY); SkVector b = pts[0] - pt;
SkScalar A = 4 * (a.fX * a.fX + a.fY * a.fY); result += b.length();
SkScalar B = 4 * (a.fX * b.fX + a.fY * b.fY); }
SkScalar C = b.fX * b.fX + b.fY * b.fY; SkASSERT(SkScalarIsFinite(result));
return result;
SkScalar Sabc = 2 * SkScalarSqrt(A + B + C);
SkScalar A_2 = SkScalarSqrt(A);
SkScalar A_32 = 2 * A * A_2;
SkScalar C_2 = 2 * SkScalarSqrt(C);
SkScalar BA = B / A_2;
return (A_32 * Sabc + A_2 * B * (Sabc - C_2) +
(4 * C * A - B * B) * SkScalarLog((2 * A_2 + BA + Sabc) / (BA + C_2))) / (4 * A_32);
} }
/* from http://www.malczak.linuxpl.com/blog/quadratic-bezier-curve-length/ */
/* This works -- more needs to be done to see if it is performant on all platforms.
To use this to measure parts of quads requires recomputing everything -- perhaps
a chop-like interface can start from a larger measurement and get two new measurements
with one call here.
*/
static SkScalar compute_quad_len(const SkPoint pts[3]) {
SkPoint a,b;
a.fX = pts[0].fX - 2 * pts[1].fX + pts[2].fX;
a.fY = pts[0].fY - 2 * pts[1].fY + pts[2].fY;
SkScalar A = 4 * (a.fX * a.fX + a.fY * a.fY);
if (0 == A) {
a = pts[2] - pts[0];
return a.length();
}
b.fX = 2 * (pts[1].fX - pts[0].fX);
b.fY = 2 * (pts[1].fY - pts[0].fY);
SkScalar B = 4 * (a.fX * b.fX + a.fY * b.fY);
SkScalar C = b.fX * b.fX + b.fY * b.fY;
SkScalar Sabc = 2 * SkScalarSqrt(A + B + C);
SkScalar A_2 = SkScalarSqrt(A);
SkScalar A_32 = 2 * A * A_2;
SkScalar C_2 = 2 * SkScalarSqrt(C);
SkScalar BA = B / A_2;
if (0 == BA + C_2) {
return quad_folded_len(pts);
}
SkScalar J = A_32 * Sabc + A_2 * B * (Sabc - C_2);
SkScalar K = 4 * C * A - B * B;
SkScalar L = (2 * A_2 + BA + Sabc) / (BA + C_2);
if (L <= 0) {
return quad_folded_len(pts);
}
SkScalar M = SkScalarLog(L);
SkScalar result = (J + K * M) / (4 * A_32);
SkASSERT(SkScalarIsFinite(result));
return result;
}
SkScalar SkPathMeasure::compute_quad_segs(const SkPoint pts[3], SkScalar SkPathMeasure::compute_quad_segs(const SkPoint pts[3],
SkScalar distance, int mint, int maxt, int ptIndex) { SkScalar distance, int mint, int maxt, int ptIndex) {
@ -136,6 +175,7 @@ SkScalar SkPathMeasure::compute_quad_segs(const SkPoint pts[3],
return distance; return distance;
} }
#ifdef SK_SUPPORT_LEGACY_CONIC_MEASURE
SkScalar SkPathMeasure::compute_conic_segs(const SkConic& conic, SkScalar SkPathMeasure::compute_conic_segs(const SkConic& conic,
SkScalar distance, int mint, int maxt, int ptIndex) { SkScalar distance, int mint, int maxt, int ptIndex) {
if (tspan_big_enough(maxt - mint) && quad_too_curvy(conic.fPts)) { if (tspan_big_enough(maxt - mint) && quad_too_curvy(conic.fPts)) {
@ -159,6 +199,30 @@ SkScalar SkPathMeasure::compute_conic_segs(const SkConic& conic,
} }
return distance; return distance;
} }
#else
SkScalar SkPathMeasure::compute_conic_segs(const SkConic& conic, SkScalar distance,
int mint, const SkPoint& minPt,
int maxt, const SkPoint& maxPt, int ptIndex) {
int halft = (mint + maxt) >> 1;
SkPoint halfPt = conic.evalAt(tValue2Scalar(halft));
if (tspan_big_enough(maxt - mint) && conic_too_curvy(minPt, halfPt, maxPt)) {
distance = this->compute_conic_segs(conic, distance, mint, minPt, halft, halfPt, ptIndex);
distance = this->compute_conic_segs(conic, distance, halft, halfPt, maxt, maxPt, ptIndex);
} else {
SkScalar d = SkPoint::Distance(minPt, maxPt);
SkScalar prevD = distance;
distance += d;
if (distance > prevD) {
Segment* seg = fSegments.append();
seg->fDistance = distance;
seg->fPtIndex = ptIndex;
seg->fType = kConic_SegType;
seg->fTValue = maxt;
}
}
return distance;
}
#endif
SkScalar SkPathMeasure::compute_cubic_segs(const SkPoint pts[4], SkScalar SkPathMeasure::compute_cubic_segs(const SkPoint pts[4],
SkScalar distance, int mint, int maxt, int ptIndex) { SkScalar distance, int mint, int maxt, int ptIndex) {
@ -253,7 +317,12 @@ void SkPathMeasure::buildSegments() {
case SkPath::kConic_Verb: { case SkPath::kConic_Verb: {
const SkConic conic(pts, fIter.conicWeight()); const SkConic conic(pts, fIter.conicWeight());
SkScalar prevD = distance; SkScalar prevD = distance;
#ifdef SK_SUPPORT_LEGACY_CONIC_MEASURE
distance = this->compute_conic_segs(conic, distance, 0, kMaxTValue, ptIndex); distance = this->compute_conic_segs(conic, distance, 0, kMaxTValue, ptIndex);
#else
distance = this->compute_conic_segs(conic, distance, 0, conic.fPts[0],
kMaxTValue, conic.fPts[2], ptIndex);
#endif
if (distance > prevD) { if (distance > prevD) {
// we store the conic weight in our next point, followed by the last 2 pts // we store the conic weight in our next point, followed by the last 2 pts
// thus to reconstitue a conic, you'd need to say // thus to reconstitue a conic, you'd need to say
@ -406,7 +475,8 @@ static void seg_to(const SkPoint pts[], int segType,
dst->conicTo(tmp[0].fPts[1], tmp[0].fPts[2], tmp[0].fW); dst->conicTo(tmp[0].fPts[1], tmp[0].fPts[2], tmp[0].fW);
} }
} else { } else {
SkConic tmp1[2]; #ifdef SK_SUPPORT_LEGACY_CONIC_MEASURE
SkConic tmp1[2];
conic.chopAt(startT, tmp1); conic.chopAt(startT, tmp1);
if (SK_Scalar1 == stopT) { if (SK_Scalar1 == stopT) {
dst->conicTo(tmp1[1].fPts[1], tmp1[1].fPts[2], tmp1[1].fW); dst->conicTo(tmp1[1].fPts[1], tmp1[1].fPts[2], tmp1[1].fW);
@ -415,6 +485,17 @@ static void seg_to(const SkPoint pts[], int segType,
tmp1[1].chopAt((stopT - startT) / (SK_Scalar1 - startT), tmp2); tmp1[1].chopAt((stopT - startT) / (SK_Scalar1 - startT), tmp2);
dst->conicTo(tmp2[0].fPts[1], tmp2[0].fPts[2], tmp2[0].fW); dst->conicTo(tmp2[0].fPts[1], tmp2[0].fPts[2], tmp2[0].fW);
} }
#else
if (SK_Scalar1 == stopT) {
SkConic tmp1[2];
conic.chopAt(startT, tmp1);
dst->conicTo(tmp1[1].fPts[1], tmp1[1].fPts[2], tmp1[1].fW);
} else {
SkConic tmp;
conic.chopAt(startT, stopT, &tmp);
dst->conicTo(tmp.fPts[1], tmp.fPts[2], tmp.fW);
}
#endif
} }
} break; } break;
case kCubic_SegType: case kCubic_SegType:

View File

@ -201,3 +201,19 @@ DEF_TEST(PathMeasure, reporter) {
test_small_segment2(); test_small_segment2();
test_small_segment3(); test_small_segment3();
} }
DEF_TEST(PathMeasureConic, reporter) {
SkPoint stdP, hiP, pts[] = {{0,0}, {100,0}, {100,0}};
SkPath p;
p.moveTo(0, 0);
p.conicTo(pts[1], pts[2], 1);
SkPathMeasure stdm(p, false);
REPORTER_ASSERT(reporter, stdm.getPosTan(20, &stdP, nullptr));
p.reset();
p.moveTo(0, 0);
p.conicTo(pts[1], pts[2], 10);
stdm.setPath(&p, false);
REPORTER_ASSERT(reporter, stdm.getPosTan(20, &hiP, nullptr));
REPORTER_ASSERT(reporter, 19.5f < stdP.fX && stdP.fX < 20.5f);
REPORTER_ASSERT(reporter, 19.5f < hiP.fX && hiP.fX < 20.5f);
}