add yee's perceptual metric

R=bsalomon@google.com

Review URL: https://codereview.chromium.org/18066004

git-svn-id: http://skia.googlecode.com/svn/trunk@9803 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
zachr@google.com 2013-06-28 15:34:56 +00:00
parent cad107bbe7
commit c0a75a879a
4 changed files with 479 additions and 9 deletions

View File

@ -0,0 +1,421 @@
#include <cmath>
#include "SkBitmap.h"
#include "skpdiff_util.h"
#include "SkPMetric.h"
struct RGB {
float r, g, b;
};
struct LAB {
float l, a, b;
};
template<class T>
struct Image2D {
int width;
int height;
T* image;
Image2D(int w, int h)
: width(w),
height(h) {
SkASSERT(w > 0);
SkASSERT(h > 0);
image = SkNEW_ARRAY(T, w * h);
}
~Image2D() {
SkDELETE_ARRAY(image);
}
void readPixel(int x, int y, T* pixel) const {
SkASSERT(x >= 0);
SkASSERT(y >= 0);
SkASSERT(x < width);
SkASSERT(y < height);
*pixel = image[y * width + x];
}
void writePixel(int x, int y, const T& pixel) {
SkASSERT(x >= 0);
SkASSERT(y >= 0);
SkASSERT(x < width);
SkASSERT(y < height);
image[y * width + x] = pixel;
}
};
typedef Image2D<float> ImageL;
typedef Image2D<RGB> ImageRGB;
typedef Image2D<LAB> ImageLAB;
template<class T>
struct ImageArray
{
int slices;
Image2D<T>** image;
ImageArray(int w, int h, int s)
: slices(s) {
SkASSERT(s > 0);
image = SkNEW_ARRAY(Image2D<T>*, s);
for (int sliceIndex = 0; sliceIndex < slices; sliceIndex++) {
image[sliceIndex] = SkNEW_ARGS(Image2D<T>, (w, h));
}
}
~ImageArray() {
for (int sliceIndex = 0; sliceIndex < slices; sliceIndex++) {
SkDELETE(image[sliceIndex]);
}
SkDELETE_ARRAY(image);
}
Image2D<T>* getLayer(int z) const {
SkASSERT(z >= 0);
SkASSERT(z < slices);
return image[z];
}
};
typedef ImageArray<float> ImageL3D;
#define MAT_ROW_MULT(rc,gc,bc) r*rc + g*gc + b*bc
void adobergb_to_cielab(float r, float g, float b, LAB* lab) {
// Conversion of Adobe RGB to XYZ taken from from "Adobe RGB (1998) ColorImage Encoding"
// URL:http://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf
// Section: 4.3.5.3
// See Also: http://en.wikipedia.org/wiki/Adobe_rgb
float x = MAT_ROW_MULT(0.57667f, 0.18556f, 0.18823f);
float y = MAT_ROW_MULT(0.29734f, 0.62736f, 0.07529f);
float z = MAT_ROW_MULT(0.02703f, 0.07069f, 0.99134f);
// The following is the white point in XYZ, so it's simply the row wise addition of the above
// matrix.
const float xw = 0.5767f + 0.185556f + 0.188212f;
const float yw = 0.297361f + 0.627355f + 0.0752847f;
const float zw = 0.0270328f + 0.0706879f + 0.991248f;
// This is the XYZ color point relative to the white point
float f[3] = { x / xw, y / yw, z / zw };
// Conversion from XYZ to LAB taken from
// http://en.wikipedia.org/wiki/CIELAB#Forward_transformation
for (int i = 0; i < 3; i++) {
if (f[i] >= 0.008856f) {
f[i] = powf(f[i], 1.0f / 3.0f);
} else {
f[i] = 7.787f * f[i] + 4.0f / 29.0f;
}
}
lab->l = 116.0f * f[1] - 16.0f;
lab->a = 500.0f * (f[0] - f[1]);
lab->b = 200.0f * (f[1] - f[2]);
}
/// Converts a 8888 bitmap to LAB color space and puts it into the output
static void bitmap_to_cielab(const SkBitmap* bitmap, ImageLAB* outImageLAB) {
SkASSERT(bitmap->config() == SkBitmap::kARGB_8888_Config);
int width = bitmap->width();
int height = bitmap->height();
SkASSERT(outImageLAB->width == width);
SkASSERT(outImageLAB->height == height);
bitmap->lockPixels();
RGB rgb;
LAB lab;
for (int y = 0; y < height; y++) {
unsigned char* row = (unsigned char*)bitmap->getAddr(0, y);
for (int x = 0; x < width; x++) {
// Perform gamma correction which is assumed to be 2.2
rgb.r = powf(row[x * 4 + 2] / 255.0f, 2.2f);
rgb.g = powf(row[x * 4 + 1] / 255.0f, 2.2f);
rgb.b = powf(row[x * 4 + 0] / 255.0f, 2.2f);
adobergb_to_cielab(rgb.r, rgb.g, rgb.b, &lab);
outImageLAB->writePixel(x, y, lab);
}
}
bitmap->unlockPixels();
}
// From Barten SPIE 1989
static float contrast_sensitivity(float cyclesPerDegree, float luminance) {
float a = 440.0f * powf(1.0f + 0.7f / luminance, -0.2f);
float b = 0.3f * powf(1 + 100.0 / luminance, 0.15f);
return a *
cyclesPerDegree *
expf(-b * cyclesPerDegree) *
sqrtf(1.0f + 0.06f * expf(b * cyclesPerDegree));
}
// From Daly 1993
static float visual_mask(float contrast) {
float x = powf(392.498f * contrast, 0.7f);
x = powf(0.0153f * x, 4.0f);
return powf(1.0f + x, 0.25f);
}
// From Ward Larson Siggraph 1997
static float threshold_vs_intensity(float adaptationLuminance) {
float logLum = log10f(adaptationLuminance);
float x;
if (logLum < -3.94f) {
x = -2.86f;
} else if (logLum < -1.44f) {
x = powf(0.405f * logLum + 1.6f, 2.18) - 2.86f;
} else if (logLum < -0.0184f) {
x = logLum - 0.395f;
} else if (logLum < 1.9f) {
x = powf(0.249f * logLum + 0.65f, 2.7f) - 0.72f;
} else {
x = logLum - 1.255f;
}
return powf(10.0f, x);
}
/// Simply takes the L channel from the input and puts it into the output
static void lab_to_l(const ImageLAB* imageLAB, ImageL* outImageL) {
for (int y = 0; y < imageLAB->height; y++) {
for (int x = 0; x < imageLAB->width; x++) {
LAB lab;
imageLAB->readPixel(x, y, &lab);
outImageL->writePixel(x, y, lab.l);
}
}
}
/// Convolves an image with the given filter in one direction and saves it to the output image
static void convolve(const ImageL* imageL,
bool vertical, const float* matrix, int radius,
ImageL* outImageL) {
SkASSERT(imageL->width == outImageL->width);
SkASSERT(imageL->height == outImageL->height);
for (int y = 0; y < imageL->height; y++) {
for (int x = 0; x < imageL->width; x++) {
float lSum = 0.0f;
float l;
for (int xx = -radius; xx <= radius; xx++) {
int nx = x;
int ny = y;
// We mirror at edges so that edge pixels that the filter weighting still makes
// sense.
if (vertical) {
ny += xx;
if (ny < 0) {
ny = -ny;
}
if (ny >= imageL->height) {
ny = imageL->height + (imageL->height - ny - 1);
}
} else {
nx += xx;
if (nx < 0) {
nx = -nx;
}
if (nx >= imageL->width) {
nx = imageL->width + (imageL->width - nx - 1);
}
}
imageL->readPixel(nx, ny, &l);
float weight = matrix[xx + radius];
lSum += l * weight;
}
outImageL->writePixel(x, y, lSum);
}
}
}
float pmetric(const ImageLAB* baselineLAB, const ImageLAB* testLAB) {
int width = baselineLAB->width;
int height = baselineLAB->height;
int maxLevels = (int)log2(width < height ? width : height);
const float fov = M_PI / 180.0f * 45.0f;
float contrastSensitivityMax = contrast_sensitivity(3.248f, 100.0f);
float pixelsPerDegree = width / (2.0f * tanf(fov * 0.5f) * 180.0f / M_PI);
ImageL3D baselineL(width, height, maxLevels);
ImageL3D testL(width, height, maxLevels);
ImageL scratchImageL(width, height);
float* cyclesPerDegree = SkNEW_ARRAY(float, maxLevels);
float* thresholdFactorFrequency = SkNEW_ARRAY(float, maxLevels - 2);
float* contrast = SkNEW_ARRAY(float, maxLevels - 2);
lab_to_l(baselineLAB, baselineL.getLayer(0));
lab_to_l(testLAB, testL.getLayer(0));
// Compute cpd - Cycles per degree on the pyramid
cyclesPerDegree[0] = 0.5f * pixelsPerDegree;
for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) {
cyclesPerDegree[levelIndex] = cyclesPerDegree[levelIndex - 1] * 0.5f;
}
const float filterMatrix[] = { 0.05f, 0.25f, 0.4f, 0.25f, 0.05f };
// Compute G - The convolved lum for the baseline
for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) {
convolve(baselineL.getLayer(levelIndex - 1), false, filterMatrix, 2, &scratchImageL);
convolve(&scratchImageL, true, filterMatrix, 2, baselineL.getLayer(levelIndex));
}
for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) {
convolve(testL.getLayer(levelIndex - 1), false, filterMatrix, 2, &scratchImageL);
convolve(&scratchImageL, true, filterMatrix, 2, testL.getLayer(levelIndex));
}
// Compute F_freq - The elevation f
for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) {
float cpd = cyclesPerDegree[levelIndex];
thresholdFactorFrequency[levelIndex] = contrastSensitivityMax /
contrast_sensitivity(cpd, 100.0f);
}
int failures = 0;
// Calculate F
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
float lBaseline;
float lTest;
baselineL.getLayer(0)->readPixel(x, y, &lBaseline);
testL.getLayer(0)->readPixel(x, y, &lTest);
float avgLBaseline;
float avgLTest;
baselineL.getLayer(maxLevels - 1)->readPixel(x, y, &avgLBaseline);
testL.getLayer(maxLevels - 1)->readPixel(x, y, &avgLTest);
float lAdapt = 0.5f * (avgLBaseline + avgLTest);
if (lAdapt < 1e-5) {
lAdapt = 1e-5;
}
float contrastSum = 0.0f;
for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) {
float baselineL0, baselineL1, baselineL2;
float testL0, testL1, testL2;
baselineL.getLayer(levelIndex + 0)->readPixel(x, y, &baselineL0);
testL. getLayer(levelIndex + 0)->readPixel(x, y, &testL0);
baselineL.getLayer(levelIndex + 1)->readPixel(x, y, &baselineL1);
testL. getLayer(levelIndex + 1)->readPixel(x, y, &testL1);
baselineL.getLayer(levelIndex + 2)->readPixel(x, y, &baselineL2);
testL. getLayer(levelIndex + 2)->readPixel(x, y, &testL2);
float baselineContrast1 = fabsf(baselineL0 - baselineL1);
float testContrast1 = fabsf(testL0 - testL1);
float numerator = (baselineContrast1 > testContrast1) ?
baselineContrast1 : testContrast1;
float baselineContrast2 = fabsf(baselineL2);
float testContrast2 = fabsf(testL2);
float denominator = (baselineContrast2 > testContrast2) ?
baselineContrast2 : testContrast2;
// Avoid divides by close to zero
if (denominator < 1e-5) {
denominator = 1e-5;
}
contrast[levelIndex] = numerator / denominator;
contrastSum += contrast[levelIndex];
}
if (contrastSum < 1e-5) {
contrastSum = 1e-5;
}
float F = 0.0f;
for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) {
float mask = visual_mask(contrast[levelIndex] *
contrast_sensitivity(cyclesPerDegree[levelIndex], lAdapt));
F += contrast[levelIndex] +
thresholdFactorFrequency[levelIndex] * mask / contrastSum;
}
if (F < 1.0f) {
F = 1.0f;
}
if (F > 10.0f) {
F = 10.0f;
}
bool isFailure = false;
if (fabsf(lBaseline - lTest) > F * threshold_vs_intensity(lAdapt)) {
isFailure = true;
} else {
LAB baselineColor;
LAB testColor;
baselineLAB->readPixel(x, y, &baselineColor);
testLAB->readPixel(x, y, &testColor);
float contrastA = baselineColor.a - testColor.a;
float contrastB = baselineColor.b - testColor.b;
float colorScale = 1.0f;
if (lAdapt < 10.0f) {
colorScale = lAdapt / 10.0f;
}
colorScale *= colorScale;
if ((contrastA * contrastA + contrastB * contrastB) * colorScale > F)
{
isFailure = true;
}
}
if (isFailure) {
failures++;
}
}
}
SkDELETE_ARRAY(cyclesPerDegree);
SkDELETE_ARRAY(contrast);
SkDELETE_ARRAY(thresholdFactorFrequency);
return (double)failures;
}
const char* SkPMetric::getName() {
return "perceptual";
}
int SkPMetric::queueDiff(SkBitmap* baseline, SkBitmap* test) {
int diffID = fQueuedDiffs.count();
double startTime = get_seconds();
QueuedDiff* diff = fQueuedDiffs.push();
// Ensure the images are comparable
if (baseline->width() != test->width() || baseline->height() != test->height() ||
baseline->width() <= 0 || baseline->height() <= 0) {
diff->finished = true;
diff->result = 0.0;
return diffID;
}
ImageLAB baselineLAB(baseline->width(), baseline->height());
ImageLAB testLAB(baseline->width(), baseline->height());
bitmap_to_cielab(baseline, &baselineLAB);
bitmap_to_cielab(test, &testLAB);
diff->result = pmetric(&baselineLAB, &testLAB);
SkDebugf("Time: %f\n", (get_seconds() - startTime));
return diffID;
}
bool SkPMetric::isFinished(int id) {
return fQueuedDiffs[id].finished;
}
double SkPMetric::getResult(int id) {
return fQueuedDiffs[id].result;
}

View File

@ -0,0 +1,37 @@
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPMetric_DEFINED
#define SkPMetric_DEFINED
#include "SkTDArray.h"
#include "SkImageDiffer.h"
/**
* An image differ that uses the pdiff image metric to compare images.
*/
class SkPMetric : public SkImageDiffer {
public:
virtual const char* getName() SK_OVERRIDE;
virtual int queueDiff(SkBitmap* baseline, SkBitmap* test) SK_OVERRIDE;
virtual bool isFinished(int id) SK_OVERRIDE;
virtual double getResult(int id) SK_OVERRIDE;
private:
struct QueuedDiff {
bool finished;
double result;
};
SkTDArray<QueuedDiff> fQueuedDiffs;
typedef SkImageDiffer INHERITED;
};
#endif

View File

@ -18,6 +18,7 @@
#include "SkImageDiffer.h"
#include "SkCLImageDiffer.h"
#include "SkPMetric.h"
#include "skpdiff_util.h"
#include "SkForceLinking.h"
@ -107,7 +108,7 @@ static void diff_directories(const char baselinePath[], const char testPath[], S
static void diff_patterns(const char baselinePattern[], const char testPattern[], SkImageDiffer* differ) {
// Get the files in the baseline and test patterns. Because they are in sorted order, it's easy
// to find corresponding images by matching entry indices.
//
SkTArray<SkString> baselineEntries;
if (!glob_files(baselinePattern, &baselineEntries)) {
SkDebugf("Unable to get pattern \"%s\"\n", baselinePattern);
@ -140,8 +141,7 @@ static void diff_patterns(const char baselinePattern[], const char testPattern[]
}
static bool init_cl_diff(SkImageDiffer* differ)
{
static bool init_cl_diff(SkImageDiffer* differ) {
// Setup OpenCL
cl::Device device;
cl::Context context;
@ -154,17 +154,26 @@ static bool init_cl_diff(SkImageDiffer* differ)
return clDiffer->init(device(), context());
}
static bool init_dummy(SkImageDiffer* differ) {
return true;
}
// TODO Find a better home for the diff registry. One possibility is to have the differs self
// register.
// List here every differ
SkDifferentPixelsImageDiffer gDiffPixel;
SkPMetric gPDiff;
/// A null terminated array of pointer to every differ declared above
SkImageDiffer* gDiffers[] = { &gDiffPixel, NULL };
// A null terminated array of pointer to every differ declared above
SkImageDiffer* gDiffers[] = { &gDiffPixel, &gPDiff, NULL };
/// A parallel array of functions to initialize the above differs
bool (*gDiffInits[])(SkImageDiffer*) = { init_cl_diff, NULL };
// A parallel array of functions to initialize the above differs. The reason we don't initialize
// everything immediately is that certain differs may require special initialization, but we still
// want to construct all of them globally so they can be queried for things like their name and
// description.
bool (*gDiffInits[])(SkImageDiffer*) = { init_cl_diff, init_dummy, NULL };
int main(int argc, char** argv) {
@ -226,10 +235,12 @@ int main(int argc, char** argv) {
// be helped.
// Perform each requested diff
for (int differIndex = 0; differIndex < chosenDiffers.count(); differIndex++) {
for (int chosenDifferIndex = 0; chosenDifferIndex < chosenDiffers.count(); chosenDifferIndex++) {
int differIndex = chosenDiffers[chosenDifferIndex];
// Get the chosen differ and say which one they chose
SkImageDiffer * differ = gDiffers[differIndex];
SkDebugf("Using differ \"%s\"\n", differ->getName());
SkDebugf("Using metric \"%s\"\n", differ->getName());
// Initialize the differ using the global list of init functions that match the list of
// differs

View File

@ -12,6 +12,7 @@
'main.cpp',
'SkImageDiffer.cpp',
'SkCLImageDiffer.cpp',
'SkPMetric.cpp',
'skpdiff_util.cpp',
'../../tools/flags/SkCommandLineFlags.cpp',
],