Implement four more xfermodes with Sk4px.

HardLight, Overlay, Darken, and Lighten are all
~2x faster with SSE, ~25% faster with NEON.

This covers all previously-implemented NEON xfermodes.
3 previous SSE xfermodes remain.  Those need division
and sqrt, so I'm planning on using SkPMFloat for them.
It'll help the readability and NEON speed if I move that
into [0,1] space first.

The main new concept here is c.thenElse(t,e), which behaves like
(c ? t : e) except, of course, both t and e are evaluated.  This allows
us to emulate conditionals with vectors.

This also removes the concept of SkNb.  Instead of a standalone bool
vector, each SkNi or SkNf will just return their own types for
comparisons.  Turns out to be a lot more manageable this way.

BUG=skia:

Review URL: https://codereview.chromium.org/1196713004
This commit is contained in:
mtklein 2015-06-24 14:27:35 -07:00 committed by Commit bot
parent 1e1adc33ba
commit b9d4163beb
7 changed files with 197 additions and 178 deletions

View File

@ -85,6 +85,8 @@ public:
// These just keep the types as Sk4px so the user doesn't have to keep casting.
Sk4px operator + (const Sk4px& o) const { return INHERITED::operator+(o); }
Sk4px operator - (const Sk4px& o) const { return INHERITED::operator-(o); }
Sk4px operator < (const Sk4px& o) const { return INHERITED::operator<(o); }
Sk4px thenElse(const Sk4px& t, const Sk4px& e) const { return INHERITED::thenElse(t,e); }
// Generally faster than (*this * o).div255().
// May be incorrect by +-1, but is always exactly correct when *this or o is 0 or 255.

View File

@ -60,6 +60,44 @@ XFERMODE(Exclusion) {
return (s - p) + (d - p.zeroAlphas());
}
XFERMODE(HardLight) {
auto alphas = SrcOver::Xfer(s,d);
auto sa = s.alphas(),
da = d.alphas();
auto isDark = s < (sa-s);
auto dark = s*d << 1,
lite = sa*da - ((da-d)*(sa-s) << 1),
both = s*da.inv() + d*sa.inv();
// TODO: do isDark in 16-bit so we only have to div255() once.
auto colors = isDark.thenElse((dark + both).div255(),
(lite + both).div255());
return alphas.zeroColors() + colors.zeroAlphas();
}
XFERMODE(Overlay) { return HardLight::Xfer(d,s); }
XFERMODE(Darken) {
auto sda = s.approxMulDiv255(d.alphas()),
dsa = d.approxMulDiv255(s.alphas());
auto srcover = s + (d - dsa),
dstover = d + (s - sda);
auto alphas = srcover,
colors = (sda < dsa).thenElse(srcover, dstover);
return alphas.zeroColors() + colors.zeroAlphas();
}
XFERMODE(Lighten) {
auto sda = s.approxMulDiv255(d.alphas()),
dsa = d.approxMulDiv255(s.alphas());
auto srcover = s + (d - dsa),
dstover = d + (s - sda);
auto alphas = srcover,
colors = (sda < dsa).thenElse(dstover, srcover);
return alphas.zeroColors() + colors.zeroAlphas();
}
#undef XFERMODE
// A reasonable fallback mode for doing AA is to simply apply the transfermode first,
@ -71,17 +109,15 @@ static Sk4px xfer_aa(const Sk4px& s, const Sk4px& d, const Sk4px& aa) {
}
// For some transfermodes we specialize AA, either for correctness or performance.
#ifndef SK_NO_SPECIALIZED_AA_XFERMODES
#define XFERMODE_AA(Name) \
template <> Sk4px xfer_aa<Name>(const Sk4px& s, const Sk4px& d, const Sk4px& aa)
#define XFERMODE_AA(Name) \
template <> Sk4px xfer_aa<Name>(const Sk4px& s, const Sk4px& d, const Sk4px& aa)
// Plus' clamp needs to happen after AA. skia:3852
XFERMODE_AA(Plus) { // [ clamp( (1-AA)D + (AA)(S+D) ) == clamp(D + AA*S) ]
return d.saturatedAdd(s.approxMulDiv255(aa));
}
// Plus' clamp needs to happen after AA. skia:3852
XFERMODE_AA(Plus) { // [ clamp( (1-AA)D + (AA)(S+D) ) == clamp(D + AA*S) ]
return d.saturatedAdd(s.approxMulDiv255(aa));
}
#undef XFERMODE_AA
#endif
#undef XFERMODE_AA
template <typename ProcType>
class SkT4pxXfermode : public SkProcCoeffXfermode {
@ -130,6 +166,12 @@ static SkProcCoeffXfermode* SkCreate4pxXfermode(const ProcCoeff& rec, SkXfermode
case SkXfermode::kMultiply_Mode: return SkT4pxXfermode<Multiply>::Create(rec);
case SkXfermode::kDifference_Mode: return SkT4pxXfermode<Difference>::Create(rec);
case SkXfermode::kExclusion_Mode: return SkT4pxXfermode<Exclusion>::Create(rec);
#if !defined(SK_SUPPORT_LEGACY_XFERMODES) // For staging in Chrome (layout tests).
case SkXfermode::kHardLight_Mode: return SkT4pxXfermode<HardLight>::Create(rec);
case SkXfermode::kOverlay_Mode: return SkT4pxXfermode<Overlay>::Create(rec);
case SkXfermode::kDarken_Mode: return SkT4pxXfermode<Darken>::Create(rec);
case SkXfermode::kLighten_Mode: return SkT4pxXfermode<Lighten>::Create(rec);
#endif
default: break;
}
#endif

View File

@ -26,22 +26,6 @@ namespace {
// The default implementations just fall back on a pair of size N/2.
// SkNb is a _very_ minimal class representing a vector of bools returned by comparison operators.
// We pass along the byte size of the compared types (Bytes) to help platform specializations.
template <int N, int Bytes>
class SkNb {
public:
SkNb() {}
SkNb(const SkNb<N/2, Bytes>& lo, const SkNb<N/2, Bytes>& hi) : fLo(lo), fHi(hi) {}
bool allTrue() const { return fLo.allTrue() && fHi.allTrue(); }
bool anyTrue() const { return fLo.anyTrue() || fHi.anyTrue(); }
protected:
REQUIRE(0 == (N & (N-1)));
SkNb<N/2, Bytes> fLo, fHi;
};
template <int N, typename T>
class SkNi {
public:
@ -78,14 +62,19 @@ public:
static SkNi Min(const SkNi& a, const SkNi& b) {
return SkNi(SkNi<N/2, T>::Min(a.fLo, b.fLo), SkNi<N/2, T>::Min(a.fHi, b.fHi));
}
// TODO: comparisons, max?
SkNi operator < (const SkNi& o) const { return SkNi(fLo < o.fLo, fHi < o.fHi); }
template <int k> T kth() const {
SkASSERT(0 <= k && k < N);
return k < N/2 ? fLo.template kth<k>() : fHi.template kth<k-N/2>();
}
bool allTrue() const { return fLo.allTrue() && fHi.allTrue(); }
bool anyTrue() const { return fLo.anyTrue() || fHi.anyTrue(); }
SkNi thenElse(const SkNi& t, const SkNi& e) const {
return SkNi(fLo.thenElse(t.fLo, e.fLo), fHi.thenElse(t.fHi, e.fHi));
}
protected:
REQUIRE(0 == (N & (N-1)));
@ -94,11 +83,9 @@ protected:
template <int N, typename T>
class SkNf {
typedef SkNb<N, sizeof(T)> Nb;
static int32_t MyNi(float);
static int64_t MyNi(double);
typedef SkNi<N, decltype(MyNi(T()))> Ni;
typedef decltype(MyNi(T())) I;
public:
SkNf() {}
explicit SkNf(T val) : fLo(val), fHi(val) {}
@ -115,19 +102,19 @@ public:
fHi.store(vals+N/2);
}
Ni castTrunc() const { return Ni(fLo.castTrunc(), fHi.castTrunc()); }
SkNi<N,I> castTrunc() const { return SkNi<N,I>(fLo.castTrunc(), fHi.castTrunc()); }
SkNf operator + (const SkNf& o) const { return SkNf(fLo + o.fLo, fHi + o.fHi); }
SkNf operator - (const SkNf& o) const { return SkNf(fLo - o.fLo, fHi - o.fHi); }
SkNf operator * (const SkNf& o) const { return SkNf(fLo * o.fLo, fHi * o.fHi); }
SkNf operator / (const SkNf& o) const { return SkNf(fLo / o.fLo, fHi / o.fHi); }
Nb operator == (const SkNf& o) const { return Nb(fLo == o.fLo, fHi == o.fHi); }
Nb operator != (const SkNf& o) const { return Nb(fLo != o.fLo, fHi != o.fHi); }
Nb operator < (const SkNf& o) const { return Nb(fLo < o.fLo, fHi < o.fHi); }
Nb operator > (const SkNf& o) const { return Nb(fLo > o.fLo, fHi > o.fHi); }
Nb operator <= (const SkNf& o) const { return Nb(fLo <= o.fLo, fHi <= o.fHi); }
Nb operator >= (const SkNf& o) const { return Nb(fLo >= o.fLo, fHi >= o.fHi); }
SkNf operator == (const SkNf& o) const { return SkNf(fLo == o.fLo, fHi == o.fHi); }
SkNf operator != (const SkNf& o) const { return SkNf(fLo != o.fLo, fHi != o.fHi); }
SkNf operator < (const SkNf& o) const { return SkNf(fLo < o.fLo, fHi < o.fHi); }
SkNf operator > (const SkNf& o) const { return SkNf(fLo > o.fLo, fHi > o.fHi); }
SkNf operator <= (const SkNf& o) const { return SkNf(fLo <= o.fLo, fHi <= o.fHi); }
SkNf operator >= (const SkNf& o) const { return SkNf(fLo >= o.fLo, fHi >= o.fHi); }
static SkNf Min(const SkNf& l, const SkNf& r) {
return SkNf(SkNf<N/2,T>::Min(l.fLo, r.fLo), SkNf<N/2,T>::Min(l.fHi, r.fHi));
@ -151,6 +138,12 @@ public:
return k < N/2 ? fLo.template kth<k>() : fHi.template kth<k-N/2>();
}
bool allTrue() const { return fLo.allTrue() && fHi.allTrue(); }
bool anyTrue() const { return fLo.anyTrue() || fHi.anyTrue(); }
SkNf thenElse(const SkNf& t, const SkNf& e) const {
return SkNf(fLo.thenElse(t.fLo, t.fHi), fHi.thenElse(t.fLo, t.fHi));
}
protected:
REQUIRE(0 == (N & (N-1)));
SkNf(const SkNf<N/2, T>& lo, const SkNf<N/2, T>& hi) : fLo(lo), fHi(hi) {}
@ -161,17 +154,6 @@ protected:
// Bottom out the default implementations with scalars when nothing's been specialized.
template <int Bytes>
class SkNb<1, Bytes> {
public:
SkNb() {}
explicit SkNb(bool val) : fVal(val) {}
bool allTrue() const { return fVal; }
bool anyTrue() const { return fVal; }
protected:
bool fVal;
};
template <typename T>
class SkNi<1,T> {
public:
@ -195,23 +177,26 @@ public:
SkNi operator >> (int bits) const { return SkNi(fVal >> bits); }
static SkNi Min(const SkNi& a, const SkNi& b) { return SkNi(SkTMin(a.fVal, b.fVal)); }
SkNi operator <(const SkNi& o) const { return SkNi(fVal < o.fVal); }
template <int k> T kth() const {
SkASSERT(0 == k);
return fVal;
}
bool allTrue() const { return fVal; }
bool anyTrue() const { return fVal; }
SkNi thenElse(const SkNi& t, const SkNi& e) const { return fVal ? t : e; }
protected:
T fVal;
};
template <typename T>
class SkNf<1,T> {
typedef SkNb<1, sizeof(T)> Nb;
static int32_t MyNi(float);
static int64_t MyNi(double);
typedef SkNi<1, decltype(MyNi(T()))> Ni;
typedef decltype(MyNi(T())) I;
public:
SkNf() {}
explicit SkNf(T val) : fVal(val) {}
@ -219,19 +204,19 @@ public:
void store(T vals[1]) const { vals[0] = fVal; }
Ni castTrunc() const { return Ni(fVal); }
SkNi<1,I> castTrunc() const { return SkNi<1,I>(fVal); }
SkNf operator + (const SkNf& o) const { return SkNf(fVal + o.fVal); }
SkNf operator - (const SkNf& o) const { return SkNf(fVal - o.fVal); }
SkNf operator * (const SkNf& o) const { return SkNf(fVal * o.fVal); }
SkNf operator / (const SkNf& o) const { return SkNf(fVal / o.fVal); }
Nb operator == (const SkNf& o) const { return Nb(fVal == o.fVal); }
Nb operator != (const SkNf& o) const { return Nb(fVal != o.fVal); }
Nb operator < (const SkNf& o) const { return Nb(fVal < o.fVal); }
Nb operator > (const SkNf& o) const { return Nb(fVal > o.fVal); }
Nb operator <= (const SkNf& o) const { return Nb(fVal <= o.fVal); }
Nb operator >= (const SkNf& o) const { return Nb(fVal >= o.fVal); }
SkNf operator == (const SkNf& o) const { return SkNf(fVal == o.fVal); }
SkNf operator != (const SkNf& o) const { return SkNf(fVal != o.fVal); }
SkNf operator < (const SkNf& o) const { return SkNf(fVal < o.fVal); }
SkNf operator > (const SkNf& o) const { return SkNf(fVal > o.fVal); }
SkNf operator <= (const SkNf& o) const { return SkNf(fVal <= o.fVal); }
SkNf operator >= (const SkNf& o) const { return SkNf(fVal >= o.fVal); }
static SkNf Min(const SkNf& l, const SkNf& r) { return SkNf(SkTMin(l.fVal, r.fVal)); }
static SkNf Max(const SkNf& l, const SkNf& r) { return SkNf(SkTMax(l.fVal, r.fVal)); }
@ -249,12 +234,21 @@ public:
return fVal;
}
bool allTrue() const { return this->pun(); }
bool anyTrue() const { return this->pun(); }
SkNf thenElse(const SkNf& t, const SkNf& e) const { return this->pun() ? t : e; }
protected:
// We do double sqrts natively, or via floats for any other type.
template <typename U>
static U Sqrt(U val) { return (U) ::sqrtf((float)val); }
static double Sqrt(double val) { return ::sqrt ( val); }
I pun() const {
union { T f; I i; } pun = { fVal };
return pun.i;
}
T fVal;
};

View File

@ -32,35 +32,8 @@ namespace { // See SkNx.h
case 28: return op(v, 28); case 29: return op(v, 29); case 30: return op(v, 30); \
case 31: return op(v, 31); } return fVec
template <>
class SkNb<2, 4> {
public:
SkNb(uint32x2_t vec) : fVec(vec) {}
SkNb() {}
bool allTrue() const { return vget_lane_u32(fVec, 0) && vget_lane_u32(fVec, 1); }
bool anyTrue() const { return vget_lane_u32(fVec, 0) || vget_lane_u32(fVec, 1); }
uint32x2_t fVec;
};
template <>
class SkNb<4, 4> {
public:
SkNb(uint32x4_t vec) : fVec(vec) {}
SkNb() {}
bool allTrue() const { return vgetq_lane_u32(fVec, 0) && vgetq_lane_u32(fVec, 1)
&& vgetq_lane_u32(fVec, 2) && vgetq_lane_u32(fVec, 3); }
bool anyTrue() const { return vgetq_lane_u32(fVec, 0) || vgetq_lane_u32(fVec, 1)
|| vgetq_lane_u32(fVec, 2) || vgetq_lane_u32(fVec, 3); }
uint32x4_t fVec;
};
template <>
class SkNf<2, float> {
typedef SkNb<2, 4> Nb;
public:
SkNf(float32x2_t vec) : fVec(vec) {}
@ -93,12 +66,14 @@ public:
#endif
}
Nb operator == (const SkNf& o) const { return vceq_f32(fVec, o.fVec); }
Nb operator < (const SkNf& o) const { return vclt_f32(fVec, o.fVec); }
Nb operator > (const SkNf& o) const { return vcgt_f32(fVec, o.fVec); }
Nb operator <= (const SkNf& o) const { return vcle_f32(fVec, o.fVec); }
Nb operator >= (const SkNf& o) const { return vcge_f32(fVec, o.fVec); }
Nb operator != (const SkNf& o) const { return vmvn_u32(vceq_f32(fVec, o.fVec)); }
SkNf operator == (const SkNf& o) const { return vreinterpret_f32_u32(vceq_f32(fVec, o.fVec)); }
SkNf operator < (const SkNf& o) const { return vreinterpret_f32_u32(vclt_f32(fVec, o.fVec)); }
SkNf operator > (const SkNf& o) const { return vreinterpret_f32_u32(vcgt_f32(fVec, o.fVec)); }
SkNf operator <= (const SkNf& o) const { return vreinterpret_f32_u32(vcle_f32(fVec, o.fVec)); }
SkNf operator >= (const SkNf& o) const { return vreinterpret_f32_u32(vcge_f32(fVec, o.fVec)); }
SkNf operator != (const SkNf& o) const {
return vreinterpret_f32_u32(vmvn_u32(vceq_f32(fVec, o.fVec)));
}
static SkNf Min(const SkNf& l, const SkNf& r) { return vmin_f32(l.fVec, r.fVec); }
static SkNf Max(const SkNf& l, const SkNf& r) { return vmax_f32(l.fVec, r.fVec); }
@ -126,25 +101,21 @@ public:
return vget_lane_f32(fVec, k&1);
}
bool allTrue() const {
auto v = vreinterpret_u32_f32(fVec);
return vget_lane_u32(v,0) && vget_lane_u32(v,1);
}
bool anyTrue() const {
auto v = vreinterpret_u32_f32(fVec);
return vget_lane_u32(v,0) || vget_lane_u32(v,1);
}
float32x2_t fVec;
};
#if defined(SK_CPU_ARM64)
template <>
class SkNb<2, 8> {
public:
SkNb(uint64x2_t vec) : fVec(vec) {}
SkNb() {}
bool allTrue() const { return vgetq_lane_u64(fVec, 0) && vgetq_lane_u64(fVec, 1); }
bool anyTrue() const { return vgetq_lane_u64(fVec, 0) || vgetq_lane_u64(fVec, 1); }
uint64x2_t fVec;
};
template <>
class SkNf<2, double> {
typedef SkNb<2, 8> Nb;
public:
SkNf(float64x2_t vec) : fVec(vec) {}
@ -160,13 +131,13 @@ public:
SkNf operator * (const SkNf& o) const { return vmulq_f64(fVec, o.fVec); }
SkNf operator / (const SkNf& o) const { return vdivq_f64(fVec, o.fVec); }
Nb operator == (const SkNf& o) const { return vceqq_f64(fVec, o.fVec); }
Nb operator < (const SkNf& o) const { return vcltq_f64(fVec, o.fVec); }
Nb operator > (const SkNf& o) const { return vcgtq_f64(fVec, o.fVec); }
Nb operator <= (const SkNf& o) const { return vcleq_f64(fVec, o.fVec); }
Nb operator >= (const SkNf& o) const { return vcgeq_f64(fVec, o.fVec); }
Nb operator != (const SkNf& o) const {
return vreinterpretq_u64_u32(vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(fVec, o.fVec))));
SkNf operator==(const SkNf& o) const { return vreinterpretq_f64_u64(vceqq_f64(fVec, o.fVec)); }
SkNf operator <(const SkNf& o) const { return vreinterpretq_f64_u64(vcltq_f64(fVec, o.fVec)); }
SkNf operator >(const SkNf& o) const { return vreinterpretq_f64_u64(vcgtq_f64(fVec, o.fVec)); }
SkNf operator<=(const SkNf& o) const { return vreinterpretq_f64_u64(vcleq_f64(fVec, o.fVec)); }
SkNf operator>=(const SkNf& o) const { return vreinterpretq_f64_u64(vcgeq_f64(fVec, o.fVec)); }
SkNf operator != (const SkNf& o) const {
return vreinterpretq_f64_u32(vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(fVec, o.fVec))));
}
static SkNf Min(const SkNf& l, const SkNf& r) { return vminq_f64(l.fVec, r.fVec); }
@ -202,6 +173,15 @@ public:
return vgetq_lane_f64(fVec, k&1);
}
bool allTrue() const {
auto v = vreinterpretq_u64_f64(fVec);
return vgetq_lane_u64(v,0) && vgetq_lane_u64(v,1);
}
bool anyTrue() const {
auto v = vreinterpretq_u64_f64(fVec);
return vgetq_lane_u64(v,0) || vgetq_lane_u64(v,1);
}
float64x2_t fVec;
};
#endif//defined(SK_CPU_ARM64)
@ -235,7 +215,6 @@ public:
template <>
class SkNf<4, float> {
typedef SkNb<4, 4> Nb;
public:
SkNf(float32x4_t vec) : fVec(vec) {}
@ -270,12 +249,14 @@ public:
#endif
}
Nb operator == (const SkNf& o) const { return vceqq_f32(fVec, o.fVec); }
Nb operator < (const SkNf& o) const { return vcltq_f32(fVec, o.fVec); }
Nb operator > (const SkNf& o) const { return vcgtq_f32(fVec, o.fVec); }
Nb operator <= (const SkNf& o) const { return vcleq_f32(fVec, o.fVec); }
Nb operator >= (const SkNf& o) const { return vcgeq_f32(fVec, o.fVec); }
Nb operator != (const SkNf& o) const { return vmvnq_u32(vceqq_f32(fVec, o.fVec)); }
SkNf operator==(const SkNf& o) const { return vreinterpretq_f32_u32(vceqq_f32(fVec, o.fVec)); }
SkNf operator <(const SkNf& o) const { return vreinterpretq_f32_u32(vcltq_f32(fVec, o.fVec)); }
SkNf operator >(const SkNf& o) const { return vreinterpretq_f32_u32(vcgtq_f32(fVec, o.fVec)); }
SkNf operator<=(const SkNf& o) const { return vreinterpretq_f32_u32(vcleq_f32(fVec, o.fVec)); }
SkNf operator>=(const SkNf& o) const { return vreinterpretq_f32_u32(vcgeq_f32(fVec, o.fVec)); }
SkNf operator!=(const SkNf& o) const {
return vreinterpretq_f32_u32(vmvnq_u32(vceqq_f32(fVec, o.fVec)));
}
static SkNf Min(const SkNf& l, const SkNf& r) { return vminq_f32(l.fVec, r.fVec); }
static SkNf Max(const SkNf& l, const SkNf& r) { return vmaxq_f32(l.fVec, r.fVec); }
@ -303,6 +284,17 @@ public:
return vgetq_lane_f32(fVec, k&3);
}
bool allTrue() const {
auto v = vreinterpretq_u32_f32(fVec);
return vgetq_lane_u32(v,0) && vgetq_lane_u32(v,1)
&& vgetq_lane_u32(v,2) && vgetq_lane_u32(v,3);
}
bool anyTrue() const {
auto v = vreinterpretq_u32_f32(fVec);
return vgetq_lane_u32(v,0) || vgetq_lane_u32(v,1)
|| vgetq_lane_u32(v,2) || vgetq_lane_u32(v,3);
}
float32x4_t fVec;
};
@ -363,12 +355,18 @@ public:
SkNi operator - (const SkNi& o) const { return vsubq_u8(fVec, o.fVec); }
static SkNi Min(const SkNi& a, const SkNi& b) { return vminq_u8(a.fVec, b.fVec); }
SkNi operator < (const SkNi& o) const { return vcltq_u8(fVec, o.fVec); }
template <int k> uint8_t kth() const {
SkASSERT(0 <= k && k < 15);
return vgetq_lane_u8(fVec, k&16);
}
SkNi thenElse(const SkNi& t, const SkNi& e) const {
return vorrq_u8(vandq_u8(t.fVec, fVec),
vbicq_u8(e.fVec, fVec));
}
uint8x16_t fVec;
};

View File

@ -12,46 +12,9 @@
namespace { // See SkNx.h
template <>
class SkNb<2, 4> {
public:
SkNb(const __m128i& vec) : fVec(vec) {}
SkNb() {}
bool allTrue() const { return 0xff == (_mm_movemask_epi8(fVec) & 0xff); }
bool anyTrue() const { return 0x00 != (_mm_movemask_epi8(fVec) & 0xff); }
__m128i fVec;
};
template <>
class SkNb<4, 4> {
public:
SkNb(const __m128i& vec) : fVec(vec) {}
SkNb() {}
bool allTrue() const { return 0xffff == _mm_movemask_epi8(fVec); }
bool anyTrue() const { return 0x0000 != _mm_movemask_epi8(fVec); }
__m128i fVec;
};
template <>
class SkNb<2, 8> {
public:
SkNb(const __m128i& vec) : fVec(vec) {}
SkNb() {}
bool allTrue() const { return 0xffff == _mm_movemask_epi8(fVec); }
bool anyTrue() const { return 0x0000 != _mm_movemask_epi8(fVec); }
__m128i fVec;
};
template <>
class SkNf<2, float> {
typedef SkNb<2, 4> Nb;
public:
SkNf(const __m128& vec) : fVec(vec) {}
@ -69,12 +32,12 @@ public:
SkNf operator * (const SkNf& o) const { return _mm_mul_ps(fVec, o.fVec); }
SkNf operator / (const SkNf& o) const { return _mm_div_ps(fVec, o.fVec); }
Nb operator == (const SkNf& o) const { return _mm_castps_si128(_mm_cmpeq_ps (fVec, o.fVec)); }
Nb operator != (const SkNf& o) const { return _mm_castps_si128(_mm_cmpneq_ps(fVec, o.fVec)); }
Nb operator < (const SkNf& o) const { return _mm_castps_si128(_mm_cmplt_ps (fVec, o.fVec)); }
Nb operator > (const SkNf& o) const { return _mm_castps_si128(_mm_cmpgt_ps (fVec, o.fVec)); }
Nb operator <= (const SkNf& o) const { return _mm_castps_si128(_mm_cmple_ps (fVec, o.fVec)); }
Nb operator >= (const SkNf& o) const { return _mm_castps_si128(_mm_cmpge_ps (fVec, o.fVec)); }
SkNf operator == (const SkNf& o) const { return _mm_cmpeq_ps (fVec, o.fVec); }
SkNf operator != (const SkNf& o) const { return _mm_cmpneq_ps(fVec, o.fVec); }
SkNf operator < (const SkNf& o) const { return _mm_cmplt_ps (fVec, o.fVec); }
SkNf operator > (const SkNf& o) const { return _mm_cmpgt_ps (fVec, o.fVec); }
SkNf operator <= (const SkNf& o) const { return _mm_cmple_ps (fVec, o.fVec); }
SkNf operator >= (const SkNf& o) const { return _mm_cmpge_ps (fVec, o.fVec); }
static SkNf Min(const SkNf& l, const SkNf& r) { return _mm_min_ps(l.fVec, r.fVec); }
static SkNf Max(const SkNf& l, const SkNf& r) { return _mm_max_ps(l.fVec, r.fVec); }
@ -93,12 +56,14 @@ public:
return pun.fs[k&1];
}
bool allTrue() const { return 0xff == (_mm_movemask_epi8(_mm_castps_si128(fVec)) & 0xff); }
bool anyTrue() const { return 0x00 != (_mm_movemask_epi8(_mm_castps_si128(fVec)) & 0xff); }
__m128 fVec;
};
template <>
class SkNf<2, double> {
typedef SkNb<2, 8> Nb;
public:
SkNf(const __m128d& vec) : fVec(vec) {}
@ -114,12 +79,12 @@ public:
SkNf operator * (const SkNf& o) const { return _mm_mul_pd(fVec, o.fVec); }
SkNf operator / (const SkNf& o) const { return _mm_div_pd(fVec, o.fVec); }
Nb operator == (const SkNf& o) const { return _mm_castpd_si128(_mm_cmpeq_pd (fVec, o.fVec)); }
Nb operator != (const SkNf& o) const { return _mm_castpd_si128(_mm_cmpneq_pd(fVec, o.fVec)); }
Nb operator < (const SkNf& o) const { return _mm_castpd_si128(_mm_cmplt_pd (fVec, o.fVec)); }
Nb operator > (const SkNf& o) const { return _mm_castpd_si128(_mm_cmpgt_pd (fVec, o.fVec)); }
Nb operator <= (const SkNf& o) const { return _mm_castpd_si128(_mm_cmple_pd (fVec, o.fVec)); }
Nb operator >= (const SkNf& o) const { return _mm_castpd_si128(_mm_cmpge_pd (fVec, o.fVec)); }
SkNf operator == (const SkNf& o) const { return _mm_cmpeq_pd (fVec, o.fVec); }
SkNf operator != (const SkNf& o) const { return _mm_cmpneq_pd(fVec, o.fVec); }
SkNf operator < (const SkNf& o) const { return _mm_cmplt_pd (fVec, o.fVec); }
SkNf operator > (const SkNf& o) const { return _mm_cmpgt_pd (fVec, o.fVec); }
SkNf operator <= (const SkNf& o) const { return _mm_cmple_pd (fVec, o.fVec); }
SkNf operator >= (const SkNf& o) const { return _mm_cmpge_pd (fVec, o.fVec); }
static SkNf Min(const SkNf& l, const SkNf& r) { return _mm_min_pd(l.fVec, r.fVec); }
static SkNf Max(const SkNf& l, const SkNf& r) { return _mm_max_pd(l.fVec, r.fVec); }
@ -138,6 +103,9 @@ public:
return pun.ds[k&1];
}
bool allTrue() const { return 0xffff == _mm_movemask_epi8(_mm_castpd_si128(fVec)); }
bool anyTrue() const { return 0x0000 != _mm_movemask_epi8(_mm_castpd_si128(fVec)); }
__m128d fVec;
};
@ -181,7 +149,6 @@ public:
template <>
class SkNf<4, float> {
typedef SkNb<4, 4> Nb;
public:
SkNf(const __m128& vec) : fVec(vec) {}
@ -199,12 +166,12 @@ public:
SkNf operator * (const SkNf& o) const { return _mm_mul_ps(fVec, o.fVec); }
SkNf operator / (const SkNf& o) const { return _mm_div_ps(fVec, o.fVec); }
Nb operator == (const SkNf& o) const { return _mm_castps_si128(_mm_cmpeq_ps (fVec, o.fVec)); }
Nb operator != (const SkNf& o) const { return _mm_castps_si128(_mm_cmpneq_ps(fVec, o.fVec)); }
Nb operator < (const SkNf& o) const { return _mm_castps_si128(_mm_cmplt_ps (fVec, o.fVec)); }
Nb operator > (const SkNf& o) const { return _mm_castps_si128(_mm_cmpgt_ps (fVec, o.fVec)); }
Nb operator <= (const SkNf& o) const { return _mm_castps_si128(_mm_cmple_ps (fVec, o.fVec)); }
Nb operator >= (const SkNf& o) const { return _mm_castps_si128(_mm_cmpge_ps (fVec, o.fVec)); }
SkNf operator == (const SkNf& o) const { return _mm_cmpeq_ps (fVec, o.fVec); }
SkNf operator != (const SkNf& o) const { return _mm_cmpneq_ps(fVec, o.fVec); }
SkNf operator < (const SkNf& o) const { return _mm_cmplt_ps (fVec, o.fVec); }
SkNf operator > (const SkNf& o) const { return _mm_cmpgt_ps (fVec, o.fVec); }
SkNf operator <= (const SkNf& o) const { return _mm_cmple_ps (fVec, o.fVec); }
SkNf operator >= (const SkNf& o) const { return _mm_cmpge_ps (fVec, o.fVec); }
static SkNf Min(const SkNf& l, const SkNf& r) { return _mm_min_ps(l.fVec, r.fVec); }
static SkNf Max(const SkNf& l, const SkNf& r) { return _mm_max_ps(l.fVec, r.fVec); }
@ -223,6 +190,9 @@ public:
return pun.fs[k&3];
}
bool allTrue() const { return 0xffff == _mm_movemask_epi8(_mm_castps_si128(fVec)); }
bool anyTrue() const { return 0x0000 != _mm_movemask_epi8(_mm_castps_si128(fVec)); }
__m128 fVec;
};
@ -312,6 +282,11 @@ public:
SkNi operator - (const SkNi& o) const { return _mm_sub_epi8(fVec, o.fVec); }
static SkNi Min(const SkNi& a, const SkNi& b) { return _mm_min_epu8(a.fVec, b.fVec); }
SkNi operator < (const SkNi& o) const {
// There's no unsigned _mm_cmplt_epu8, so we flip the sign bits then use a signed compare.
auto flip = _mm_set1_epi8(char(0x80));
return _mm_cmplt_epi8(_mm_xor_si128(flip, fVec), _mm_xor_si128(flip, o.fVec));
}
template <int k> uint8_t kth() const {
SkASSERT(0 <= k && k < 16);
@ -320,6 +295,11 @@ public:
return k % 2 == 0 ? pair : (pair >> 8);
}
SkNi thenElse(const SkNi& t, const SkNi& e) const {
return _mm_or_si128(_mm_and_si128 (fVec, t.fVec),
_mm_andnot_si128(fVec, e.fVec));
}
__m128i fVec;
};

View File

@ -515,15 +515,17 @@ void SkSSE2ProcCoeffXfermode::toString(SkString* str) const {
SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_SSE2(const ProcCoeff& rec,
SkXfermode::Mode mode) {
SkXfermodeProcSIMD proc = nullptr;
// TODO(mtklein): implement these Sk4px.
switch (mode) {
// TODO(mtklein): Sk4pxXfermode has these now. Clean up.
case SkProcCoeffXfermode::kOverlay_Mode: proc = overlay_modeproc_SSE2; break;
case SkProcCoeffXfermode::kDarken_Mode: proc = darken_modeproc_SSE2; break;
case SkProcCoeffXfermode::kLighten_Mode: proc = lighten_modeproc_SSE2; break;
case SkProcCoeffXfermode::kHardLight_Mode: proc = hardlight_modeproc_SSE2; break;
// TODO(mtklein): implement these with SkPMFloat.
case SkProcCoeffXfermode::kSoftLight_Mode: proc = softlight_modeproc_SSE2; break;
case SkProcCoeffXfermode::kColorDodge_Mode: proc = colordodge_modeproc_SSE2; break;
case SkProcCoeffXfermode::kColorBurn_Mode: proc = colorburn_modeproc_SSE2; break;
case SkProcCoeffXfermode::kHardLight_Mode: proc = hardlight_modeproc_SSE2; break;
case SkProcCoeffXfermode::kSoftLight_Mode: proc = softlight_modeproc_SSE2; break;
default: break;
}
return proc ? SkNEW_ARGS(SkSSE2ProcCoeffXfermode, (rec, mode, (void*)proc)) : nullptr;

View File

@ -1016,6 +1016,7 @@ SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_neon(const ProcCoeff& rec,
if (auto xfermode = SkCreate4pxXfermode(rec, mode)) {
return xfermode;
}
// TODO: Sk4pxXfermode now covers every mode found in this file. Delete them all!
if (auto proc = gNEONXfermodeProcs[mode]) {
return SkNEW_ARGS(SkNEONProcCoeffXfermode, (rec, mode, (void*)proc));
}