From baf3e78092243210ca4489e51134df6fc8a90eee Mon Sep 17 00:00:00 2001
From: Chris Dalton <csmartdalton@google.com>
Date: Thu, 8 Mar 2018 15:55:58 +0000
Subject: [PATCH] Revert "ccpr: Draw curves in a single pass"

This reverts commit df04ce29490a24f9d5b4f5caafd8f6a3368a19e0.

Reason for revert: Going to revisit AAA quality

Original change's description:
> ccpr: Draw curves in a single pass
>
> Throws out the complicated MSAA curve corner shaders, and instead just
> ramps coverage to zero at bloat vertices that fall outside the curve.
>
> Updates SampleCCPRGeometry to better visualize this new geometry by
> clearing to black and drawing with SkBlendMode::kPlus.
>
> Bug: skia:
> Change-Id: Ibe86cbc741d8b015127b10dd43e3b52e7cb35732
> Reviewed-on: https://skia-review.googlesource.com/112626
> Commit-Queue: Chris Dalton <csmartdalton@google.com>
> Reviewed-by: Brian Salomon <bsalomon@google.com>

TBR=bsalomon@google.com,csmartdalton@google.com

Change-Id: I014baa60b248d870717f5ee8794e0bed66da86e6
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Bug: skia:
Reviewed-on: https://skia-review.googlesource.com/113181
Reviewed-by: Chris Dalton <csmartdalton@google.com>
Commit-Queue: Chris Dalton <csmartdalton@google.com>
---
 samplecode/SampleCCPRGeometry.cpp             |  33 +--
 src/gpu/ccpr/GrCCCoverageProcessor.cpp        | 119 ++++++----
 src/gpu/ccpr/GrCCCoverageProcessor.h          |  45 +++-
 src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp |  89 +++-----
 src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp | 203 +++++++++---------
 src/gpu/ccpr/GrCCCubicShader.cpp              | 118 ++++++++--
 src/gpu/ccpr/GrCCCubicShader.h                |  30 ++-
 src/gpu/ccpr/GrCCPathParser.cpp               |   4 +
 src/gpu/ccpr/GrCCQuadraticShader.cpp          | 120 ++++++++---
 src/gpu/ccpr/GrCCQuadraticShader.h            |  43 +++-
 src/gpu/ccpr/GrCCTriangleShader.cpp           |   6 +-
 src/gpu/ccpr/GrCCTriangleShader.h             |   6 +-
 12 files changed, 528 insertions(+), 288 deletions(-)

diff --git a/samplecode/SampleCCPRGeometry.cpp b/samplecode/SampleCCPRGeometry.cpp
index 2a7d6640a6..a90ece09a1 100644
--- a/samplecode/SampleCCPRGeometry.cpp
+++ b/samplecode/SampleCCPRGeometry.cpp
@@ -32,6 +32,10 @@ using RenderPass = GrCCCoverageProcessor::RenderPass;
 
 static constexpr float kDebugBloat = 40;
 
+static int is_quadratic(RenderPass pass) {
+    return pass == RenderPass::kQuadratics || pass == RenderPass::kQuadraticCorners;
+}
+
 /**
  * This sample visualizes the AA bloat geometry generated by the ccpr geometry shaders. It
  * increases the AA bloat by 50x and outputs color instead of coverage (coverage=+1 -> green,
@@ -115,13 +119,14 @@ static void draw_klm_line(int w, int h, SkCanvas* canvas, const SkScalar line[3]
 }
 
 void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
-    canvas->clear(SK_ColorBLACK);
+    SkAutoCanvasRestore acr(canvas, true);
+    canvas->setMatrix(SkMatrix::I());
 
     SkPath outline;
     outline.moveTo(fPoints[0]);
-    if (RenderPass::kCubics == fRenderPass) {
+    if (GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass)) {
         outline.cubicTo(fPoints[1], fPoints[2], fPoints[3]);
-    } else if (RenderPass::kQuadratics == fRenderPass) {
+    } else if (is_quadratic(fRenderPass)) {
         outline.quadTo(fPoints[1], fPoints[3]);
     } else {
         outline.lineTo(fPoints[1]);
@@ -130,7 +135,7 @@ void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
     }
 
     SkPaint outlinePaint;
-    outlinePaint.setColor(0x80ffffff);
+    outlinePaint.setColor(0x30000000);
     outlinePaint.setStyle(SkPaint::kStroke_Style);
     outlinePaint.setStrokeWidth(0);
     outlinePaint.setAntiAlias(true);
@@ -154,7 +159,7 @@ void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
     if (GrRenderTargetContext* rtc = canvas->internal_private_accessTopLayerRenderTargetContext()) {
         rtc->priv().testingOnly_addDrawOp(skstd::make_unique<Op>(this));
         caption.appendf("RenderPass_%s", GrCCCoverageProcessor::RenderPassName(fRenderPass));
-        if (RenderPass::kCubics == fRenderPass) {
+        if (GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass)) {
             caption.appendf(" (%s)", SkCubicTypeName(fCubicType));
         }
     } else {
@@ -166,7 +171,7 @@ void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
     pointsPaint.setStrokeWidth(8);
     pointsPaint.setAntiAlias(true);
 
-    if (RenderPass::kCubics == fRenderPass) {
+    if (GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass)) {
         int w = this->width(), h = this->height();
         canvas->drawPoints(SkCanvas::kPoints_PointMode, 4, fPoints, pointsPaint);
         draw_klm_line(w, h, canvas, &fCubicKLM[0], SK_ColorYELLOW);
@@ -179,7 +184,7 @@ void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
 
     SkPaint captionPaint;
     captionPaint.setTextSize(20);
-    captionPaint.setColor(SK_ColorWHITE);
+    captionPaint.setColor(SK_ColorBLACK);
     captionPaint.setAntiAlias(true);
     canvas->drawText(caption.c_str(), caption.size(), 10, 30, captionPaint);
 }
@@ -188,7 +193,7 @@ void CCPRGeometryView::updateGpuData() {
     fTriPointInstances.reset();
     fQuadPointInstances.reset();
 
-    if (RenderPass::kCubics == fRenderPass) {
+    if (GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass)) {
         double t[2], s[2];
         fCubicType = GrPathUtils::getCubicKLM(fPoints, &fCubicKLM, t, s);
         GrCCGeometry geometry;
@@ -212,7 +217,7 @@ void CCPRGeometryView::updateGpuData() {
                     continue;
             }
         }
-    } else if (RenderPass::kQuadratics == fRenderPass) {
+    } else if (is_quadratic(fRenderPass)) {
         GrCCGeometry geometry;
         geometry.beginContour(fPoints[0]);
         geometry.quadraticTo(fPoints[1], fPoints[3]);
@@ -249,7 +254,7 @@ void CCPRGeometryView::Op::onExecute(GrOpFlushState* state) {
     SkDEBUGCODE(proc.enableDebugVisualizations(kDebugBloat));
 
     SkSTArray<1, GrMesh> mesh;
-    if (RenderPass::kCubics == fView->fRenderPass) {
+    if (GrCCCoverageProcessor::RenderPassIsCubic(fView->fRenderPass)) {
         sk_sp<GrBuffer> instBuff(rp->createBuffer(
                 fView->fQuadPointInstances.count() * sizeof(QuadPointInstance),
                 kVertex_GrBufferType, kDynamic_GrAccessPattern,
@@ -270,11 +275,11 @@ void CCPRGeometryView::Op::onExecute(GrOpFlushState* state) {
     }
 
     GrPipeline pipeline(state->drawOpArgs().fProxy, GrPipeline::ScissorState::kDisabled,
-                        SkBlendMode::kPlus);
+                        SkBlendMode::kSrcOver);
 
     if (glGpu) {
         glGpu->handleDirtyContext();
-        // GR_GL_CALL(glGpu->glInterface(), PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE));
+        GR_GL_CALL(glGpu->glInterface(), PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE));
         GR_GL_CALL(glGpu->glInterface(), Enable(GR_GL_LINE_SMOOTH));
     }
 
@@ -313,7 +318,7 @@ private:
 
 SkView::Click* CCPRGeometryView::onFindClickHandler(SkScalar x, SkScalar y, unsigned) {
     for (int i = 0; i < 4; ++i) {
-        if (RenderPass::kCubics != fRenderPass && 2 == i) {
+        if (!GrCCCoverageProcessor::RenderPassIsCubic(fRenderPass) && 2 == i) {
             continue;
         }
         if (fabs(x - fPoints[i].x()) < 20 && fabsf(y - fPoints[i].y()) < 20) {
@@ -337,7 +342,7 @@ bool CCPRGeometryView::onQuery(SkEvent* evt) {
     }
     SkUnichar unichar;
     if (SampleCode::CharQ(*evt, &unichar)) {
-        if (unichar >= '1' && unichar <= '4') {
+        if (unichar >= '1' && unichar <= '6') {
             fRenderPass = RenderPass(unichar - '1');
             this->updateAndInval();
             return true;
diff --git a/src/gpu/ccpr/GrCCCoverageProcessor.cpp b/src/gpu/ccpr/GrCCCoverageProcessor.cpp
index 76ca8f562e..686ab5514d 100644
--- a/src/gpu/ccpr/GrCCCoverageProcessor.cpp
+++ b/src/gpu/ccpr/GrCCCoverageProcessor.cpp
@@ -15,59 +15,35 @@
 #include "glsl/GrGLSLFragmentShaderBuilder.h"
 #include "glsl/GrGLSLVertexGeoBuilder.h"
 
-void GrCCCoverageProcessor::getGLSLProcessorKey(const GrShaderCaps&,
-                                                GrProcessorKeyBuilder* b) const {
-    int key = (int)fRenderPass << 2;
-    if (WindMethod::kInstanceData == fWindMethod) {
-        key |= 2;
-    }
-    if (Impl::kVertexShader == fImpl) {
-        key |= 1;
-    }
-#ifdef SK_DEBUG
-    uint32_t bloatBits;
-    memcpy(&bloatBits, &fDebugBloat, 4);
-    b->add32(bloatBits);
-#endif
-    b->add32(key);
-}
-
-GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShaderCaps&) const {
-    std::unique_ptr<Shader> shader;
-    switch (fRenderPass) {
-        case RenderPass::kTriangles:
-            shader = skstd::make_unique<GrCCTriangleShader>();
-            break;
-        case RenderPass::kTriangleCorners:
-            shader = skstd::make_unique<GrCCTriangleCornerShader>();
-            break;
-        case RenderPass::kQuadratics:
-            shader = skstd::make_unique<GrCCQuadraticShader>();
-            break;
-        case RenderPass::kCubics:
-            shader = skstd::make_unique<GrCCCubicShader>();
-            break;
-    }
-    return Impl::kGeometryShader == fImpl ? this->createGSImpl(std::move(shader))
-                                          : this->createVSImpl(std::move(shader));
-}
-
 void GrCCCoverageProcessor::Shader::emitFragmentCode(const GrCCCoverageProcessor& proc,
                                                      GrGLSLFPFragmentBuilder* f,
                                                      const char* skOutputColor,
                                                      const char* skOutputCoverage) const {
     f->codeAppendf("half coverage = 0;");
-    this->onEmitFragmentCode(proc, f, "coverage");
+    this->onEmitFragmentCode(f, "coverage");
     f->codeAppendf("%s.a = coverage;", skOutputColor);
     f->codeAppendf("%s = half4(1);", skOutputCoverage);
 #ifdef SK_DEBUG
     if (proc.debugVisualizationsEnabled()) {
-        f->codeAppendf("%s = half4(-%s.a, %s.a, 0, abs(%s.a));",
-                       skOutputColor, skOutputColor, skOutputColor, skOutputColor);
+        f->codeAppendf("%s = half4(-%s.a, %s.a, 0, 1);",
+                       skOutputColor, skOutputColor, skOutputColor);
     }
 #endif
 }
 
+void GrCCCoverageProcessor::Shader::EmitEdgeDistanceEquation(GrGLSLVertexGeoBuilder* s,
+                                                             const char* leftPt,
+                                                             const char* rightPt,
+                                                             const char* outputDistanceEquation) {
+    s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);",
+                   rightPt, leftPt, leftPt, rightPt);
+    s->codeAppend ("float nwidth = (abs(n.x) + abs(n.y)) * (bloat * 2);");
+    // When nwidth=0, wind must also be 0 (and coverage * wind = 0). So it doesn't matter what we
+    // come up with here as long as it isn't NaN or Inf.
+    s->codeAppend ("n /= (0 != nwidth) ? nwidth : 1;");
+    s->codeAppendf("%s = float3(-n, dot(n, %s) - .5);", outputDistanceEquation, leftPt);
+}
+
 void GrCCCoverageProcessor::Shader::CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGeoBuilder* s,
                                                                   const char* leftPt,
                                                                   const char* rightPt,
@@ -102,3 +78,66 @@ void GrCCCoverageProcessor::Shader::CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGe
     // GPU divides by multiplying by the reciprocal?) It also guards against NaN when nwidth=0.
     s->codeAppendf("%s = (abs(t) != nwidth ? t / nwidth : sign(t)) * -.5 - .5;", outputCoverage);
 }
+
+int GrCCCoverageProcessor::Shader::DefineSoftSampleLocations(GrGLSLFPFragmentBuilder* f,
+                                                             const char* samplesName) {
+    // Standard DX11 sample locations.
+#if defined(SK_BUILD_FOR_ANDROID) || defined(SK_BUILD_FOR_IOS)
+    f->defineConstant("float2[8]", samplesName, "float2[8]("
+        "float2(+1, -3)/16, float2(-1, +3)/16, float2(+5, +1)/16, float2(-3, -5)/16, "
+        "float2(-5, +5)/16, float2(-7, -1)/16, float2(+3, +7)/16, float2(+7, -7)/16."
+    ")");
+    return 8;
+#else
+    f->defineConstant("float2[16]", samplesName, "float2[16]("
+        "float2(+1, +1)/16, float2(-1, -3)/16, float2(-3, +2)/16, float2(+4, -1)/16, "
+        "float2(-5, -2)/16, float2(+2, +5)/16, float2(+5, +3)/16, float2(+3, -5)/16, "
+        "float2(-2, +6)/16, float2( 0, -7)/16, float2(-4, -6)/16, float2(-6, +4)/16, "
+        "float2(-8,  0)/16, float2(+7, -4)/16, float2(+6, +7)/16, float2(-7, -8)/16."
+    ")");
+    return 16;
+#endif
+}
+
+void GrCCCoverageProcessor::getGLSLProcessorKey(const GrShaderCaps&,
+                                                GrProcessorKeyBuilder* b) const {
+    int key = (int)fRenderPass << 2;
+    if (WindMethod::kInstanceData == fWindMethod) {
+        key |= 2;
+    }
+    if (Impl::kVertexShader == fImpl) {
+        key |= 1;
+    }
+#ifdef SK_DEBUG
+    uint32_t bloatBits;
+    memcpy(&bloatBits, &fDebugBloat, 4);
+    b->add32(bloatBits);
+#endif
+    b->add32(key);
+}
+
+GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShaderCaps&) const {
+    std::unique_ptr<Shader> shader;
+    switch (fRenderPass) {
+        case RenderPass::kTriangles:
+            shader = skstd::make_unique<GrCCTriangleShader>();
+            break;
+        case RenderPass::kTriangleCorners:
+            shader = skstd::make_unique<GrCCTriangleCornerShader>();
+            break;
+        case RenderPass::kQuadratics:
+            shader = skstd::make_unique<GrCCQuadraticHullShader>();
+            break;
+        case RenderPass::kQuadraticCorners:
+            shader = skstd::make_unique<GrCCQuadraticCornerShader>();
+            break;
+        case RenderPass::kCubics:
+            shader = skstd::make_unique<GrCCCubicHullShader>();
+            break;
+        case RenderPass::kCubicCorners:
+            shader = skstd::make_unique<GrCCCubicCornerShader>();
+            break;
+    }
+    return Impl::kGeometryShader == fImpl ? this->createGSImpl(std::move(shader))
+                                          : this->createVSImpl(std::move(shader));
+}
diff --git a/src/gpu/ccpr/GrCCCoverageProcessor.h b/src/gpu/ccpr/GrCCCoverageProcessor.h
index 7db424e219..c1f85993a1 100644
--- a/src/gpu/ccpr/GrCCCoverageProcessor.h
+++ b/src/gpu/ccpr/GrCCCoverageProcessor.h
@@ -53,15 +53,20 @@ public:
         void set(const SkPoint[4], float dx, float dy);
         void set(const SkPoint&, const SkPoint&, const SkPoint&, const Sk2f& trans, float w);
     };
-    // Here we enumerate every render pass needed in order to produce a complete coverage count
-    // mask. Triangles require two render passes: One to draw a rough outline, and a second pass to
-    // touch up the corners. This is an exhaustive list of all ccpr coverage shaders.
+
+    // All primitive shapes (triangles and closed, convex bezier curves) require two
+    // render passes: One to draw a rough outline of the shape, and a second pass to touch up the
+    // corners. Here we enumerate every render pass needed in order to produce a complete
+    // coverage count mask. This is an exhaustive list of all ccpr coverage shaders.
     enum class RenderPass {
         kTriangles,
         kTriangleCorners,
         kQuadratics,
+        kQuadraticCorners,
         kCubics,
+        kCubicCorners
     };
+    static bool RenderPassIsCubic(RenderPass);
     static const char* RenderPassName(RenderPass);
 
     enum class WindMethod : bool {
@@ -147,6 +152,13 @@ public:
         void emitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
                               const char* skOutputColor, const char* skOutputCoverage) const;
 
+        // Defines an equation ("dot(float3(pt, 1), distance_equation)") that is -1 on the outside
+        // border of a conservative raster edge and 0 on the inside. 'leftPt' and 'rightPt' must be
+        // ordered clockwise.
+        static void EmitEdgeDistanceEquation(GrGLSLVertexGeoBuilder*, const char* leftPt,
+                                             const char* rightPt,
+                                             const char* outputDistanceEquation);
+
         // Calculates an edge's coverage at a conservative raster vertex. The edge is defined by two
         // clockwise-ordered points, 'leftPt' and 'rightPt'. 'rasterVertexDir' is a pair of +/-1
         // values that point in the direction of conservative raster bloat, starting from an
@@ -169,7 +181,7 @@ public:
                                     const char* wind) = 0;
 
         // Emits the fragment code that calculates a pixel's signed coverage value.
-        virtual void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
+        virtual void onEmitFragmentCode(GrGLSLFPFragmentBuilder*,
                                         const char* outputCoverage) const = 0;
 
         // Returns the name of a Shader's internal varying at the point where where its value is
@@ -179,6 +191,12 @@ public:
             SkASSERT(Scope::kVertToGeo != varying.scope());
             return Scope::kGeoToFrag == varying.scope() ? varying.gsOut() : varying.vsOut();
         }
+
+        // Defines a global float2 array that contains MSAA sample locations as offsets from pixel
+        // center. Subclasses can use this for software multisampling.
+        //
+        // Returns the number of samples.
+        static int DefineSoftSampleLocations(GrGLSLFPFragmentBuilder* f, const char* samplesName);
     };
 
     class GSImpl;
@@ -190,7 +208,7 @@ private:
     static constexpr float kAABloatRadius = 0.491111f;
 
     // Number of bezier points for curves, or 3 for triangles.
-    int numInputPoints() const { return RenderPass::kCubics == fRenderPass ? 4 : 3; }
+    int numInputPoints() const { return RenderPassIsCubic(fRenderPass) ? 4 : 3; }
 
     enum class Impl : bool {
         kGeometryShader,
@@ -251,12 +269,29 @@ inline void GrCCCoverageProcessor::QuadPointInstance::set(const SkPoint& p0, con
     Sk2f::Store4(this, P0, P1, P2, W);
 }
 
+inline bool GrCCCoverageProcessor::RenderPassIsCubic(RenderPass pass) {
+    switch (pass) {
+        case RenderPass::kTriangles:
+        case RenderPass::kTriangleCorners:
+        case RenderPass::kQuadratics:
+        case RenderPass::kQuadraticCorners:
+            return false;
+        case RenderPass::kCubics:
+        case RenderPass::kCubicCorners:
+            return true;
+    }
+    SK_ABORT("Invalid RenderPass");
+    return false;
+}
+
 inline const char* GrCCCoverageProcessor::RenderPassName(RenderPass pass) {
     switch (pass) {
         case RenderPass::kTriangles: return "kTriangles";
         case RenderPass::kTriangleCorners: return "kTriangleCorners";
         case RenderPass::kQuadratics: return "kQuadratics";
+        case RenderPass::kQuadraticCorners: return "kQuadraticCorners";
         case RenderPass::kCubics: return "kCubics";
+        case RenderPass::kCubicCorners: return "kCubicCorners";
     }
     SK_ABORT("Invalid RenderPass");
     return "";
diff --git a/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp b/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp
index e64b8c0838..d9febc0e66 100644
--- a/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp
+++ b/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp
@@ -76,7 +76,7 @@ protected:
         SkSTArray<2, GrShaderVar> emitArgs;
         const char* position = emitArgs.emplace_back("position", kFloat2_GrSLType).c_str();
         const char* coverage = nullptr;
-        if (RenderPass::kTriangleCorners != proc.fRenderPass) {
+        if (RenderPass::kTriangles == proc.fRenderPass) {
             coverage = emitArgs.emplace_back("coverage", kHalf_GrSLType).c_str();
         }
         g->emitFunction(kVoid_GrSLType, "emitVertex", emitArgs.count(), emitArgs.begin(), [&]() {
@@ -212,8 +212,7 @@ public:
 };
 
 /**
- * Generates a conservative raster hull around a convex quadrilateral that encloses a cubic or
- * quadratic, as well as its shared edge.
+ * Generates a conservative raster around a convex quadrilateral that encloses a cubic or quadratic.
  */
 class GSHull4Impl : public GrCCCoverageProcessor::GSImpl {
 public:
@@ -232,85 +231,54 @@ public:
         // Visualize the input (convex) quadrilateral as a square. Paying special attention to wind,
         // we can identify the points by their corresponding corner.
         //
-        // NOTE: For the hull we split the square down the diagonal from top-right to bottom-left,
-        // and generate it in two independent invocations. All invocations, including the shared
-        // edge, designate the corner they will begin with as top-left.
-        g->codeAppendf("bool is_shared_edge = (2 == sk_InvocationID);");
-        g->codeAppendf("int i = !is_shared_edge ? sk_InvocationID * 2 : (%s > 0 ? 3 : 0);",
-                       wind.c_str());
+        // NOTE: We split the square down the diagonal from top-right to bottom-left, and generate
+        // the hull in two independent invocations. Each invocation designates the corner it will
+        // begin with as top-left.
+        g->codeAppend ("int i = sk_InvocationID * 2;");
         g->codeAppendf("float2 topleft = %s[i];", hullPts);
-        g->codeAppendf("float2 topright = %s[(i + (%s > 0 ? 1 : 3)) & 3];", hullPts, wind.c_str());
-        g->codeAppendf("float2 bottomleft = %s[(i + (%s > 0 ? 3 : 1)) & 3];",
-                       hullPts, wind.c_str());
-        g->codeAppendf("float2 bottomright = %s[(i + 2) & 3];", hullPts);
+        g->codeAppendf("float2 topright = %s[%s > 0 ? i + 1 : 3 - i];", hullPts, wind.c_str());
+        g->codeAppendf("float2 bottomleft = %s[%s > 0 ? 3 - i : i + 1];", hullPts, wind.c_str());
+        g->codeAppendf("float2 bottomright = %s[2 - i];", hullPts);
 
         // Determine how much to outset the conservative raster hull from the relevant edges.
-        g->codeAppend ("float2 leftbloat = sign(topleft - bottomleft) * bloat;");
-        g->codeAppend ("leftbloat = float2(0 != leftbloat.y ? leftbloat.y : leftbloat.x, "
-                                          "0 != leftbloat.x ? -leftbloat.x : -leftbloat.y);");
-
-        g->codeAppend ("float2 upbloat = sign(topright - topleft) * bloat;");
-        g->codeAppend ("upbloat = float2(0 != upbloat.y ? upbloat.y : upbloat.x, "
-                                        "0 != upbloat.x ? -upbloat.x : -upbloat.y);");
-
-        g->codeAppend ("float2 rightbloat = sign(bottomright - topright) * bloat;");
-        g->codeAppend ("rightbloat = float2(0 != rightbloat.y ? rightbloat.y : rightbloat.x, "
-                                           "0 != rightbloat.x ? -rightbloat.x : -rightbloat.y);");
-
-        // The hull raster has a coverage of +1 all around.
-        g->codeAppend ("half2 coverages = half2(+1);");
-
-        g->codeAppend ("if (is_shared_edge) {");
-                           // On bloat vertices along the shared edge that fall outside the input
-                           // points, ramp coverage to 0. We do this by using coverage=-1 to erase
-                           // what the hull just wrote.
-        g->codeAppend (    "coverages = half2(-1, 0);");
-                           // Reassign bloats to characterize a conservative raster around just the
-                           // shared edge, rather than the entire hull.
-        g->codeAppend (    "leftbloat = rightbloat = -upbloat;");
-        g->codeAppend ("}");
+        g->codeAppend ("float2 leftbloat = float2(topleft.y > bottomleft.y ? +bloat : -bloat, "
+                                                 "topleft.x > bottomleft.x ? -bloat : bloat);");
+        g->codeAppend ("float2 upbloat = float2(topright.y > topleft.y ? +bloat : -bloat, "
+                                               "topright.x > topleft.x ? -bloat : +bloat);");
+        g->codeAppend ("float2 rightbloat = float2(bottomright.y > topright.y ? +bloat : -bloat, "
+                                                  "bottomright.x > topright.x ? -bloat : +bloat);");
 
         // Here we generate the conservative raster geometry. It is the convex hull of 4 pixel-size
         // boxes centered on the input points, split evenly between two invocations. This translates
         // to a polygon with either one, two, or three vertices at each input point, depending on
-        // how sharp the corner is. The shared edge raster is the convex hull of 2 pixel-size boxes,
-        // one at each endpoint. For more details on conservative raster, see:
+        // how sharp the corner is. For more details on conservative raster, see:
         // https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
         g->codeAppendf("bool2 left_up_notequal = notEqual(leftbloat, upbloat);");
         g->codeAppend ("if (all(left_up_notequal)) {");
                            // The top-left corner will have three conservative raster vertices.
                            // Emit the middle one first to the triangle strip.
-        g->codeAppendf(    "%s(topleft + float2(-leftbloat.y, leftbloat.x), coverages[0]);",
-                           emitVertexFn);
+        g->codeAppendf(    "%s(topleft + float2(-leftbloat.y, leftbloat.x));", emitVertexFn);
         g->codeAppend ("}");
         g->codeAppend ("if (any(left_up_notequal)) {");
                            // Second conservative raster vertex for the top-left corner.
-        g->codeAppendf(    "%s(topleft + leftbloat, coverages[1]);", emitVertexFn);
+        g->codeAppendf(    "%s(topleft + leftbloat);", emitVertexFn);
         g->codeAppend ("}");
 
-        g->codeAppendf("%s(topleft + upbloat, coverages[0]);", emitVertexFn);
-
-        g->codeAppend ("if (!is_shared_edge) {");
-                           // Main interior body of this invocation's half of the hull.
-        g->codeAppendf(    "%s(bottomleft + leftbloat, +1);", emitVertexFn);
-        g->codeAppend ("}");
-
-        g->codeAppendf("%s(topright + (is_shared_edge ? rightbloat : upbloat), coverages[1]);",
-                       emitVertexFn);
+        // Main interior body of this invocation's half of the hull.
+        g->codeAppendf("%s(topleft + upbloat);", emitVertexFn);
+        g->codeAppendf("%s(bottomleft + leftbloat);", emitVertexFn);
+        g->codeAppendf("%s(topright + upbloat);", emitVertexFn);
 
         // Remaining two conservative raster vertices for the top-right corner.
         g->codeAppendf("bool2 up_right_notequal = notEqual(upbloat, rightbloat);");
         g->codeAppend ("if (any(up_right_notequal)) {");
-        g->codeAppendf(    "%s(topright + (is_shared_edge ? upbloat : rightbloat), "
-                              "coverages[0]);", emitVertexFn);
+        g->codeAppendf(    "%s(topright + rightbloat);", emitVertexFn);
         g->codeAppend ("}");
         g->codeAppend ("if (all(up_right_notequal)) {");
-        g->codeAppendf(    "%s(topright + float2(-upbloat.y, upbloat.x), coverages[0]);",
-                           emitVertexFn);
+        g->codeAppendf(    "%s(topright + float2(-upbloat.y, upbloat.x));", emitVertexFn);
         g->codeAppend ("}");
 
-        // 3 invocations: 2 hull invocations and 1 shared edge.
-        g->configure(InputType::kLines, OutputType::kTriangleStrip, 7, 3);
+        g->configure(InputType::kLines, OutputType::kTriangleStrip, 7, 2);
     }
 };
 
@@ -344,15 +312,17 @@ private:
 
 void GrCCCoverageProcessor::initGS() {
     SkASSERT(Impl::kGeometryShader == fImpl);
-    if (RenderPass::kCubics == fRenderPass || WindMethod::kInstanceData == fWindMethod) {
+    if (RenderPassIsCubic(fRenderPass) || WindMethod::kInstanceData == fWindMethod) {
         SkASSERT(WindMethod::kCrossProduct == fWindMethod || 3 == this->numInputPoints());
         this->addVertexAttrib("x_or_y_values", kFloat4_GrVertexAttribType);
         SkASSERT(sizeof(QuadPointInstance) == this->getVertexStride() * 2);
         SkASSERT(offsetof(QuadPointInstance, fY) == this->getVertexStride());
+        GR_STATIC_ASSERT(0 == offsetof(QuadPointInstance, fX));
     } else {
         this->addVertexAttrib("x_or_y_values", kFloat3_GrVertexAttribType);
         SkASSERT(sizeof(TriPointInstance) == this->getVertexStride() * 2);
         SkASSERT(offsetof(TriPointInstance, fY) == this->getVertexStride());
+        GR_STATIC_ASSERT(0 == offsetof(TriPointInstance, fX));
     }
     this->setWillUseGeoShader();
 }
@@ -378,6 +348,9 @@ GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGSImpl(std::unique_ptr<Sh
         case RenderPass::kQuadratics:
         case RenderPass::kCubics:
             return new GSHull4Impl(std::move(shadr));
+        case RenderPass::kQuadraticCorners:
+        case RenderPass::kCubicCorners:
+            return new GSCornerImpl(std::move(shadr), 2);
     }
     SK_ABORT("Invalid RenderPass");
     return nullptr;
diff --git a/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp b/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp
index 08398e1900..144a4a5d58 100644
--- a/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp
+++ b/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp
@@ -92,13 +92,13 @@ protected:
 static constexpr int kVertexData_LeftNeighborIdShift = 9;
 static constexpr int kVertexData_RightNeighborIdShift = 7;
 static constexpr int kVertexData_BloatIdxShift = 5;
-static constexpr int kVertexData_InvertNegativeCoverageBit = 1 << 4;
+static constexpr int kVertexData_InvertCoverageBit = 1 << 4;
 static constexpr int kVertexData_IsEdgeBit = 1 << 3;
 static constexpr int kVertexData_IsHullBit = 1 << 2;
 
 /**
  * Vertex data tells the shader how to offset vertices for conservative raster, and how/whether to
- * calculate coverage values. See VSHullAndEdgeImpl.
+ * calculate initial coverage values for edges. See VSHullAndEdgeImpl.
  */
 static constexpr int32_t pack_vertex_data(int32_t leftNeighborID, int32_t rightNeighborID,
                                           int32_t bloatIdx, int32_t cornerID,
@@ -114,12 +114,15 @@ static constexpr int32_t hull_vertex_data(int32_t cornerID, int32_t bloatIdx, in
                             kVertexData_IsHullBit);
 }
 
-static constexpr int32_t edge_vertex_data(int32_t leftID, int rightID, int32_t bloatIdx,
-                                          int32_t extraData = 0) {
-    return pack_vertex_data(leftID, leftID, bloatIdx, rightID, kVertexData_IsEdgeBit | extraData);
+static constexpr int32_t edge_vertex_data(int32_t edgeID, int32_t endptIdx, int32_t bloatIdx,
+                                          int n) {
+    return pack_vertex_data(0 == endptIdx ? (edgeID + 1) % n : edgeID,
+                            0 == endptIdx ? (edgeID + 1) % n : edgeID,
+                            bloatIdx, 0 == endptIdx ? edgeID : (edgeID + 1) % n,
+                            kVertexData_IsEdgeBit |
+                            (!endptIdx ? kVertexData_InvertCoverageBit : 0));
 }
 
-
 static constexpr int32_t kHull3AndEdgeVertices[] = {
     hull_vertex_data(0, 0, 3),
     hull_vertex_data(0, 1, 3),
@@ -131,26 +134,26 @@ static constexpr int32_t kHull3AndEdgeVertices[] = {
     hull_vertex_data(2, 1, 3),
     hull_vertex_data(2, 2, 3),
 
-    edge_vertex_data(0, 1, 0),
-    edge_vertex_data(0, 1, 1),
-    edge_vertex_data(0, 1, 2),
-    edge_vertex_data(1, 0, 0, kVertexData_InvertNegativeCoverageBit),
-    edge_vertex_data(1, 0, 1, kVertexData_InvertNegativeCoverageBit),
-    edge_vertex_data(1, 0, 2, kVertexData_InvertNegativeCoverageBit),
+    edge_vertex_data(0, 0, 0, 3),
+    edge_vertex_data(0, 0, 1, 3),
+    edge_vertex_data(0, 0, 2, 3),
+    edge_vertex_data(0, 1, 0, 3),
+    edge_vertex_data(0, 1, 1, 3),
+    edge_vertex_data(0, 1, 2, 3),
 
-    edge_vertex_data(1, 2, 0),
-    edge_vertex_data(1, 2, 1),
-    edge_vertex_data(1, 2, 2),
-    edge_vertex_data(2, 1, 0, kVertexData_InvertNegativeCoverageBit),
-    edge_vertex_data(2, 1, 1, kVertexData_InvertNegativeCoverageBit),
-    edge_vertex_data(2, 1, 2, kVertexData_InvertNegativeCoverageBit),
+    edge_vertex_data(1, 0, 0, 3),
+    edge_vertex_data(1, 0, 1, 3),
+    edge_vertex_data(1, 0, 2, 3),
+    edge_vertex_data(1, 1, 0, 3),
+    edge_vertex_data(1, 1, 1, 3),
+    edge_vertex_data(1, 1, 2, 3),
 
-    edge_vertex_data(2, 0, 0),
-    edge_vertex_data(2, 0, 1),
-    edge_vertex_data(2, 0, 2),
-    edge_vertex_data(0, 2, 0, kVertexData_InvertNegativeCoverageBit),
-    edge_vertex_data(0, 2, 1, kVertexData_InvertNegativeCoverageBit),
-    edge_vertex_data(0, 2, 2, kVertexData_InvertNegativeCoverageBit),
+    edge_vertex_data(2, 0, 0, 3),
+    edge_vertex_data(2, 0, 1, 3),
+    edge_vertex_data(2, 0, 2, 3),
+    edge_vertex_data(2, 1, 0, 3),
+    edge_vertex_data(2, 1, 1, 3),
+    edge_vertex_data(2, 1, 2, 3),
 };
 
 GR_DECLARE_STATIC_UNIQUE_KEY(gHull3AndEdgeVertexBufferKey);
@@ -198,7 +201,7 @@ static constexpr uint16_t kHull3AndEdgeIndicesAsTris[] =  {
 
 GR_DECLARE_STATIC_UNIQUE_KEY(gHull3AndEdgeIndexBufferKey);
 
-static constexpr int32_t kHull4AndEdgeVertices[] = {
+static constexpr int32_t kHull4Vertices[] = {
     hull_vertex_data(0, 0, 4),
     hull_vertex_data(0, 1, 4),
     hull_vertex_data(0, 2, 4),
@@ -212,23 +215,17 @@ static constexpr int32_t kHull4AndEdgeVertices[] = {
     hull_vertex_data(3, 1, 4),
     hull_vertex_data(3, 2, 4),
 
-    edge_vertex_data(0, 3, 0, kVertexData_InvertNegativeCoverageBit),
-    edge_vertex_data(0, 3, 1),
-    edge_vertex_data(0, 3, 2),
-    edge_vertex_data(3, 0, 0),
-    edge_vertex_data(3, 0, 1),
-    edge_vertex_data(3, 0, 2, kVertexData_InvertNegativeCoverageBit),
+    // No edges for now (beziers don't use edges).
 };
 
-GR_DECLARE_STATIC_UNIQUE_KEY(gHull4AndEdgeVertexBufferKey);
+GR_DECLARE_STATIC_UNIQUE_KEY(gHull4VertexBufferKey);
 
-static constexpr uint16_t kHull4AndEdgeIndicesAsStrips[] =  {
+static constexpr uint16_t kHull4IndicesAsStrips[] =  {
     1, 0, 2, 11, 3, 5, 4, kRestartStrip, // First half of the hull (split diagonally).
-    7, 6, 8, 5, 9, 11, 10, kRestartStrip, // Second half of the hull.
-    13, 12, 14, 17, 15, 16 // Shared edge.
+    7, 6, 8, 5, 9, 11, 10 // Second half of the hull.
 };
 
-static constexpr uint16_t kHull4AndEdgeIndicesAsTris[] =  {
+static constexpr uint16_t kHull4IndicesAsTris[] =  {
     // First half of the hull (split diagonally).
      1,  0,  2,
      0, 11,  2,
@@ -242,30 +239,23 @@ static constexpr uint16_t kHull4AndEdgeIndicesAsTris[] =  {
     8,  5,  9,
     5, 11,  9,
     9, 11, 10,
-
-    // Shared edge.
-    13, 12, 14,
-    12, 17, 14,
-    14, 17, 15,
-    17, 16, 15,
 };
 
-GR_DECLARE_STATIC_UNIQUE_KEY(gHull4AndEdgeIndexBufferKey);
+GR_DECLARE_STATIC_UNIQUE_KEY(gHull4IndexBufferKey);
 
 /**
- * Generates a conservative raster hull around a triangle or curve. For triangles we generate
- * additional conservative rasters with coverage ramps around the edges. For curves we
- * generate an additional raster with coverage ramps around its shared edge.
+ * Generates a conservative raster hull around a convex polygon. For triangles we generate
+ * additional conservative rasters around the edges and calculate coverage ramps.
  *
- * Triangle rough outlines are drawn in two steps: (1) Draw a conservative raster of the entire
- * triangle, with a coverage of +1. (2) Draw conservative rasters around each edge, with a
+ * Triangle rough outlines are drawn in two steps: (1) draw a conservative raster of the entire
+ * triangle, with a coverage of +1, and (2) draw conservative rasters around each edge, with a
  * coverage ramp from -1 to 0. These edge coverage values convert jagged conservative raster edges
- * into smooth, antialiased ones. The final corners get touched up in a later step by VSCornerImpl.
+ * into smooth, antialiased ones.
  *
- * Curves are drawn in two steps: (1) Draw a conservative raster around the input points, passing
- * coverage=+1 to the Shader. (2) Draw an additional conservative raster around the curve's shared
- * edge, using coverage=-1 at bloat vertices that fall outside the input points. This erases what
- * the hull just wrote and ramps coverage to zero.
+ * Curve rough outlines are just the conservative raster of a convex quadrilateral that encloses the
+ * curve. The Shader takes care of everything else for now.
+ *
+ * The final corners get touched up in a later step by VSCornerImpl.
  */
 class VSHullAndEdgeImpl : public GrCCCoverageProcessor::VSImpl {
 public:
@@ -294,9 +284,10 @@ public:
         // Here we generate conservative raster geometry for the input polygon. It is the convex
         // hull of N pixel-size boxes, one centered on each the input points. Each corner has three
         // vertices, where one or two may cause degenerate triangles. The vertex data tells us how
-        // to offset each vertex. Edges are also handled here using the same concept. For more
-        // details on conservative raster, see:
+        // to offset each vertex. For more details on conservative raster, see:
         // https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
+        //
+        // Triangle edges are also handled here using the same concept (see kHull3AndEdgeVertices).
         v->codeAppendf("float2 corner = %s[clockwise_indices & 3];", hullPts);
         v->codeAppendf("float2 left = %s[clockwise_indices >> %i];",
                        hullPts, kVertexData_LeftNeighborIdShift);
@@ -333,32 +324,29 @@ public:
                                // fallthru.
         v->codeAppend ("}");
 
+        // For triangles, we also emit coverage in order to handle edges and corners.
+        const char* coverage = nullptr;
+        if (3 == fNumSides) {
+            v->codeAppend ("half coverage;");
+            Shader::CalcEdgeCoverageAtBloatVertex(v, "left", "corner", "bloatdir", "coverage");
+            v->codeAppendf("if (0 != (%s & %i)) {", // Are we the opposite endpoint of an edge?
+                           proc.getAttrib(kAttribIdx_VertexData).fName,
+                           kVertexData_InvertCoverageBit);
+            v->codeAppend (    "coverage = -1 - coverage;");
+            v->codeAppend ("}");
+
+            v->codeAppendf("if (0 != (%s & %i)) {", // Are we a hull vertex?
+                           proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsHullBit);
+            v->codeAppend (    "coverage = +1;"); // Hull coverage is +1 all around.
+            v->codeAppend ("}");
+
+            coverage = "coverage";
+        }
+
         v->codeAppend ("float2 vertex = corner + bloatdir * bloat;");
         gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex");
 
-        // The hull has a coverage of +1 all around.
-        v->codeAppend ("half coverage = +1;");
-
-        if (3 == fNumSides) {
-            v->codeAppendf("if (0 != (%s & %i)) {", // Are we an edge?
-                           proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsEdgeBit);
-            Shader::CalcEdgeCoverageAtBloatVertex(v, "left", "corner", "bloatdir", "coverage");
-            v->codeAppend ("}");
-        } else {
-            SkASSERT(4 == fNumSides);
-            v->codeAppendf("if (0 != (%s & %i)) {", // Are we an edge?
-                           proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsEdgeBit);
-            v->codeAppend (    "coverage = -1;");
-            v->codeAppend ("}");
-        }
-
-        v->codeAppendf("if (0 != (%s & %i)) {", // Invert coverage?
-                       proc.getAttrib(kAttribIdx_VertexData).fName,
-                       kVertexData_InvertNegativeCoverageBit);
-        v->codeAppend (    "coverage = -1 - coverage;");
-        v->codeAppend ("}");
-
-        return "coverage";
+        return coverage;
     }
 
 private:
@@ -437,7 +425,31 @@ void GrCCCoverageProcessor::initVS(GrResourceProvider* rp) {
             break;
         }
 
-        case RenderPass::kTriangleCorners: {
+        case RenderPass::kQuadratics:
+        case RenderPass::kCubics: {
+            GR_DEFINE_STATIC_UNIQUE_KEY(gHull4VertexBufferKey);
+            fVertexBuffer = rp->findOrMakeStaticBuffer(kVertex_GrBufferType, sizeof(kHull4Vertices),
+                                                       kHull4Vertices, gHull4VertexBufferKey);
+            GR_DEFINE_STATIC_UNIQUE_KEY(gHull4IndexBufferKey);
+            if (caps.usePrimitiveRestart()) {
+                fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
+                                                          sizeof(kHull4IndicesAsStrips),
+                                                          kHull4IndicesAsStrips,
+                                                          gHull4IndexBufferKey);
+                fNumIndicesPerInstance = SK_ARRAY_COUNT(kHull4IndicesAsStrips);
+            } else {
+                fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
+                                                          sizeof(kHull4IndicesAsTris),
+                                                          kHull4IndicesAsTris,
+                                                          gHull4IndexBufferKey);
+                fNumIndicesPerInstance = SK_ARRAY_COUNT(kHull4IndicesAsTris);
+            }
+            break;
+        }
+
+        case RenderPass::kTriangleCorners:
+        case RenderPass::kQuadraticCorners:
+        case RenderPass::kCubicCorners: {
             GR_DEFINE_STATIC_UNIQUE_KEY(gCornerIndexBufferKey);
             if (caps.usePrimitiveRestart()) {
                 fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
@@ -452,35 +464,14 @@ void GrCCCoverageProcessor::initVS(GrResourceProvider* rp) {
                                                           gCornerIndexBufferKey);
                 fNumIndicesPerInstance = SK_ARRAY_COUNT(kCornerIndicesAsTris);
             }
-            break;
-        }
-
-        case RenderPass::kQuadratics:
-        case RenderPass::kCubics: {
-            GR_DEFINE_STATIC_UNIQUE_KEY(gHull4AndEdgeVertexBufferKey);
-            fVertexBuffer = rp->findOrMakeStaticBuffer(kVertex_GrBufferType,
-                                                       sizeof(kHull4AndEdgeVertices),
-                                                       kHull4AndEdgeVertices,
-                                                       gHull4AndEdgeVertexBufferKey);
-            GR_DEFINE_STATIC_UNIQUE_KEY(gHull4AndEdgeIndexBufferKey);
-            if (caps.usePrimitiveRestart()) {
-                fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
-                                                          sizeof(kHull4AndEdgeIndicesAsStrips),
-                                                          kHull4AndEdgeIndicesAsStrips,
-                                                          gHull4AndEdgeIndexBufferKey);
-                fNumIndicesPerInstance = SK_ARRAY_COUNT(kHull4AndEdgeIndicesAsStrips);
-            } else {
-                fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
-                                                          sizeof(kHull4AndEdgeIndicesAsTris),
-                                                          kHull4AndEdgeIndicesAsTris,
-                                                          gHull4AndEdgeIndexBufferKey);
-                fNumIndicesPerInstance = SK_ARRAY_COUNT(kHull4AndEdgeIndicesAsTris);
+            if (RenderPass::kTriangleCorners != fRenderPass) {
+                fNumIndicesPerInstance = fNumIndicesPerInstance * 2/3;
             }
             break;
         }
     }
 
-    if (RenderPass::kCubics == fRenderPass || WindMethod::kInstanceData == fWindMethod) {
+    if (RenderPassIsCubic(fRenderPass) || WindMethod::kInstanceData == fWindMethod) {
         SkASSERT(WindMethod::kCrossProduct == fWindMethod || 3 == this->numInputPoints());
 
         SkASSERT(kAttribIdx_X == this->numAttribs());
@@ -534,11 +525,13 @@ GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createVSImpl(std::unique_ptr<Sh
     switch (fRenderPass) {
         case RenderPass::kTriangles:
             return new VSHullAndEdgeImpl(std::move(shadr), 3);
-        case RenderPass::kTriangleCorners:
-            return new VSCornerImpl(std::move(shadr));
         case RenderPass::kQuadratics:
         case RenderPass::kCubics:
             return new VSHullAndEdgeImpl(std::move(shadr), 4);
+        case RenderPass::kTriangleCorners:
+        case RenderPass::kQuadraticCorners:
+        case RenderPass::kCubicCorners:
+            return new VSCornerImpl(std::move(shadr));
     }
     SK_ABORT("Invalid RenderPass");
     return nullptr;
diff --git a/src/gpu/ccpr/GrCCCubicShader.cpp b/src/gpu/ccpr/GrCCCubicShader.cpp
index 76d1646b65..5ae51c7d9b 100644
--- a/src/gpu/ccpr/GrCCCubicShader.cpp
+++ b/src/gpu/ccpr/GrCCCubicShader.cpp
@@ -13,8 +13,8 @@
 using Shader = GrCCCoverageProcessor::Shader;
 
 void GrCCCubicShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
-                                    const char* /*repetitionID*/, const char* /*wind*/,
-                                    GeometryVars*) const {
+                                    const char* repetitionID, const char* wind,
+                                    GeometryVars* vars) const {
     // Find the cubic's power basis coefficients.
     s->codeAppendf("float2x4 C = float4x4(-1,  3, -3,  1, "
                                          " 3, -6,  3,  0, "
@@ -58,44 +58,118 @@ void GrCCCubicShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
     // Evaluate the cubic at T=.5 for a mid-ish point.
     s->codeAppendf("float2 midpoint = %s * float4(.125, .375, .375, .125);", pts);
 
-    // Orient the KLM matrix so L & M are both positive on the side of the curve we wish to fill.
+    // Orient the KLM matrix so L & M have matching signs on the side of the curve we wish to fill.
+    // We give L & M both the same sign as wind, in order to pass this value to the fragment shader.
+    // (Cubics are pre-chopped such that L & M do not change sign within any individual segment).
     s->codeAppendf("float2 orientation = sign(float3(midpoint, 1) * float2x3(%s[1], %s[2]));",
                    fKLMMatrix.c_str(), fKLMMatrix.c_str());
     s->codeAppendf("%s *= float3x3(orientation[0] * orientation[1], 0, 0, "
-                                  "0, orientation[0], 0, "
-                                  "0, 0, orientation[1]);", fKLMMatrix.c_str());
+                                  "0, orientation[0] * %s, 0, "
+                                  "0, 0, orientation[1] * %s);", fKLMMatrix.c_str(), wind, wind);
+
+    // Determine the amount of additional coverage to subtract out for the flat edge (P3 -> P0).
+    s->declareGlobal(fEdgeDistanceEquation);
+    s->codeAppendf("short edgeidx0 = %s > 0 ? 3 : 0;", wind);
+    s->codeAppendf("float2 edgept0 = %s[edgeidx0];", pts);
+    s->codeAppendf("float2 edgept1 = %s[3 - edgeidx0];", pts);
+    Shader::EmitEdgeDistanceEquation(s, "edgept0", "edgept1", fEdgeDistanceEquation.c_str());
+
+    this->onEmitSetupCode(s, pts, repetitionID, vars);
 }
 
 void GrCCCubicShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
                                      GrGLSLVarying::Scope scope, SkString* code,
                                      const char* position, const char* inputCoverage,
-                                     const char* wind) {
+                                     const char* /*wind*/) {
+    SkASSERT(!inputCoverage);
+
+    fKLMD.reset(kFloat4_GrSLType, scope);
+    varyingHandler->addVarying("klmd", &fKLMD);
     code->appendf("float3 klm = float3(%s, 1) * %s;", position, fKLMMatrix.c_str());
+    code->appendf("float d = dot(float3(%s, 1), %s);", position, fEdgeDistanceEquation.c_str());
+    code->appendf("%s = float4(klm, d);", OutName(fKLMD));
 
-    fKLMW.reset(kFloat4_GrSLType, scope);
-    varyingHandler->addVarying("klmw", &fKLMW);
-    code->appendf("%s.xyz = klm;", OutName(fKLMW));
-    code->appendf("%s.w = %s * %s;", OutName(fKLMW), inputCoverage, wind);
+    this->onEmitVaryings(varyingHandler, scope, code);
+}
 
+void GrCCCubicShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f,
+                                         const char* outputCoverage) const {
+    f->codeAppendf("float k = %s.x, l = %s.y, m = %s.z, d = %s.w;",
+                   fKLMD.fsIn(), fKLMD.fsIn(), fKLMD.fsIn(), fKLMD.fsIn());
+
+    this->emitCoverage(f, outputCoverage);
+
+    // Wind is the sign of both L and/or M. Take the sign of whichever has the larger magnitude.
+    // (In reality, either would be fine because we chop cubics with more than a half pixel of
+    // padding around the L & M lines, so neither should approach zero.)
+    f->codeAppend ("half wind = sign(l + m);");
+    f->codeAppendf("%s *= wind;", outputCoverage);
+}
+
+void GrCCCubicHullShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
+                                         GrGLSLVarying::Scope scope, SkString* code) {
     fGradMatrix.reset(kFloat2x2_GrSLType, scope);
     varyingHandler->addVarying("grad_matrix", &fGradMatrix);
+    // "klm" was just defined by the base class.
     code->appendf("%s[0] = 3 * klm[0] * %s[0].xy;", OutName(fGradMatrix), fKLMMatrix.c_str());
     code->appendf("%s[1] = -klm[1] * %s[2].xy - klm[2] * %s[1].xy;",
                     OutName(fGradMatrix), fKLMMatrix.c_str(), fKLMMatrix.c_str());
 }
 
-void GrCCCubicShader::onEmitFragmentCode(const GrCCCoverageProcessor& proc,
-                                         GrGLSLFPFragmentBuilder* f,
-                                         const char* outputCoverage) const {
-    f->codeAppendf("float k = %s.x, l = %s.y, m = %s.z;",
-                   fKLMW.fsIn(), fKLMW.fsIn(), fKLMW.fsIn());
+void GrCCCubicHullShader::emitCoverage(GrGLSLFPFragmentBuilder* f,
+                                       const char* outputCoverage) const {
+    // k,l,m,d are defined by the base class.
     f->codeAppend ("float f = k*k*k - l*m;");
     f->codeAppendf("float2 grad_f = %s * float2(k, 1);", fGradMatrix.fsIn());
-    f->codeAppend ("float d = f * inversesqrt(dot(grad_f, grad_f));");
-#ifdef SK_DEBUG
-    if (proc.debugVisualizationsEnabled()) {
-        f->codeAppendf("d /= %f;", proc.debugBloat());
-    }
-#endif
-    f->codeAppendf("%s = clamp(0.5 - d, 0, 1) * %s.w;", outputCoverage, fKLMW.fsIn());
+    f->codeAppendf("%s = clamp(0.5 - f * inversesqrt(dot(grad_f, grad_f)), 0, 1);", outputCoverage);
+    f->codeAppendf("%s += min(d, 0);", outputCoverage); // Flat edge opposite the curve.
+}
+
+void GrCCCubicCornerShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
+                                            const char* repetitionID, GeometryVars* vars) const {
+    s->codeAppendf("float2 corner = %s[%s * 3];", pts, repetitionID);
+    vars->fCornerVars.fPoint = "corner";
+}
+
+void GrCCCubicCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
+                                           GrGLSLVarying::Scope scope, SkString* code) {
+    using Interpolation = GrGLSLVaryingHandler::Interpolation;
+
+    fdKLMDdx.reset(kFloat4_GrSLType, scope);
+    varyingHandler->addVarying("dklmddx", &fdKLMDdx, Interpolation::kCanBeFlat);
+    code->appendf("%s = float4(%s[0].x, %s[1].x, %s[2].x, %s.x);",
+                  OutName(fdKLMDdx), fKLMMatrix.c_str(), fKLMMatrix.c_str(),
+                  fKLMMatrix.c_str(), fEdgeDistanceEquation.c_str());
+
+    fdKLMDdy.reset(kFloat4_GrSLType, scope);
+    varyingHandler->addVarying("dklmddy", &fdKLMDdy, Interpolation::kCanBeFlat);
+    code->appendf("%s = float4(%s[0].y, %s[1].y, %s[2].y, %s.y);",
+                  OutName(fdKLMDdy), fKLMMatrix.c_str(), fKLMMatrix.c_str(),
+                  fKLMMatrix.c_str(), fEdgeDistanceEquation.c_str());
+}
+
+void GrCCCubicCornerShader::emitCoverage(GrGLSLFPFragmentBuilder* f,
+                                         const char* outputCoverage) const {
+    f->codeAppendf("float2x4 grad_klmd = float2x4(%s, %s);", fdKLMDdx.fsIn(), fdKLMDdy.fsIn());
+
+    // Erase what the previous hull shader wrote. We don't worry about the two corners falling on
+    // the same pixel because those cases should have been weeded out by this point.
+    // k,l,m,d are defined by the base class.
+    f->codeAppend ("float f = k*k*k - l*m;");
+    f->codeAppend ("float2 grad_f = float3(3*k*k, -m, -l) * float2x3(grad_klmd);");
+    f->codeAppendf("%s = -clamp(0.5 - f * inversesqrt(dot(grad_f, grad_f)), 0, 1);",
+                   outputCoverage);
+    f->codeAppendf("%s -= d;", outputCoverage);
+
+    // Use software msaa to estimate actual coverage at the corner pixels.
+    const int sampleCount = Shader::DefineSoftSampleLocations(f, "samples");
+    f->codeAppendf("float4 klmd_center = float4(%s.xyz, %s.w + 0.5);",
+                   fKLMD.fsIn(), fKLMD.fsIn());
+    f->codeAppendf("for (int i = 0; i < %i; ++i) {", sampleCount);
+    f->codeAppend (    "float4 klmd = grad_klmd * samples[i] + klmd_center;");
+    f->codeAppend (    "half f = klmd.y * klmd.z - klmd.x * klmd.x * klmd.x;");
+    f->codeAppendf(    "%s += all(greaterThan(half4(f, klmd.y, klmd.z, klmd.w), "
+                                             "half4(0))) ? %f : 0;",
+                       outputCoverage, 1.0 / sampleCount);
+    f->codeAppend ("}");
 }
diff --git a/src/gpu/ccpr/GrCCCubicShader.h b/src/gpu/ccpr/GrCCCubicShader.h
index 70d3300461..063549264a 100644
--- a/src/gpu/ccpr/GrCCCubicShader.h
+++ b/src/gpu/ccpr/GrCCCubicShader.h
@@ -24,17 +24,37 @@
 class GrCCCubicShader : public GrCCCoverageProcessor::Shader {
 protected:
     void emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
-                       const char* wind, GeometryVars*) const override;
+                       const char* wind, GeometryVars*) const final;
+    virtual void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
+                                 GeometryVars*) const {}
 
     void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
-                        const char* position, const char* inputCoverage, const char* wind) override;
+                        const char* position, const char* inputCoverage, const char* wind) final;
+    virtual void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) = 0;
 
-    void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
-                            const char* outputCoverage) const override;
+    void onEmitFragmentCode(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const final;
+    virtual void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const = 0;
 
     GrShaderVar fKLMMatrix{"klm_matrix", kFloat3x3_GrSLType};
-    GrGLSLVarying fKLMW;
+    GrShaderVar fEdgeDistanceEquation{"edge_distance_equation", kFloat3_GrSLType};
+    GrGLSLVarying fKLMD;
+};
+
+class GrCCCubicHullShader : public GrCCCubicShader {
+    void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override;
+    void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override;
+
     GrGLSLVarying fGradMatrix;
 };
 
+class GrCCCubicCornerShader : public GrCCCubicShader {
+    void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
+                         GeometryVars*) const override;
+    void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override;
+    void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override;
+
+    GrGLSLVarying fdKLMDdx;
+    GrGLSLVarying fdKLMDdy;
+};
+
 #endif
diff --git a/src/gpu/ccpr/GrCCPathParser.cpp b/src/gpu/ccpr/GrCCPathParser.cpp
index e625c43743..43f5e6be6a 100644
--- a/src/gpu/ccpr/GrCCPathParser.cpp
+++ b/src/gpu/ccpr/GrCCPathParser.cpp
@@ -530,11 +530,15 @@ void GrCCPathParser::drawCoverageCount(GrOpFlushState* flushState, CoverageCount
     if (batchTotalCounts.fQuadratics) {
         this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kQuadratics,
                              WindMethod::kCrossProduct, &PrimitiveTallies::fQuadratics, drawBounds);
+        this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kQuadraticCorners,
+                             WindMethod::kCrossProduct, &PrimitiveTallies::fQuadratics, drawBounds);
     }
 
     if (batchTotalCounts.fCubics) {
         this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kCubics,
                              WindMethod::kCrossProduct, &PrimitiveTallies::fCubics, drawBounds);
+        this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kCubicCorners,
+                             WindMethod::kCrossProduct, &PrimitiveTallies::fCubics, drawBounds);
     }
 }
 
diff --git a/src/gpu/ccpr/GrCCQuadraticShader.cpp b/src/gpu/ccpr/GrCCQuadraticShader.cpp
index baa10fd34e..090e29f4c3 100644
--- a/src/gpu/ccpr/GrCCQuadraticShader.cpp
+++ b/src/gpu/ccpr/GrCCQuadraticShader.cpp
@@ -14,7 +14,7 @@
 using Shader = GrCCCoverageProcessor::Shader;
 
 void GrCCQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
-                                        const char* /*repetitionID*/, const char* /*wind*/,
+                                        const char* repetitionID, const char* wind,
                                         GeometryVars* vars) const {
     s->declareGlobal(fCanonicalMatrix);
     s->codeAppendf("%s = float3x3(0.0, 0, 1, "
@@ -25,6 +25,41 @@ void GrCCQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* p
                                          "%s[2], 1));",
                    fCanonicalMatrix.c_str(), pts, pts, pts);
 
+    s->declareGlobal(fEdgeDistanceEquation);
+    s->codeAppendf("float2 edgept0 = %s[%s > 0 ? 2 : 0];", pts, wind);
+    s->codeAppendf("float2 edgept1 = %s[%s > 0 ? 0 : 2];", pts, wind);
+    Shader::EmitEdgeDistanceEquation(s, "edgept0", "edgept1", fEdgeDistanceEquation.c_str());
+
+    this->onEmitSetupCode(s, pts, repetitionID, vars);
+}
+
+void GrCCQuadraticShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
+                                         GrGLSLVarying::Scope scope, SkString* code,
+                                         const char* position, const char* inputCoverage,
+                                         const char* wind) {
+    SkASSERT(!inputCoverage);
+
+    fXYDW.reset(kFloat4_GrSLType, scope);
+    varyingHandler->addVarying("xydw", &fXYDW);
+    code->appendf("%s.xy = (%s * float3(%s, 1)).xy;",
+                  OutName(fXYDW), fCanonicalMatrix.c_str(), position);
+    code->appendf("%s.z = dot(%s.xy, %s) + %s.z;",
+                  OutName(fXYDW), fEdgeDistanceEquation.c_str(), position,
+                  fEdgeDistanceEquation.c_str());
+    code->appendf("%s.w = %s;", OutName(fXYDW), wind);
+
+    this->onEmitVaryings(varyingHandler, scope, code);
+}
+
+void GrCCQuadraticShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f,
+                                             const char* outputCoverage) const {
+    this->emitCoverage(f, outputCoverage);
+    f->codeAppendf("%s *= %s.w;", outputCoverage, fXYDW.fsIn()); // Sign by wind.
+}
+
+void GrCCQuadraticHullShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
+                                              const char* /*repetitionID*/,
+                                              GeometryVars* vars) const {
     // Find the T value whose tangent is halfway between the tangents at the endpionts.
     s->codeAppendf("float2 tan0 = %s[1] - %s[0];", pts, pts);
     s->codeAppendf("float2 tan1 = %s[2] - %s[1];", pts, pts);
@@ -41,31 +76,66 @@ void GrCCQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* p
     vars->fHullVars.fAlternatePoints = "quadratic_hull";
 }
 
-void GrCCQuadraticShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
-                                         GrGLSLVarying::Scope scope, SkString* code,
-                                         const char* position, const char* inputCoverage,
-                                         const char* wind) {
-    fCoords.reset(kFloat4_GrSLType, scope);
-    varyingHandler->addVarying("coords", &fCoords);
-    code->appendf("%s.xy = (%s * float3(%s, 1)).xy;",
-                  OutName(fCoords), fCanonicalMatrix.c_str(), position);
-    code->appendf("%s.zw = float2(2 * %s.x, -1) * float2x2(%s);",
-                  OutName(fCoords), OutName(fCoords), fCanonicalMatrix.c_str());
-
-    fCoverageTimesWind.reset(kHalf_GrSLType, scope);
-    varyingHandler->addVarying("coverage_times_wind", &fCoverageTimesWind);
-    code->appendf("%s = %s * %s;", OutName(fCoverageTimesWind), inputCoverage, wind);
+void GrCCQuadraticHullShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
+                                             GrGLSLVarying::Scope scope, SkString* code) {
+    fGrad.reset(kFloat2_GrSLType, scope);
+    varyingHandler->addVarying("grad", &fGrad);
+    code->appendf("%s = float2(2 * %s.x, -1) * float2x2(%s);",
+                  OutName(fGrad), OutName(fXYDW), fCanonicalMatrix.c_str());
 }
 
-void GrCCQuadraticShader::onEmitFragmentCode(const GrCCCoverageProcessor& proc,
-                                             GrGLSLFPFragmentBuilder* f,
+void GrCCQuadraticHullShader::emitCoverage(GrGLSLFPFragmentBuilder* f,
+                                           const char* outputCoverage) const {
+    f->codeAppendf("float d = (%s.x * %s.x - %s.y) * inversesqrt(dot(%s, %s));",
+                   fXYDW.fsIn(), fXYDW.fsIn(), fXYDW.fsIn(), fGrad.fsIn(), fGrad.fsIn());
+    f->codeAppendf("%s = clamp(0.5 - d, 0, 1);", outputCoverage);
+    f->codeAppendf("%s += min(%s.z, 0);", outputCoverage, fXYDW.fsIn()); // Flat closing edge.
+}
+
+void GrCCQuadraticCornerShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
+                                                const char* repetitionID,
+                                                GeometryVars* vars) const {
+    s->codeAppendf("float2 corner = %s[%s * 2];", pts, repetitionID);
+    vars->fCornerVars.fPoint = "corner";
+}
+
+void GrCCQuadraticCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
+                                               GrGLSLVarying::Scope scope, SkString* code) {
+    using Interpolation = GrGLSLVaryingHandler::Interpolation;
+
+    fdXYDdx.reset(kFloat3_GrSLType, scope);
+    varyingHandler->addVarying("dXYDdx", &fdXYDdx, Interpolation::kCanBeFlat);
+    code->appendf("%s = float3(%s[0].x, %s[0].y, %s.x);",
+                  OutName(fdXYDdx), fCanonicalMatrix.c_str(), fCanonicalMatrix.c_str(),
+                  fEdgeDistanceEquation.c_str());
+
+    fdXYDdy.reset(kFloat3_GrSLType, scope);
+    varyingHandler->addVarying("dXYDdy", &fdXYDdy, Interpolation::kCanBeFlat);
+    code->appendf("%s = float3(%s[1].x, %s[1].y, %s.y);",
+                  OutName(fdXYDdy), fCanonicalMatrix.c_str(), fCanonicalMatrix.c_str(),
+                  fEdgeDistanceEquation.c_str());
+}
+
+void GrCCQuadraticCornerShader::emitCoverage(GrGLSLFPFragmentBuilder* f,
                                              const char* outputCoverage) const {
-    f->codeAppendf("float d = (%s.x * %s.x - %s.y) * inversesqrt(dot(%s.zw, %s.zw));",
-                   fCoords.fsIn(), fCoords.fsIn(), fCoords.fsIn(), fCoords.fsIn(), fCoords.fsIn());
-#ifdef SK_DEBUG
-    if (proc.debugVisualizationsEnabled()) {
-        f->codeAppendf("d /= %f;", proc.debugBloat());
-    }
-#endif
-    f->codeAppendf("%s = clamp(0.5 - d, 0, 1) * %s;", outputCoverage, fCoverageTimesWind.fsIn());
+    f->codeAppendf("float x = %s.x, y = %s.y, d = %s.z;",
+                   fXYDW.fsIn(), fXYDW.fsIn(), fXYDW.fsIn());
+    f->codeAppendf("float2x3 grad_xyd = float2x3(%s, %s);", fdXYDdx.fsIn(), fdXYDdy.fsIn());
+
+    // Erase what the previous hull shader wrote. We don't worry about the two corners falling on
+    // the same pixel because those cases should have been weeded out by this point.
+    f->codeAppend ("float f = x*x - y;");
+    f->codeAppend ("float2 grad_f = float2(2*x, -1) * float2x2(grad_xyd);");
+    f->codeAppendf("%s = -(0.5 - f * inversesqrt(dot(grad_f, grad_f)));", outputCoverage);
+    f->codeAppendf("%s -= d;", outputCoverage);
+
+    // Use software msaa to approximate coverage at the corner pixels.
+    int sampleCount = Shader::DefineSoftSampleLocations(f, "samples");
+    f->codeAppendf("float3 xyd_center = float3(%s.xy, %s.z + 0.5);", fXYDW.fsIn(), fXYDW.fsIn());
+    f->codeAppendf("for (int i = 0; i < %i; ++i) {", sampleCount);
+    f->codeAppend (    "float3 xyd = grad_xyd * samples[i] + xyd_center;");
+    f->codeAppend (    "half f = xyd.y - xyd.x * xyd.x;"); // f > 0 -> inside curve.
+    f->codeAppendf(    "%s += all(greaterThan(float2(f,xyd.z), float2(0))) ? %f : 0;",
+                       outputCoverage, 1.0 / sampleCount);
+    f->codeAppendf("}");
 }
diff --git a/src/gpu/ccpr/GrCCQuadraticShader.h b/src/gpu/ccpr/GrCCQuadraticShader.h
index d91f943471..0be03d33dd 100644
--- a/src/gpu/ccpr/GrCCQuadraticShader.h
+++ b/src/gpu/ccpr/GrCCQuadraticShader.h
@@ -23,17 +23,48 @@
 class GrCCQuadraticShader : public GrCCCoverageProcessor::Shader {
 protected:
     void emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
-                       const char* wind, GeometryVars*) const override;
+                       const char* wind, GeometryVars*) const final;
+    virtual void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
+                                 GeometryVars*) const = 0;
 
     void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
-                        const char* position, const char* inputCoverage, const char* wind) override;
+                        const char* position, const char* inputCoverage, const char* wind) final;
+    virtual void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) {}
 
-    void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
-                            const char* outputCoverage) const override;
+    void onEmitFragmentCode(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const final;
+    virtual void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const = 0;
 
     const GrShaderVar fCanonicalMatrix{"canonical_matrix", kFloat3x3_GrSLType};
-    GrGLSLVarying fCoords;
-    GrGLSLVarying fCoverageTimesWind;
+    const GrShaderVar fEdgeDistanceEquation{"edge_distance_equation", kFloat3_GrSLType};
+    GrGLSLVarying fXYDW;
+};
+
+/**
+ * This pass draws a conservative raster hull around the quadratic bezier curve, computes the
+ * curve's coverage using the gradient-based AA technique outlined in the Loop/Blinn paper, and
+ * uses simple distance-to-edge to subtract out coverage for the flat closing edge [P2 -> P0]. Since
+ * the provided curves are monotonic, this will get every pixel right except the two corners.
+ */
+class GrCCQuadraticHullShader : public GrCCQuadraticShader {
+    void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
+                         GeometryVars*) const override;
+    void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override;
+    void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override;
+
+    GrGLSLVarying fGrad;
+};
+
+/**
+ * This pass fixes the corners of a closed quadratic segment with soft MSAA.
+ */
+class GrCCQuadraticCornerShader : public GrCCQuadraticShader {
+    void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
+                         GeometryVars*) const override;
+    void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override;
+    void emitCoverage(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override;
+
+    GrGLSLVarying fdXYDdx;
+    GrGLSLVarying fdXYDdy;
 };
 
 #endif
diff --git a/src/gpu/ccpr/GrCCTriangleShader.cpp b/src/gpu/ccpr/GrCCTriangleShader.cpp
index 8135313965..e086201b42 100644
--- a/src/gpu/ccpr/GrCCTriangleShader.cpp
+++ b/src/gpu/ccpr/GrCCTriangleShader.cpp
@@ -22,8 +22,7 @@ void GrCCTriangleShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
     code->appendf("%s = %s * %s;", OutName(fCoverageTimesWind), inputCoverage, wind);
 }
 
-void GrCCTriangleShader::onEmitFragmentCode(const GrCCCoverageProcessor&,
-                                            GrGLSLFPFragmentBuilder* f,
+void GrCCTriangleShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f,
                                             const char* outputCoverage) const {
     f->codeAppendf("%s = %s;", outputCoverage, fCoverageTimesWind.fsIn());
 }
@@ -107,8 +106,7 @@ void GrCCTriangleCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandl
     code->appendf("%s = %s * .5;", OutName(fWindTimesHalf), wind);
 }
 
-void GrCCTriangleCornerShader::onEmitFragmentCode(const GrCCCoverageProcessor&,
-                                                  GrGLSLFPFragmentBuilder* f,
+void GrCCTriangleCornerShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f,
                                                   const char* outputCoverage) const {
     // By the time we reach this shader, the pixel is in the following state:
     //
diff --git a/src/gpu/ccpr/GrCCTriangleShader.h b/src/gpu/ccpr/GrCCTriangleShader.h
index 6dae8df497..5f33b077cd 100644
--- a/src/gpu/ccpr/GrCCTriangleShader.h
+++ b/src/gpu/ccpr/GrCCTriangleShader.h
@@ -19,8 +19,7 @@
 class GrCCTriangleShader : public GrCCCoverageProcessor::Shader {
     void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
                         const char* position, const char* inputCoverage, const char* wind) override;
-    void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
-                            const char* outputCoverage) const override;
+    void onEmitFragmentCode(GrGLSLFPFragmentBuilder*, const char* outputCoverage) const override;
 
     GrGLSLVarying fCoverageTimesWind;
 };
@@ -35,8 +34,7 @@ class GrCCTriangleCornerShader : public GrCCCoverageProcessor::Shader {
                        const char* wind, GeometryVars*) const override;
     void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
                         const char* position, const char* inputCoverage, const char* wind) override;
-    void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
-                            const char* outputCoverage) const override;
+    void onEmitFragmentCode(GrGLSLFPFragmentBuilder* f, const char* outputCoverage) const override;
 
     GrShaderVar fAABoxMatrices{"aa_box_matrices", kFloat2x2_GrSLType, 2};
     GrShaderVar fAABoxTranslates{"aa_box_translates", kFloat2_GrSLType, 2};