begin clean up for scalar is double option

BUG=skia:

Review URL: https://codereview.chromium.org/694693002
This commit is contained in:
reed 2014-10-31 06:55:41 -07:00 committed by Commit bot
parent 2100c5ed7a
commit bd1605905b

View File

@ -13,66 +13,29 @@
//#define SK_SUPPORT_DEPRECATED_SCALARROUND
typedef float SkScalar;
// TODO: move this sort of check into SkPostConfig.h
#define SK_SCALAR_IS_DOUBLE 0
#undef SK_SCALAR_IS_FLOAT
#define SK_SCALAR_IS_FLOAT 1
/** SK_Scalar1 is defined to be 1.0 represented as an SkScalar
*/
#define SK_Scalar1 (1.0f)
/** SK_Scalar1 is defined to be 1/2 represented as an SkScalar
*/
#define SK_ScalarHalf (0.5f)
/** SK_ScalarInfinity is defined to be infinity as an SkScalar
*/
#define SK_ScalarInfinity SK_FloatInfinity
/** SK_ScalarNegativeInfinity is defined to be negative infinity as an SkScalar
*/
#define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity
/** SK_ScalarMax is defined to be the largest value representable as an SkScalar
*/
#define SK_ScalarMax (3.402823466e+38f)
/** SK_ScalarMin is defined to be the smallest value representable as an SkScalar
*/
#define SK_ScalarMin (-SK_ScalarMax)
/** SK_ScalarNaN is defined to be 'Not a Number' as an SkScalar
*/
#define SK_ScalarNaN SK_FloatNaN
/** SkScalarIsNaN(n) returns true if argument is not a number
*/
static inline bool SkScalarIsNaN(float x) { return x != x; }
/** Returns true if x is not NaN and not infinite */
static inline bool SkScalarIsFinite(float x) {
// We rely on the following behavior of infinities and nans
// 0 * finite --> 0
// 0 * infinity --> NaN
// 0 * NaN --> NaN
float prod = x * 0;
// At this point, prod will either be NaN or 0
// Therefore we can return (prod == prod) or (0 == prod).
return prod == prod;
}
#if SK_SCALAR_IS_FLOAT
/** SkIntToScalar(n) returns its integer argument as an SkScalar
*/
#define SkIntToScalar(n) ((float)(n))
/** SkFixedToScalar(n) returns its SkFixed argument as an SkScalar
*/
#define SkFixedToScalar(x) SkFixedToFloat(x)
/** SkScalarToFixed(n) returns its SkScalar argument as an SkFixed
*/
#define SkScalarToFixed(x) SkFloatToFixed(x)
typedef float SkScalar;
#define SkScalarToFloat(n) (n)
#ifndef SK_SCALAR_TO_FLOAT_EXCLUDED
#define SkFloatToScalar(n) (n)
#endif
#define SK_Scalar1 1.0f
#define SK_ScalarHalf 0.5f
#define SK_ScalarSqrt2 1.41421356f
#define SK_ScalarPI 3.14159265f
#define SK_ScalarTanPIOver8 0.414213562f
#define SK_ScalarRoot2Over2 0.707106781f
#define SK_ScalarMax 3.402823466e+38f
#define SK_ScalarInfinity SK_FloatInfinity
#define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity
#define SK_ScalarNaN SK_FloatNaN
#define SkScalarToDouble(n) (double)(n)
#define SkDoubleToScalar(n) (float)(n)
/** SkScalarFraction(x) returns the signed fractional part of the argument
*/
#define SkScalarFraction(x) sk_float_mod(x, 1.0f)
#define SkFixedToScalar(x) SkFixedToFloat(x)
#define SkScalarToFixed(x) SkFloatToFixed(x)
#define SkScalarFloorToScalar(x) sk_float_floor(x)
#define SkScalarCeilToScalar(x) sk_float_ceil(x)
@ -81,7 +44,93 @@ static inline bool SkScalarIsFinite(float x) {
#define SkScalarFloorToInt(x) sk_float_floor2int(x)
#define SkScalarCeilToInt(x) sk_float_ceil2int(x)
#define SkScalarRoundToInt(x) sk_float_round2int(x)
#define SkScalarTruncToInt(x) static_cast<int>(x)
#define SkScalarAbs(x) sk_float_abs(x)
#define SkScalarCopySign(x, y) sk_float_copysign(x, y)
#define SkScalarMod(x, y) sk_float_mod(x,y)
#define SkScalarFraction(x) sk_float_mod(x, 1.0f)
#define SkScalarSqrt(x) sk_float_sqrt(x)
#define SkScalarPow(b, e) sk_float_pow(b, e)
#define SkScalarSin(radians) (float)sk_float_sin(radians)
#define SkScalarCos(radians) (float)sk_float_cos(radians)
#define SkScalarTan(radians) (float)sk_float_tan(radians)
#define SkScalarASin(val) (float)sk_float_asin(val)
#define SkScalarACos(val) (float)sk_float_acos(val)
#define SkScalarATan2(y, x) (float)sk_float_atan2(y,x)
#define SkScalarExp(x) (float)sk_float_exp(x)
#define SkScalarLog(x) (float)sk_float_log(x)
#else // SK_SCALAR_IS_DOUBLE
typedef double SkScalar;
#define SK_Scalar1 1.0
#define SK_ScalarHalf 0.5
#define SK_ScalarSqrt2 1.414213562373095
#define SK_ScalarPI 3.141592653589793
#define SK_ScalarTanPIOver8 0.4142135623731
#define SK_ScalarRoot2Over2 0.70710678118655
#define SK_ScalarMax 1.7976931348623157+308
#define SK_ScalarInfinity SK_DoubleInfinity
#define SK_ScalarNegativeInfinity SK_DoubleNegativeInfinity
#define SK_ScalarNaN SK_DoubleNaN
#define SkFixedToScalar(x) SkFixedToDouble(x)
#define SkScalarToFixed(x) SkDoubleToFixed(x)
#define SkScalarFloorToScalar(x) floor(x)
#define SkScalarCeilToScalar(x) ceil(x)
#define SkScalarRoundToScalar(x) floor((x) + 0.5)
#define SkScalarFloorToInt(x) (int)floor(x)
#define SkScalarCeilToInt(x) (int)ceil(x)
#define SkScalarRoundToInt(x) (int)floor((x) + 0.5)
#define SkScalarAbs(x) abs(x)
#define SkScalarCopySign(x, y) copysign(x, y)
#define SkScalarMod(x, y) fmod(x,y)
#define SkScalarFraction(x) fmod(x, 1.0)
#define SkScalarSqrt(x) sqrt(x)
#define SkScalarPow(b, e) pow(b, e)
#define SkScalarSin(radians) sin(radians)
#define SkScalarCos(radians) cos(radians)
#define SkScalarTan(radians) tan(radians)
#define SkScalarASin(val) asin(val)
#define SkScalarACos(val) acos(val)
#define SkScalarATan2(y, x) atan2(y,x)
#define SkScalarExp(x) exp(x)
#define SkScalarLog(x) log(x)
#endif
//////////////////////////////////////////////////////////////////////////////////////////////////
#define SkIntToScalar(x) static_cast<SkScalar>(x)
#define SkScalarTruncToInt(x) static_cast<int>(x)
#define SkScalarToFloat(x) static_cast<float>(x)
#define SkFloatToScalar(x) static_cast<SkScalar>(x)
#define SkScalarToDouble(x) static_cast<double>(x)
#define SkDoubleToScalar(x) static_cast<SkScalar>(x)
#define SK_ScalarMin (-SK_ScalarMax)
static inline bool SkScalarIsNaN(SkScalar x) { return x != x; }
/** Returns true if x is not NaN and not infinite
*/
static inline bool SkScalarIsFinite(SkScalar x) {
// We rely on the following behavior of infinities and nans
// 0 * finite --> 0
// 0 * infinity --> NaN
// 0 * NaN --> NaN
SkScalar prod = x * 0;
// At this point, prod will either be NaN or 0
// Therefore we can return (prod == prod) or (0 == prod).
return prod == prod;
}
/**
* Variant of SkScalarRoundToInt, that performs the rounding step (adding 0.5) explicitly using
@ -103,79 +152,35 @@ static inline int SkDScalarRoundToInt(SkScalar x) {
return (int)floor(xx);
}
/** Returns the absolute value of the specified SkScalar
*/
#define SkScalarAbs(x) sk_float_abs(x)
/** Return x with the sign of y
*/
#define SkScalarCopySign(x, y) sk_float_copysign(x, y)
/** Returns the value pinned between 0 and max inclusive
*/
inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
static inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
return x < 0 ? 0 : x > max ? max : x;
}
/** Returns the value pinned between min and max inclusive
*/
inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
static inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
return x < min ? min : x > max ? max : x;
}
/** Returns the specified SkScalar squared (x*x)
*/
inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
/** Returns the product of two SkScalars
*/
#define SkScalarMul(a, b) ((float)(a) * (b))
/** Returns the product of two SkScalars plus a third SkScalar
*/
#define SkScalarMulAdd(a, b, c) ((float)(a) * (b) + (c))
/** Returns the quotient of two SkScalars (a/b)
*/
#define SkScalarDiv(a, b) ((float)(a) / (b))
/** Returns the mod of two SkScalars (a mod b)
*/
#define SkScalarMod(x,y) sk_float_mod(x,y)
/** Returns the product of the first two arguments, divided by the third argument
*/
#define SkScalarMulDiv(a, b, c) ((float)(a) * (b) / (c))
/** Returns the multiplicative inverse of the SkScalar (1/x)
*/
SkScalar SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
static inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
#define SkScalarMul(a, b) ((SkScalar)(a) * (b))
#define SkScalarMulAdd(a, b, c) ((SkScalar)(a) * (b) + (c))
#define SkScalarDiv(a, b) ((SkScalar)(a) / (b))
#define SkScalarMulDiv(a, b, c) ((SkScalar)(a) * (b) / (c))
#define SkScalarInvert(x) (SK_Scalar1 / (x))
#define SkScalarFastInvert(x) (SK_Scalar1 / (x))
/** Returns the square root of the SkScalar
*/
#define SkScalarSqrt(x) sk_float_sqrt(x)
/** Returns b to the e
*/
#define SkScalarPow(b, e) sk_float_pow(b, e)
/** Returns the average of two SkScalars (a+b)/2
*/
#define SkScalarAve(a, b) (((a) + (b)) * 0.5f)
/** Returns one half of the specified SkScalar
*/
#define SkScalarHalf(a) ((a) * 0.5f)
#define SK_ScalarSqrt2 1.41421356f
#define SK_ScalarPI 3.14159265f
#define SK_ScalarTanPIOver8 0.414213562f
#define SK_ScalarRoot2Over2 0.707106781f
#define SkScalarAve(a, b) (((a) + (b)) * SK_ScalarHalf)
#define SkScalarHalf(a) ((a) * SK_ScalarHalf)
#define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
#define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI))
float SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
#define SkScalarSin(radians) (float)sk_float_sin(radians)
#define SkScalarCos(radians) (float)sk_float_cos(radians)
#define SkScalarTan(radians) (float)sk_float_tan(radians)
#define SkScalarASin(val) (float)sk_float_asin(val)
#define SkScalarACos(val) (float)sk_float_acos(val)
#define SkScalarATan2(y, x) (float)sk_float_atan2(y,x)
#define SkScalarExp(x) (float)sk_float_exp(x)
#define SkScalarLog(x) (float)sk_float_log(x)
inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
static inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
static inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
static inline bool SkScalarIsInt(SkScalar x) {
return x == (float)(int)x;
return x == (SkScalar)(int)x;
}
// DEPRECATED : use ToInt or ToScalar variant