Split SkPicturePlayback out of SkPictureData

This splits the playback functionality out of SkPictureData. The old SkPictureData::draw method is pulled out along
with its supporting functions as verbatim as possible. Some follow on CLs will be required to:

   re-enable profiling in the debugger (and remove the vestiges of SkTimedPicture)
   re-enable display of command offsets in the picture (this should probably wait until we've switched to SkRecord though)
   Clean up CachedOperationList (maybe fuse with SkPicture::OperationList)
   Split SkPicturePlayback into a base class and two derived classes
   Implement parallel version of GatherGPUInfo for SkRecord

Landing this is blocked on removing Android's use of the abortPlayback entry point.

R=mtklein@google.com, reed@google.com

Author: robertphillips@google.com

Review URL: https://codereview.chromium.org/377623002
This commit is contained in:
robertphillips 2014-07-07 13:46:35 -07:00 committed by Commit bot
parent 5e8a3c1b83
commit ce4dd3de38
18 changed files with 899 additions and 958 deletions

View File

@ -11,6 +11,7 @@
#include "SkImageDecoder.h"
#include <QListWidgetItem>
#include "PictureRenderer.h"
#include "SkPicturePlayback.h"
#include "SkPictureRecord.h"
#include "SkPictureData.h"
@ -158,23 +159,11 @@ void SkDebuggerGUI::showDeletes() {
// The timed picture playback uses the SkPictureData's profiling stubs
// to time individual commands. The offsets are needed to map SkPicture
// offsets to individual commands.
class SkTimedPicturePlayback : public SkPictureData {
class SkTimedPicturePlayback : public SkPicturePlayback {
public:
static SkTimedPicturePlayback* CreateFromStream(SkStream* stream, const SkPictInfo& info,
SkPicture::InstallPixelRefProc proc,
const SkTDArray<bool>& deletedCommands) {
// Mimics SkPictureData::CreateFromStream
SkAutoTDelete<SkTimedPicturePlayback> playback(SkNEW_ARGS(SkTimedPicturePlayback,
(deletedCommands, info)));
if (!playback->parseStream(stream, proc)) {
return NULL; // we're invalid
}
return playback.detach();
}
SkTimedPicturePlayback(const SkTDArray<bool>& deletedCommands,
const SkPictInfo& info)
: INHERITED(info)
SkTimedPicturePlayback(const SkPicture* picture, const SkTDArray<bool>& deletedCommands)
: INHERITED(picture)
, fSkipCommands(deletedCommands)
, fTot(0.0)
, fCurCommand(0) {
@ -256,9 +245,10 @@ protected:
#endif
private:
typedef SkPictureData INHERITED;
typedef SkPicturePlayback INHERITED;
};
#if 0
// Wrap SkPicture to allow installation of an SkTimedPicturePlayback object
class SkTimedPicture : public SkPicture {
public:
@ -308,10 +298,11 @@ private:
typedef SkPicture INHERITED;
};
#endif
// This is a simplification of PictureBenchmark's run with the addition of
// clearing of the times after the first pass (in resetTimes)
void SkDebuggerGUI::run(SkTimedPicture* pict,
void SkDebuggerGUI::run(const SkPicture* pict,
sk_tools::PictureRenderer* renderer,
int repeats) {
SkASSERT(pict);
@ -330,8 +321,10 @@ void SkDebuggerGUI::run(SkTimedPicture* pict,
renderer->render();
renderer->resetState(true); // flush, swapBuffers and Finish
#if 0
// We throw this away the first batch of times to remove first time effects (such as paging in this program)
pict->resetTimes();
#endif
for (int i = 0; i < repeats; ++i) {
renderer->setup();
@ -360,12 +353,15 @@ void SkDebuggerGUI::actionProfile() {
return;
}
SkAutoTUnref<SkTimedPicture> picture(SkTimedPicture::CreateTimedPicture(&inputStream,
&SkImageDecoder::DecodeMemory, fSkipCommands));
SkAutoTUnref<SkPicture> picture(SkPicture::CreateFromStream(&inputStream,
&SkImageDecoder::DecodeMemory)); // , fSkipCommands));
if (NULL == picture.get()) {
return;
}
#if 0
// For now this #if allows switching between tiled and simple rendering
// modes. Eventually this will be accomplished via the GUI
#if 0
@ -414,6 +410,8 @@ void SkDebuggerGUI::actionProfile() {
setupOverviewText(picture->typeTimes(), picture->totTime(), kNumRepeats);
setupClipStackText();
#endif
}
void SkDebuggerGUI::actionCancel() {

View File

@ -357,7 +357,7 @@ private:
Render the supplied picture several times tracking the time consumed
by each command.
*/
void run(SkTimedPicture* pict,
void run(const SkPicture* pict,
sk_tools::PictureRenderer* renderer,
int repeats);
};

View File

@ -133,6 +133,8 @@
'<(skia_src_path)/core/SkPictureData.h',
'<(skia_src_path)/core/SkPictureFlat.cpp',
'<(skia_src_path)/core/SkPictureFlat.h',
'<(skia_src_path)/core/SkPicturePlayback.cpp',
'<(skia_src_path)/core/SkPicturePlayback.h',
'<(skia_src_path)/core/SkPictureRecord.cpp',
'<(skia_src_path)/core/SkPictureRecord.h',
'<(skia_src_path)/core/SkPictureRecorder.cpp',

View File

@ -181,15 +181,6 @@ public:
*/
bool willPlayBackBitmaps() const;
#ifdef SK_BUILD_FOR_ANDROID
/** Signals that the caller is prematurely done replaying the drawing
commands. This can be called from a canvas virtual while the picture
is drawing. Has no effect if the picture is not drawing.
@deprecated preserving for legacy purposes
*/
void abortPlayback();
#endif
/** Return true if the SkStream/Buffer represents a serialized picture, and
fills out SkPictInfo. After this function returns, the data source is not
rewound so it will have to be manually reset before passing to
@ -272,10 +263,6 @@ private:
public:
virtual ~OperationList() {}
// If valid returns false then there is no optimization data
// present. All the draw operations need to be issued.
virtual bool valid() const { return false; }
// The following three entry points should only be accessed if
// 'valid' returns true.
virtual int numOps() const { SkASSERT(false); return 0; };
@ -283,20 +270,12 @@ private:
virtual uint32_t offset(int index) const { SkASSERT(false); return 0; };
// The CTM that must be installed for the operation to behave correctly
virtual const SkMatrix& matrix(int index) const { SkASSERT(false); return SkMatrix::I(); }
static const OperationList& InvalidList();
};
/** PRIVATE / EXPERIMENTAL -- do not call
Return the operations required to render the content inside 'queryRect'.
*/
const OperationList& EXPERIMENTAL_getActiveOps(const SkIRect& queryRect) const;
/** PRIVATE / EXPERIMENTAL -- do not call
Return the ID of the operation currently being executed when playing
back. 0 indicates no call is active.
*/
size_t EXPERIMENTAL_curOpID() const;
const OperationList* EXPERIMENTAL_getActiveOps(const SkIRect& queryRect) const;
void createHeader(SkPictInfo* info) const;
static bool IsValidPictInfo(const SkPictInfo& info);
@ -308,6 +287,7 @@ private:
friend class GrGatherCanvas;
friend class GrGatherDevice;
friend class SkDebugCanvas;
friend class SkPicturePlayback; // to get fData
typedef SkRefCnt INHERITED;

View File

@ -26,7 +26,7 @@ public:
* so the returned pointers are only valid while the picture is in scope
* and remains unchanged.
*/
static SkData* GatherPixelRefs(SkPicture* pict, const SkRect& area);
static SkData* GatherPixelRefs(const SkPicture* pict, const SkRect& area);
/**
* SkPixelRefContainer provides a base class for more elaborate pixel ref

View File

@ -9,6 +9,7 @@
#include "SkPictureFlat.h"
#include "SkPictureData.h"
#include "SkPicturePlayback.h"
#include "SkPictureRecord.h"
#include "SkPictureRecorder.h"
@ -292,27 +293,13 @@ SkPicture::AccelData::Domain SkPicture::AccelData::GenerateDomain() {
///////////////////////////////////////////////////////////////////////////////
// fRecord OK
const SkPicture::OperationList& SkPicture::OperationList::InvalidList() {
static OperationList gInvalid;
return gInvalid;
}
// fRecord TODO
const SkPicture::OperationList& SkPicture::EXPERIMENTAL_getActiveOps(const SkIRect& queryRect) const {
const SkPicture::OperationList* SkPicture::EXPERIMENTAL_getActiveOps(const SkIRect& queryRect) const {
SkASSERT(NULL != fData.get());
if (NULL != fData.get()) {
return fData->getActiveOps(queryRect);
}
return OperationList::InvalidList();
}
// fRecord TODO
size_t SkPicture::EXPERIMENTAL_curOpID() const {
if (NULL != fData.get()) {
return fData->curOpID();
}
return 0;
return NULL;
}
// fRecord OK
@ -321,7 +308,8 @@ void SkPicture::draw(SkCanvas* canvas, SkDrawPictureCallback* callback) const {
SkASSERT(NULL != fData.get() || NULL != fRecord.get());
if (NULL != fData.get()) {
fData->draw(*canvas, callback);
SkPicturePlayback playback(this);
playback.draw(canvas, callback);
}
if (NULL != fRecord.get()) {
SkRecordDraw(*fRecord, canvas, callback);
@ -538,16 +526,6 @@ bool SkPicture::willPlayBackBitmaps() const {
return fData->containsBitmaps();
}
#ifdef SK_BUILD_FOR_ANDROID
// fRecord TODO, fix by switching Android to SkDrawPictureCallback, then deleting this method
void SkPicture::abortPlayback() {
if (NULL == fData.get()) {
return;
}
fData->abort();
}
#endif
// fRecord OK
static int32_t next_picture_generation_id() {
static int32_t gPictureGenerationID = 0;

View File

@ -28,33 +28,6 @@ template <typename T> int SafeCount(const T* obj) {
*/
#define SPEW_CLIP_SKIPPINGx
SkPictureData::PlaybackReplacements::ReplacementInfo*
SkPictureData::PlaybackReplacements::push() {
SkDEBUGCODE(this->validate());
return fReplacements.push();
}
void SkPictureData::PlaybackReplacements::freeAll() {
for (int i = 0; i < fReplacements.count(); ++i) {
SkDELETE(fReplacements[i].fBM);
}
fReplacements.reset();
}
#ifdef SK_DEBUG
void SkPictureData::PlaybackReplacements::validate() const {
// Check that the ranges are monotonically increasing and non-overlapping
if (fReplacements.count() > 0) {
SkASSERT(fReplacements[0].fStart < fReplacements[0].fStop);
for (int i = 1; i < fReplacements.count(); ++i) {
SkASSERT(fReplacements[i].fStart < fReplacements[i].fStop);
SkASSERT(fReplacements[i-1].fStop < fReplacements[i].fStart);
}
}
}
#endif
SkPictureData::SkPictureData(const SkPictInfo& info)
: fInfo(info) {
this->init();
@ -260,12 +233,6 @@ void SkPictureData::init() {
fFactoryPlayback = NULL;
fBoundingHierarchy = NULL;
fStateTree = NULL;
fCachedActiveOps = NULL;
fCurOffset = 0;
fUseBBH = true;
fStart = 0;
fStop = 0;
fReplacements = NULL;
}
SkPictureData::~SkPictureData() {
@ -276,8 +243,6 @@ SkPictureData::~SkPictureData() {
SkSafeUnref(fBoundingHierarchy);
SkSafeUnref(fStateTree);
SkDELETE(fCachedActiveOps);
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i]->unref();
}
@ -475,9 +440,9 @@ static uint32_t pictInfoFlagsToReadBufferFlags(uint32_t pictInfoFlags) {
}
bool SkPictureData::parseStreamTag(SkStream* stream,
uint32_t tag,
uint32_t size,
SkPicture::InstallPixelRefProc proc) {
uint32_t tag,
uint32_t size,
SkPicture::InstallPixelRefProc proc) {
/*
* By the time we encounter BUFFER_SIZE_TAG, we need to have already seen
* its dependents: FACTORY_TAG and TYPEFACE_TAG. These two are not required
@ -587,7 +552,7 @@ bool SkPictureData::parseStreamTag(SkStream* stream,
}
bool SkPictureData::parseBufferTag(SkReadBuffer& buffer,
uint32_t tag, uint32_t size) {
uint32_t tag, uint32_t size) {
switch (tag) {
case SK_PICT_BITMAP_BUFFER_TAG: {
const int count = SkToInt(size);
@ -725,656 +690,33 @@ struct SkipClipRec {
};
#endif
#ifdef SK_DEVELOPER
bool SkPictureData::preDraw(int opIndex, int type) {
return false;
}
void SkPictureData::postDraw(int opIndex) {
}
#endif
/*
* Read the next op code and chunk size from 'reader'. The returned size
* is the entire size of the chunk (including the opcode). Thus, the
* offset just prior to calling read_op_and_size + 'size' is the offset
* to the next chunk's op code. This also means that the size of a chunk
* with no arguments (just an opcode) will be 4.
*/
static DrawType read_op_and_size(SkReader32* reader, uint32_t* size) {
uint32_t temp = reader->readInt();
uint32_t op;
if (((uint8_t) temp) == temp) {
// old skp file - no size information
op = temp;
*size = 0;
} else {
UNPACK_8_24(temp, op, *size);
if (MASK_24 == *size) {
*size = reader->readInt();
}
}
return (DrawType) op;
}
uint32_t SkPictureData::CachedOperationList::offset(int index) const {
uint32_t SkPictureData::OperationList::offset(int index) const {
SkASSERT(index < fOps.count());
return ((SkPictureStateTree::Draw*)fOps[index])->fOffset;
}
const SkMatrix& SkPictureData::CachedOperationList::matrix(int index) const {
const SkMatrix& SkPictureData::OperationList::matrix(int index) const {
SkASSERT(index < fOps.count());
return *((SkPictureStateTree::Draw*)fOps[index])->fMatrix;
}
const SkPicture::OperationList& SkPictureData::getActiveOps(const SkIRect& query) {
const SkPicture::OperationList* SkPictureData::getActiveOps(const SkIRect& query) const {
if (NULL == fStateTree || NULL == fBoundingHierarchy) {
return SkPicture::OperationList::InvalidList();
return NULL;
}
if (NULL == fCachedActiveOps) {
fCachedActiveOps = SkNEW(CachedOperationList);
}
OperationList* activeOps = SkNEW(OperationList);
if (query == fCachedActiveOps->fCacheQueryRect) {
return *fCachedActiveOps;
}
fCachedActiveOps->fOps.rewind();
fBoundingHierarchy->search(query, &(fCachedActiveOps->fOps));
if (0 != fCachedActiveOps->fOps.count()) {
fBoundingHierarchy->search(query, &(activeOps->fOps));
if (0 != activeOps->fOps.count()) {
SkTQSort<SkPictureStateTree::Draw>(
reinterpret_cast<SkPictureStateTree::Draw**>(fCachedActiveOps->fOps.begin()),
reinterpret_cast<SkPictureStateTree::Draw**>(fCachedActiveOps->fOps.end()-1));
reinterpret_cast<SkPictureStateTree::Draw**>(activeOps->fOps.begin()),
reinterpret_cast<SkPictureStateTree::Draw**>(activeOps->fOps.end()-1));
}
fCachedActiveOps->fCacheQueryRect = query;
return *fCachedActiveOps;
return activeOps;
}
class SkAutoResetOpID {
public:
SkAutoResetOpID(SkPictureData* data) : fData(data) { }
~SkAutoResetOpID() {
if (NULL != fData) {
fData->resetOpID();
}
}
private:
SkPictureData* fData;
};
// TODO: Replace with hash or pass in "lastLookedUp" hint
SkPictureData::PlaybackReplacements::ReplacementInfo*
SkPictureData::PlaybackReplacements::lookupByStart(size_t start) {
SkDEBUGCODE(this->validate());
for (int i = 0; i < fReplacements.count(); ++i) {
if (start == fReplacements[i].fStart) {
return &fReplacements[i];
} else if (start < fReplacements[i].fStart) {
return NULL; // the ranges are monotonically increasing and non-overlapping
}
}
return NULL;
}
void SkPictureData::draw(SkCanvas& canvas, SkDrawPictureCallback* callback) {
SkAutoResetOpID aroi(this);
SkASSERT(0 == fCurOffset);
#ifdef ENABLE_TIME_DRAW
SkAutoTime at("SkPicture::draw", 50);
#endif
#ifdef SPEW_CLIP_SKIPPING
SkipClipRec skipRect, skipRRect, skipRegion, skipPath, skipCull;
int opCount = 0;
#endif
#ifdef SK_BUILD_FOR_ANDROID
SkAutoMutexAcquire autoMutex(fDrawMutex);
#endif
// kDrawComplete will be the signal that we have reached the end of
// the command stream
static const uint32_t kDrawComplete = SK_MaxU32;
SkReader32 reader(fOpData->bytes(), fOpData->size());
TextContainer text;
const SkTDArray<void*>* activeOps = NULL;
// When draw limits are enabled (i.e., 0 != fStart || 0 != fStop) the state
// tree isn't used to pick and choose the draw operations
if (0 == fStart && 0 == fStop) {
if (fUseBBH && NULL != fStateTree && NULL != fBoundingHierarchy) {
SkRect clipBounds;
if (canvas.getClipBounds(&clipBounds)) {
SkIRect query;
clipBounds.roundOut(&query);
const SkPicture::OperationList& activeOpsList = this->getActiveOps(query);
if (activeOpsList.valid()) {
if (0 == activeOpsList.numOps()) {
return; // nothing to draw
}
// Since the opList is valid we know it is our derived class
activeOps = &((const CachedOperationList&)activeOpsList).fOps;
}
}
}
}
SkPictureStateTree::Iterator it = (NULL == activeOps) ?
SkPictureStateTree::Iterator() :
fStateTree->getIterator(*activeOps, &canvas);
if (0 != fStart || 0 != fStop) {
reader.setOffset(fStart);
uint32_t size;
SkDEBUGCODE(DrawType op =) read_op_and_size(&reader, &size);
SkASSERT(SAVE_LAYER == op);
reader.setOffset(fStart+size);
}
if (it.isValid()) {
uint32_t skipTo = it.nextDraw();
if (kDrawComplete == skipTo) {
return;
}
reader.setOffset(skipTo);
}
// Record this, so we can concat w/ it if we encounter a setMatrix()
SkMatrix initialMatrix = canvas.getTotalMatrix();
SkAutoCanvasRestore acr(&canvas, false);
#ifdef SK_BUILD_FOR_ANDROID
fAbortCurrentPlayback = false;
#endif
#ifdef SK_DEVELOPER
int opIndex = -1;
#endif
while (!reader.eof()) {
if (callback && callback->abortDrawing()) {
return;
}
#ifdef SK_BUILD_FOR_ANDROID
if (fAbortCurrentPlayback) {
return;
}
#endif
if (0 != fStart || 0 != fStop) {
size_t offset = reader.offset() ;
if (offset >= fStop) {
uint32_t size;
SkDEBUGCODE(DrawType op =) read_op_and_size(&reader, &size);
SkASSERT(RESTORE == op);
return;
}
}
if (NULL != fReplacements) {
// Potentially replace a block of operations with a single drawBitmap call
SkPictureData::PlaybackReplacements::ReplacementInfo* temp =
fReplacements->lookupByStart(reader.offset());
if (NULL != temp) {
SkASSERT(NULL != temp->fBM);
SkASSERT(NULL != temp->fPaint);
canvas.save();
canvas.setMatrix(initialMatrix);
SkRect src = SkRect::Make(temp->fSrcRect);
SkRect dst = SkRect::MakeXYWH(temp->fPos.fX, temp->fPos.fY,
temp->fSrcRect.width(),
temp->fSrcRect.height());
canvas.drawBitmapRectToRect(*temp->fBM, &src, dst, temp->fPaint);
canvas.restore();
if (it.isValid()) {
// This save is needed since the BBH will automatically issue
// a restore to balanced the saveLayer we're skipping
canvas.save();
// At this point we know that the PictureStateTree was aiming
// for some draw op within temp's saveLayer (although potentially
// in a separate saveLayer nested inside it).
// We need to skip all the operations inside temp's range
// along with all the associated state changes but update
// the state tree to the first operation outside temp's range.
uint32_t skipTo;
do {
skipTo = it.nextDraw();
if (kDrawComplete == skipTo) {
break;
}
if (skipTo <= temp->fStop) {
reader.setOffset(skipTo);
uint32_t size;
DrawType op = read_op_and_size(&reader, &size);
// Since we are relying on the normal SkPictureStateTree
// playback we need to convert any nested saveLayer calls
// it may issue into saves (so that all its internal
// restores will be balanced).
if (SAVE_LAYER == op) {
canvas.save();
}
}
} while (skipTo <= temp->fStop);
if (kDrawComplete == skipTo) {
break;
}
reader.setOffset(skipTo);
} else {
reader.setOffset(temp->fStop);
uint32_t size;
SkDEBUGCODE(DrawType op =) read_op_and_size(&reader, &size);
SkASSERT(RESTORE == op);
}
continue;
}
}
#ifdef SPEW_CLIP_SKIPPING
opCount++;
#endif
fCurOffset = reader.offset();
uint32_t size;
DrawType op = read_op_and_size(&reader, &size);
size_t skipTo = 0;
if (NOOP == op) {
// NOOPs are to be ignored - do not propagate them any further
skipTo = fCurOffset + size;
#ifdef SK_DEVELOPER
} else {
opIndex++;
if (this->preDraw(opIndex, op)) {
skipTo = fCurOffset + size;
}
#endif
}
if (0 != skipTo) {
if (it.isValid()) {
// If using a bounding box hierarchy, advance the state tree
// iterator until at or after skipTo
uint32_t adjustedSkipTo;
do {
adjustedSkipTo = it.nextDraw();
} while (adjustedSkipTo < skipTo);
skipTo = adjustedSkipTo;
}
if (kDrawComplete == skipTo) {
break;
}
reader.setOffset(skipTo);
continue;
}
switch (op) {
case CLIP_PATH: {
const SkPath& path = getPath(reader);
uint32_t packed = reader.readInt();
SkRegion::Op regionOp = ClipParams_unpackRegionOp(packed);
bool doAA = ClipParams_unpackDoAA(packed);
size_t offsetToRestore = reader.readInt();
SkASSERT(!offsetToRestore || \
offsetToRestore >= reader.offset());
canvas.clipPath(path, regionOp, doAA);
if (canvas.isClipEmpty() && offsetToRestore) {
#ifdef SPEW_CLIP_SKIPPING
skipPath.recordSkip(offsetToRestore - reader.offset());
#endif
reader.setOffset(offsetToRestore);
}
} break;
case CLIP_REGION: {
SkRegion region;
this->getRegion(reader, &region);
uint32_t packed = reader.readInt();
SkRegion::Op regionOp = ClipParams_unpackRegionOp(packed);
size_t offsetToRestore = reader.readInt();
SkASSERT(!offsetToRestore || \
offsetToRestore >= reader.offset());
canvas.clipRegion(region, regionOp);
if (canvas.isClipEmpty() && offsetToRestore) {
#ifdef SPEW_CLIP_SKIPPING
skipRegion.recordSkip(offsetToRestore - reader.offset());
#endif
reader.setOffset(offsetToRestore);
}
} break;
case CLIP_RECT: {
const SkRect& rect = reader.skipT<SkRect>();
uint32_t packed = reader.readInt();
SkRegion::Op regionOp = ClipParams_unpackRegionOp(packed);
bool doAA = ClipParams_unpackDoAA(packed);
size_t offsetToRestore = reader.readInt();
SkASSERT(!offsetToRestore || \
offsetToRestore >= reader.offset());
canvas.clipRect(rect, regionOp, doAA);
if (canvas.isClipEmpty() && offsetToRestore) {
#ifdef SPEW_CLIP_SKIPPING
skipRect.recordSkip(offsetToRestore - reader.offset());
#endif
reader.setOffset(offsetToRestore);
}
} break;
case CLIP_RRECT: {
SkRRect rrect;
reader.readRRect(&rrect);
uint32_t packed = reader.readInt();
SkRegion::Op regionOp = ClipParams_unpackRegionOp(packed);
bool doAA = ClipParams_unpackDoAA(packed);
size_t offsetToRestore = reader.readInt();
SkASSERT(!offsetToRestore || offsetToRestore >= reader.offset());
canvas.clipRRect(rrect, regionOp, doAA);
if (canvas.isClipEmpty() && offsetToRestore) {
#ifdef SPEW_CLIP_SKIPPING
skipRRect.recordSkip(offsetToRestore - reader.offset());
#endif
reader.setOffset(offsetToRestore);
}
} break;
case PUSH_CULL: {
const SkRect& cullRect = reader.skipT<SkRect>();
size_t offsetToRestore = reader.readInt();
if (offsetToRestore && canvas.quickReject(cullRect)) {
#ifdef SPEW_CLIP_SKIPPING
skipCull.recordSkip(offsetToRestore - reader.offset());
#endif
reader.setOffset(offsetToRestore);
} else {
canvas.pushCull(cullRect);
}
} break;
case POP_CULL:
canvas.popCull();
break;
case CONCAT: {
SkMatrix matrix;
this->getMatrix(reader, &matrix);
canvas.concat(matrix);
break;
}
case DRAW_BITMAP: {
const SkPaint* paint = this->getPaint(reader);
const SkBitmap& bitmap = this->getBitmap(reader);
const SkPoint& loc = reader.skipT<SkPoint>();
canvas.drawBitmap(bitmap, loc.fX, loc.fY, paint);
} break;
case DRAW_BITMAP_RECT_TO_RECT: {
const SkPaint* paint = this->getPaint(reader);
const SkBitmap& bitmap = this->getBitmap(reader);
const SkRect* src = this->getRectPtr(reader); // may be null
const SkRect& dst = reader.skipT<SkRect>(); // required
SkCanvas::DrawBitmapRectFlags flags;
flags = (SkCanvas::DrawBitmapRectFlags) reader.readInt();
canvas.drawBitmapRectToRect(bitmap, src, dst, paint, flags);
} break;
case DRAW_BITMAP_MATRIX: {
const SkPaint* paint = this->getPaint(reader);
const SkBitmap& bitmap = this->getBitmap(reader);
SkMatrix matrix;
this->getMatrix(reader, &matrix);
canvas.drawBitmapMatrix(bitmap, matrix, paint);
} break;
case DRAW_BITMAP_NINE: {
const SkPaint* paint = this->getPaint(reader);
const SkBitmap& bitmap = this->getBitmap(reader);
const SkIRect& src = reader.skipT<SkIRect>();
const SkRect& dst = reader.skipT<SkRect>();
canvas.drawBitmapNine(bitmap, src, dst, paint);
} break;
case DRAW_CLEAR:
canvas.clear(reader.readInt());
break;
case DRAW_DATA: {
size_t length = reader.readInt();
canvas.drawData(reader.skip(length), length);
// skip handles padding the read out to a multiple of 4
} break;
case DRAW_DRRECT: {
const SkPaint& paint = *this->getPaint(reader);
SkRRect outer, inner;
reader.readRRect(&outer);
reader.readRRect(&inner);
canvas.drawDRRect(outer, inner, paint);
} break;
case BEGIN_COMMENT_GROUP: {
const char* desc = reader.readString();
canvas.beginCommentGroup(desc);
} break;
case COMMENT: {
const char* kywd = reader.readString();
const char* value = reader.readString();
canvas.addComment(kywd, value);
} break;
case END_COMMENT_GROUP: {
canvas.endCommentGroup();
} break;
case DRAW_OVAL: {
const SkPaint& paint = *this->getPaint(reader);
canvas.drawOval(reader.skipT<SkRect>(), paint);
} break;
case DRAW_PAINT:
canvas.drawPaint(*this->getPaint(reader));
break;
case DRAW_PATH: {
const SkPaint& paint = *this->getPaint(reader);
canvas.drawPath(getPath(reader), paint);
} break;
case DRAW_PICTURE:
canvas.drawPicture(this->getPicture(reader));
break;
case DRAW_POINTS: {
const SkPaint& paint = *this->getPaint(reader);
SkCanvas::PointMode mode = (SkCanvas::PointMode)reader.readInt();
size_t count = reader.readInt();
const SkPoint* pts = (const SkPoint*)reader.skip(sizeof(SkPoint) * count);
canvas.drawPoints(mode, count, pts, paint);
} break;
case DRAW_POS_TEXT: {
const SkPaint& paint = *this->getPaint(reader);
getText(reader, &text);
size_t points = reader.readInt();
const SkPoint* pos = (const SkPoint*)reader.skip(points * sizeof(SkPoint));
canvas.drawPosText(text.text(), text.length(), pos, paint);
} break;
case DRAW_POS_TEXT_TOP_BOTTOM: {
const SkPaint& paint = *this->getPaint(reader);
getText(reader, &text);
size_t points = reader.readInt();
const SkPoint* pos = (const SkPoint*)reader.skip(points * sizeof(SkPoint));
const SkScalar top = reader.readScalar();
const SkScalar bottom = reader.readScalar();
if (!canvas.quickRejectY(top, bottom)) {
canvas.drawPosText(text.text(), text.length(), pos, paint);
}
} break;
case DRAW_POS_TEXT_H: {
const SkPaint& paint = *this->getPaint(reader);
getText(reader, &text);
size_t xCount = reader.readInt();
const SkScalar constY = reader.readScalar();
const SkScalar* xpos = (const SkScalar*)reader.skip(xCount * sizeof(SkScalar));
canvas.drawPosTextH(text.text(), text.length(), xpos, constY,
paint);
} break;
case DRAW_POS_TEXT_H_TOP_BOTTOM: {
const SkPaint& paint = *this->getPaint(reader);
getText(reader, &text);
size_t xCount = reader.readInt();
const SkScalar* xpos = (const SkScalar*)reader.skip((3 + xCount) * sizeof(SkScalar));
const SkScalar top = *xpos++;
const SkScalar bottom = *xpos++;
const SkScalar constY = *xpos++;
if (!canvas.quickRejectY(top, bottom)) {
canvas.drawPosTextH(text.text(), text.length(), xpos,
constY, paint);
}
} break;
case DRAW_RECT: {
const SkPaint& paint = *this->getPaint(reader);
canvas.drawRect(reader.skipT<SkRect>(), paint);
} break;
case DRAW_RRECT: {
const SkPaint& paint = *this->getPaint(reader);
SkRRect rrect;
reader.readRRect(&rrect);
canvas.drawRRect(rrect, paint);
} break;
case DRAW_SPRITE: {
const SkPaint* paint = this->getPaint(reader);
const SkBitmap& bitmap = this->getBitmap(reader);
int left = reader.readInt();
int top = reader.readInt();
canvas.drawSprite(bitmap, left, top, paint);
} break;
case DRAW_TEXT: {
const SkPaint& paint = *this->getPaint(reader);
this->getText(reader, &text);
SkScalar x = reader.readScalar();
SkScalar y = reader.readScalar();
canvas.drawText(text.text(), text.length(), x, y, paint);
} break;
case DRAW_TEXT_TOP_BOTTOM: {
const SkPaint& paint = *this->getPaint(reader);
this->getText(reader, &text);
const SkScalar* ptr = (const SkScalar*)reader.skip(4 * sizeof(SkScalar));
// ptr[0] == x
// ptr[1] == y
// ptr[2] == top
// ptr[3] == bottom
if (!canvas.quickRejectY(ptr[2], ptr[3])) {
canvas.drawText(text.text(), text.length(), ptr[0], ptr[1],
paint);
}
} break;
case DRAW_TEXT_ON_PATH: {
const SkPaint& paint = *this->getPaint(reader);
getText(reader, &text);
const SkPath& path = this->getPath(reader);
SkMatrix matrix;
this->getMatrix(reader, &matrix);
canvas.drawTextOnPath(text.text(), text.length(), path, &matrix, paint);
} break;
case DRAW_VERTICES: {
SkAutoTUnref<SkXfermode> xfer;
const SkPaint& paint = *this->getPaint(reader);
DrawVertexFlags flags = (DrawVertexFlags)reader.readInt();
SkCanvas::VertexMode vmode = (SkCanvas::VertexMode)reader.readInt();
int vCount = reader.readInt();
const SkPoint* verts = (const SkPoint*)reader.skip(
vCount * sizeof(SkPoint));
const SkPoint* texs = NULL;
const SkColor* colors = NULL;
const uint16_t* indices = NULL;
int iCount = 0;
if (flags & DRAW_VERTICES_HAS_TEXS) {
texs = (const SkPoint*)reader.skip(
vCount * sizeof(SkPoint));
}
if (flags & DRAW_VERTICES_HAS_COLORS) {
colors = (const SkColor*)reader.skip(
vCount * sizeof(SkColor));
}
if (flags & DRAW_VERTICES_HAS_INDICES) {
iCount = reader.readInt();
indices = (const uint16_t*)reader.skip(
iCount * sizeof(uint16_t));
}
if (flags & DRAW_VERTICES_HAS_XFER) {
int mode = reader.readInt();
if (mode < 0 || mode > SkXfermode::kLastMode) {
mode = SkXfermode::kModulate_Mode;
}
xfer.reset(SkXfermode::Create((SkXfermode::Mode)mode));
}
canvas.drawVertices(vmode, vCount, verts, texs, colors, xfer,
indices, iCount, paint);
} break;
case RESTORE:
canvas.restore();
break;
case ROTATE:
canvas.rotate(reader.readScalar());
break;
case SAVE:
// SKPs with version < 29 also store a SaveFlags param.
if (size > 4) {
SkASSERT(8 == size);
reader.readInt();
}
canvas.save();
break;
case SAVE_LAYER: {
const SkRect* boundsPtr = this->getRectPtr(reader);
const SkPaint* paint = this->getPaint(reader);
canvas.saveLayer(boundsPtr, paint, (SkCanvas::SaveFlags) reader.readInt());
} break;
case SCALE: {
SkScalar sx = reader.readScalar();
SkScalar sy = reader.readScalar();
canvas.scale(sx, sy);
} break;
case SET_MATRIX: {
SkMatrix matrix;
this->getMatrix(reader, &matrix);
matrix.postConcat(initialMatrix);
canvas.setMatrix(matrix);
} break;
case SKEW: {
SkScalar sx = reader.readScalar();
SkScalar sy = reader.readScalar();
canvas.skew(sx, sy);
} break;
case TRANSLATE: {
SkScalar dx = reader.readScalar();
SkScalar dy = reader.readScalar();
canvas.translate(dx, dy);
} break;
default:
SkASSERT(0);
}
#ifdef SK_DEVELOPER
this->postDraw(opIndex);
#endif
if (it.isValid()) {
uint32_t skipTo = it.nextDraw();
if (kDrawComplete == skipTo) {
break;
}
reader.setOffset(skipTo);
}
}
#ifdef SPEW_CLIP_SKIPPING
{
size_t size = skipRect.fSize + skipRRect.fSize + skipPath.fSize + skipRegion.fSize +
skipCull.fSize;
SkDebugf("--- Clip skips %d%% rect:%d rrect:%d path:%d rgn:%d cull:%d\n",
size * 100 / reader.offset(), skipRect.fCount, skipRRect.fCount,
skipPath.fCount, skipRegion.fCount, skipCull.fCount);
SkDebugf("--- Total ops: %d\n", opCount);
}
#endif
// this->dumpSize();
}
#if SK_SUPPORT_GPU
bool SkPictureData::suitableForGpuRasterization(GrContext* context, const char **reason,
int sampleCount) const {
@ -1750,7 +1092,6 @@ void SkPictureData::dumpText(char** bufferPtrPtr, char* buffer) {
void SkPictureData::dumpStream() {
SkDebugf("RecordStream stream = {\n");
DrawType drawType;
TextContainer text;
fReadStream.rewind();
char buffer[DUMP_BUFFER_SIZE], * bufferPtr;
while (fReadStream.read(&drawType, sizeof(drawType))) {

View File

@ -1,4 +1,3 @@
/*
* Copyright 2011 Google Inc.
*
@ -14,10 +13,6 @@
#include "SkPicture.h"
#include "SkPictureFlat.h"
#ifdef SK_BUILD_FOR_ANDROID
#include "SkThread.h"
#endif
class SkData;
class SkPictureRecord;
class SkReader32;
@ -136,25 +131,19 @@ struct SkPictCopyInfo {
class SkPictureData {
public:
#ifdef SK_SUPPORT_LEGACY_PICTURE_CLONE
SkPictureData(const SkPictureData& src,
SkPictCopyInfo* deepCopyInfo = NULL);
SkPictureData(const SkPictureData& src, SkPictCopyInfo* deepCopyInfo = NULL);
#else
SkPictureData(const SkPictureData& src);
#endif
SkPictureData(const SkPictureRecord& record, const SkPictInfo&, bool deepCopyOps);
static SkPictureData* CreateFromStream(SkStream*,
const SkPictInfo&,
SkPicture::InstallPixelRefProc);
static SkPictureData* CreateFromBuffer(SkReadBuffer&,
const SkPictInfo&);
const SkPictInfo&,
SkPicture::InstallPixelRefProc);
static SkPictureData* CreateFromBuffer(SkReadBuffer&, const SkPictInfo&);
virtual ~SkPictureData();
const SkPicture::OperationList& getActiveOps(const SkIRect& queryRect);
void setUseBBH(bool useBBH) { fUseBBH = useBBH; }
void draw(SkCanvas& canvas, SkDrawPictureCallback*);
const SkPicture::OperationList* getActiveOps(const SkIRect& queryRect) const;
void serialize(SkWStream*, SkPicture::EncodeBitmap) const;
void flatten(SkWriteBuffer&) const;
@ -163,35 +152,15 @@ public:
bool containsBitmaps() const;
#ifdef SK_BUILD_FOR_ANDROID
// Can be called in the middle of playback (the draw() call). WIll abort the
// drawing and return from draw() after the "current" op code is done
void abort() { fAbortCurrentPlayback = true; }
#endif
size_t curOpID() const { return fCurOffset; }
void resetOpID() { fCurOffset = 0; }
protected:
explicit SkPictureData(const SkPictInfo& info);
bool parseStream(SkStream*, SkPicture::InstallPixelRefProc);
bool parseBuffer(SkReadBuffer& buffer);
#ifdef SK_DEVELOPER
virtual bool preDraw(int opIndex, int type);
virtual void postDraw(int opIndex);
#endif
private:
class TextContainer {
public:
size_t length() { return fByteLength; }
const void* text() { return (const void*) fText; }
size_t fByteLength;
const char* fText;
};
const SkBitmap& getBitmap(SkReader32& reader) {
const SkBitmap& getBitmap(SkReader32& reader) const {
const int index = reader.readInt();
if (SkBitmapHeap::INVALID_SLOT == index) {
#ifdef SK_DEBUG
@ -202,22 +171,18 @@ private:
return (*fBitmaps)[index];
}
void getMatrix(SkReader32& reader, SkMatrix* matrix) {
reader.readMatrix(matrix);
}
const SkPath& getPath(SkReader32& reader) {
const SkPath& getPath(SkReader32& reader) const {
int index = reader.readInt() - 1;
return (*fPathHeap.get())[index];
}
const SkPicture* getPicture(SkReader32& reader) {
const SkPicture* getPicture(SkReader32& reader) const {
int index = reader.readInt();
SkASSERT(index > 0 && index <= fPictureCount);
return fPictureRefs[index - 1];
}
const SkPaint* getPaint(SkReader32& reader) {
const SkPaint* getPaint(SkReader32& reader) const {
int index = reader.readInt();
if (index == 0) {
return NULL;
@ -225,31 +190,6 @@ private:
return &(*fPaints)[index - 1];
}
const SkRect* getRectPtr(SkReader32& reader) {
if (reader.readBool()) {
return &reader.skipT<SkRect>();
} else {
return NULL;
}
}
const SkIRect* getIRectPtr(SkReader32& reader) {
if (reader.readBool()) {
return &reader.skipT<SkIRect>();
} else {
return NULL;
}
}
void getRegion(SkReader32& reader, SkRegion* region) {
reader.readRegion(region);
}
void getText(SkReader32& reader, TextContainer* text) {
size_t length = text->fByteLength = reader.readInt();
text->fText = (const char*)reader.skip(length);
}
void init();
#ifdef SK_DEBUG_SIZE
@ -306,7 +246,7 @@ private: // these help us with reading/writing
private:
friend class SkPicture;
friend class SkGpuDevice; // for access to setDrawLimits & setReplacements
friend class SkPicturePlayback;
// Only used by getBitmap() if the passed in index is SkBitmapHeap::INVALID_SLOT. This empty
// bitmap allows playback to draw nothing and move on.
@ -329,83 +269,13 @@ private:
SkPictureContentInfo fContentInfo;
// Limit the opcode playback to be between the offsets 'start' and 'stop'.
// The opcode at 'start' should be a saveLayer while the opcode at
// 'stop' should be a restore. Neither of those commands will be issued.
// Set both start & stop to 0 to disable draw limiting
// Draw limiting cannot be enabled at the same time as draw replacing
void setDrawLimits(size_t start, size_t stop) {
SkASSERT(NULL == fReplacements);
fStart = start;
fStop = stop;
}
// PlaybackReplacements collects op ranges that can be replaced with
// a single drawBitmap call (using a precomputed bitmap).
class PlaybackReplacements {
class OperationList : public SkPicture::OperationList {
public:
// All the operations between fStart and fStop (inclusive) will be replaced with
// a single drawBitmap call using fPos, fBM and fPaint.
// fPaint will be NULL if the picture's paint wasn't copyable
struct ReplacementInfo {
size_t fStart;
size_t fStop;
SkIPoint fPos;
SkBitmap* fBM; // fBM is allocated so ReplacementInfo can remain POD
const SkPaint* fPaint; // Note: this object doesn't own the paint
SkIRect fSrcRect;
};
~PlaybackReplacements() { this->freeAll(); }
// Add a new replacement range. The replacement ranges should be
// sorted in increasing order and non-overlapping (esp. no nested
// saveLayers).
ReplacementInfo* push();
private:
friend class SkPictureData; // for access to lookupByStart
// look up a replacement range by its start offset
ReplacementInfo* lookupByStart(size_t start);
void freeAll();
#ifdef SK_DEBUG
void validate() const;
#endif
SkTDArray<ReplacementInfo> fReplacements;
};
// Replace all the draw ops in the replacement ranges in 'replacements' with
// the associated drawBitmap call
// Draw replacing cannot be enabled at the same time as draw limiting
void setReplacements(PlaybackReplacements* replacements) {
SkASSERT(fStart == 0 && fStop == 0);
fReplacements = replacements;
}
bool fUseBBH;
size_t fStart;
size_t fStop;
PlaybackReplacements* fReplacements;
class CachedOperationList : public SkPicture::OperationList {
public:
CachedOperationList() {
fCacheQueryRect.setEmpty();
}
virtual bool valid() const { return true; }
OperationList() { }
virtual int numOps() const SK_OVERRIDE { return fOps.count(); }
virtual uint32_t offset(int index) const SK_OVERRIDE;
virtual const SkMatrix& matrix(int index) const SK_OVERRIDE;
// The query rect for which the cached active ops are valid
SkIRect fCacheQueryRect;
// The operations which are active within 'fCachedQueryRect'
SkTDArray<void*> fOps;
@ -413,25 +283,15 @@ private:
typedef SkPicture::OperationList INHERITED;
};
CachedOperationList* fCachedActiveOps;
SkTypefacePlayback fTFPlayback;
SkFactoryPlayback* fFactoryPlayback;
// The offset of the current operation when within the draw method
size_t fCurOffset;
const SkPictInfo fInfo;
static void WriteFactories(SkWStream* stream, const SkFactorySet& rec);
static void WriteTypefaces(SkWStream* stream, const SkRefCntSet& rec);
void initForPlayback() const;
#ifdef SK_BUILD_FOR_ANDROID
SkMutex fDrawMutex;
bool fAbortCurrentPlayback;
#endif
};
#endif

View File

@ -0,0 +1,648 @@
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCanvas.h"
#include "SkPictureData.h"
#include "SkPicturePlayback.h"
#include "SkPictureRecord.h"
#include "SkPictureStateTree.h"
#include "SkReader32.h"
#include "SkTDArray.h"
#include "SkTypes.h"
SkPicturePlayback::PlaybackReplacements::ReplacementInfo*
SkPicturePlayback::PlaybackReplacements::push() {
SkDEBUGCODE(this->validate());
return fReplacements.push();
}
void SkPicturePlayback::PlaybackReplacements::freeAll() {
for (int i = 0; i < fReplacements.count(); ++i) {
SkDELETE(fReplacements[i].fBM);
}
fReplacements.reset();
}
#ifdef SK_DEBUG
void SkPicturePlayback::PlaybackReplacements::validate() const {
// Check that the ranges are monotonically increasing and non-overlapping
if (fReplacements.count() > 0) {
SkASSERT(fReplacements[0].fStart < fReplacements[0].fStop);
for (int i = 1; i < fReplacements.count(); ++i) {
SkASSERT(fReplacements[i].fStart < fReplacements[i].fStop);
SkASSERT(fReplacements[i - 1].fStop < fReplacements[i].fStart);
}
}
}
#endif
// TODO: Replace with hash or pass in "lastLookedUp" hint
SkPicturePlayback::PlaybackReplacements::ReplacementInfo*
SkPicturePlayback::PlaybackReplacements::lookupByStart(size_t start) {
SkDEBUGCODE(this->validate());
for (int i = 0; i < fReplacements.count(); ++i) {
if (start == fReplacements[i].fStart) {
return &fReplacements[i];
} else if (start < fReplacements[i].fStart) {
return NULL; // the ranges are monotonically increasing and non-overlapping
}
}
return NULL;
}
class SkAutoResetOpID {
public:
SkAutoResetOpID(SkPicturePlayback* playback) : fPlayback(playback) { }
~SkAutoResetOpID() {
if (NULL != fPlayback) {
fPlayback->resetOpID();
}
}
private:
SkPicturePlayback* fPlayback;
};
/*
* Read the next op code and chunk size from 'reader'. The returned size
* is the entire size of the chunk (including the opcode). Thus, the
* offset just prior to calling read_op_and_size + 'size' is the offset
* to the next chunk's op code. This also means that the size of a chunk
* with no arguments (just an opcode) will be 4.
*/
static DrawType read_op_and_size(SkReader32* reader, uint32_t* size) {
uint32_t temp = reader->readInt();
uint32_t op;
if (((uint8_t)temp) == temp) {
// old skp file - no size information
op = temp;
*size = 0;
} else {
UNPACK_8_24(temp, op, *size);
if (MASK_24 == *size) {
*size = reader->readInt();
}
}
return (DrawType)op;
}
static const SkRect* get_rect_ptr(SkReader32& reader) {
if (reader.readBool()) {
return &reader.skipT<SkRect>();
} else {
return NULL;
}
}
class TextContainer {
public:
size_t length() { return fByteLength; }
const void* text() { return (const void*)fText; }
size_t fByteLength;
const char* fText;
};
void get_text(SkReader32* reader, TextContainer* text) {
size_t length = text->fByteLength = reader->readInt();
text->fText = (const char*)reader->skip(length);
}
void SkPicturePlayback::draw(SkCanvas* canvas, SkDrawPictureCallback* callback) {
SkAutoResetOpID aroi(this);
SkASSERT(0 == fCurOffset);
#ifdef ENABLE_TIME_DRAW
SkAutoTime at("SkPicture::draw", 50);
#endif
#ifdef SPEW_CLIP_SKIPPING
SkipClipRec skipRect, skipRRect, skipRegion, skipPath, skipCull;
int opCount = 0;
#endif
// kDrawComplete will be the signal that we have reached the end of
// the command stream
static const uint32_t kDrawComplete = SK_MaxU32;
SkReader32 reader(fPictureData->fOpData->bytes(), fPictureData->fOpData->size());
TextContainer text;
SkAutoTDelete<const SkPicture::OperationList> activeOpsList;
const SkTDArray<void*>* activeOps = NULL;
// When draw limits are enabled (i.e., 0 != fStart || 0 != fStop) the state
// tree isn't used to pick and choose the draw operations
if (0 == fStart && 0 == fStop) {
if (fUseBBH && NULL != fPictureData->fStateTree && NULL != fPictureData->fBoundingHierarchy) {
SkRect clipBounds;
if (canvas->getClipBounds(&clipBounds)) {
SkIRect query;
clipBounds.roundOut(&query);
activeOpsList.reset(fPictureData->getActiveOps(query));
if (NULL != activeOpsList.get()) {
if (0 == activeOpsList->numOps()) {
return; // nothing to draw
}
// Since the opList is valid we know it is our derived class
activeOps = &((const SkPictureData::OperationList*)activeOpsList.get())->fOps;
}
}
}
}
SkPictureStateTree::Iterator it = (NULL == activeOps) ?
SkPictureStateTree::Iterator() :
fPictureData->fStateTree->getIterator(*activeOps, canvas);
if (0 != fStart || 0 != fStop) {
reader.setOffset(fStart);
uint32_t size;
SkDEBUGCODE(DrawType op = ) read_op_and_size(&reader, &size);
SkASSERT(SAVE_LAYER == op);
reader.setOffset(fStart + size);
}
if (it.isValid()) {
uint32_t skipTo = it.nextDraw();
if (kDrawComplete == skipTo) {
return;
}
reader.setOffset(skipTo);
}
// Record this, so we can concat w/ it if we encounter a setMatrix()
SkMatrix initialMatrix = canvas->getTotalMatrix();
SkAutoCanvasRestore acr(canvas, false);
#ifdef SK_DEVELOPER
int opIndex = -1;
#endif
while (!reader.eof()) {
if (callback && callback->abortDrawing()) {
return;
}
if (0 != fStart || 0 != fStop) {
size_t offset = reader.offset();
if (offset >= fStop) {
uint32_t size;
SkDEBUGCODE(DrawType op = ) read_op_and_size(&reader, &size);
SkASSERT(RESTORE == op);
return;
}
}
if (NULL != fReplacements) {
// Potentially replace a block of operations with a single drawBitmap call
SkPicturePlayback::PlaybackReplacements::ReplacementInfo* temp =
fReplacements->lookupByStart(reader.offset());
if (NULL != temp) {
SkASSERT(NULL != temp->fBM);
SkASSERT(NULL != temp->fPaint);
canvas->save();
canvas->setMatrix(initialMatrix);
SkRect src = SkRect::Make(temp->fSrcRect);
SkRect dst = SkRect::MakeXYWH(temp->fPos.fX, temp->fPos.fY,
temp->fSrcRect.width(),
temp->fSrcRect.height());
canvas->drawBitmapRectToRect(*temp->fBM, &src, dst, temp->fPaint);
canvas->restore();
if (it.isValid()) {
// This save is needed since the BBH will automatically issue
// a restore to balanced the saveLayer we're skipping
canvas->save();
// At this point we know that the PictureStateTree was aiming
// for some draw op within temp's saveLayer (although potentially
// in a separate saveLayer nested inside it).
// We need to skip all the operations inside temp's range
// along with all the associated state changes but update
// the state tree to the first operation outside temp's range.
uint32_t skipTo;
do {
skipTo = it.nextDraw();
if (kDrawComplete == skipTo) {
break;
}
if (skipTo <= temp->fStop) {
reader.setOffset(skipTo);
uint32_t size;
DrawType op = read_op_and_size(&reader, &size);
// Since we are relying on the normal SkPictureStateTree
// playback we need to convert any nested saveLayer calls
// it may issue into saves (so that all its internal
// restores will be balanced).
if (SAVE_LAYER == op) {
canvas->save();
}
}
} while (skipTo <= temp->fStop);
if (kDrawComplete == skipTo) {
break;
}
reader.setOffset(skipTo);
} else {
reader.setOffset(temp->fStop);
uint32_t size;
SkDEBUGCODE(DrawType op = ) read_op_and_size(&reader, &size);
SkASSERT(RESTORE == op);
}
continue;
}
}
#ifdef SPEW_CLIP_SKIPPING
opCount++;
#endif
fCurOffset = reader.offset();
uint32_t size;
DrawType op = read_op_and_size(&reader, &size);
size_t skipTo = 0;
if (NOOP == op) {
// NOOPs are to be ignored - do not propagate them any further
skipTo = fCurOffset + size;
#ifdef SK_DEVELOPER
} else {
opIndex++;
if (this->preDraw(opIndex, op)) {
skipTo = fCurOffset + size;
}
#endif
}
if (0 != skipTo) {
if (it.isValid()) {
// If using a bounding box hierarchy, advance the state tree
// iterator until at or after skipTo
uint32_t adjustedSkipTo;
do {
adjustedSkipTo = it.nextDraw();
} while (adjustedSkipTo < skipTo);
skipTo = adjustedSkipTo;
}
if (kDrawComplete == skipTo) {
break;
}
reader.setOffset(skipTo);
continue;
}
switch (op) {
case CLIP_PATH: {
const SkPath& path = fPictureData->getPath(reader);
uint32_t packed = reader.readInt();
SkRegion::Op regionOp = ClipParams_unpackRegionOp(packed);
bool doAA = ClipParams_unpackDoAA(packed);
size_t offsetToRestore = reader.readInt();
SkASSERT(!offsetToRestore || offsetToRestore >= reader.offset());
canvas->clipPath(path, regionOp, doAA);
if (canvas->isClipEmpty() && offsetToRestore) {
#ifdef SPEW_CLIP_SKIPPING
skipPath.recordSkip(offsetToRestore - reader.offset());
#endif
reader.setOffset(offsetToRestore);
}
} break;
case CLIP_REGION: {
SkRegion region;
reader.readRegion(&region);
uint32_t packed = reader.readInt();
SkRegion::Op regionOp = ClipParams_unpackRegionOp(packed);
size_t offsetToRestore = reader.readInt();
SkASSERT(!offsetToRestore || offsetToRestore >= reader.offset());
canvas->clipRegion(region, regionOp);
if (canvas->isClipEmpty() && offsetToRestore) {
#ifdef SPEW_CLIP_SKIPPING
skipRegion.recordSkip(offsetToRestore - reader.offset());
#endif
reader.setOffset(offsetToRestore);
}
} break;
case CLIP_RECT: {
const SkRect& rect = reader.skipT<SkRect>();
uint32_t packed = reader.readInt();
SkRegion::Op regionOp = ClipParams_unpackRegionOp(packed);
bool doAA = ClipParams_unpackDoAA(packed);
size_t offsetToRestore = reader.readInt();
SkASSERT(!offsetToRestore || offsetToRestore >= reader.offset());
canvas->clipRect(rect, regionOp, doAA);
if (canvas->isClipEmpty() && offsetToRestore) {
#ifdef SPEW_CLIP_SKIPPING
skipRect.recordSkip(offsetToRestore - reader.offset());
#endif
reader.setOffset(offsetToRestore);
}
} break;
case CLIP_RRECT: {
SkRRect rrect;
reader.readRRect(&rrect);
uint32_t packed = reader.readInt();
SkRegion::Op regionOp = ClipParams_unpackRegionOp(packed);
bool doAA = ClipParams_unpackDoAA(packed);
size_t offsetToRestore = reader.readInt();
SkASSERT(!offsetToRestore || offsetToRestore >= reader.offset());
canvas->clipRRect(rrect, regionOp, doAA);
if (canvas->isClipEmpty() && offsetToRestore) {
#ifdef SPEW_CLIP_SKIPPING
skipRRect.recordSkip(offsetToRestore - reader.offset());
#endif
reader.setOffset(offsetToRestore);
}
} break;
case PUSH_CULL: {
const SkRect& cullRect = reader.skipT<SkRect>();
size_t offsetToRestore = reader.readInt();
if (offsetToRestore && canvas->quickReject(cullRect)) {
#ifdef SPEW_CLIP_SKIPPING
skipCull.recordSkip(offsetToRestore - reader.offset());
#endif
reader.setOffset(offsetToRestore);
} else {
canvas->pushCull(cullRect);
}
} break;
case POP_CULL:
canvas->popCull();
break;
case CONCAT: {
SkMatrix matrix;
reader.readMatrix(&matrix);
canvas->concat(matrix);
break;
}
case DRAW_BITMAP: {
const SkPaint* paint = fPictureData->getPaint(reader);
const SkBitmap& bitmap = fPictureData->getBitmap(reader);
const SkPoint& loc = reader.skipT<SkPoint>();
canvas->drawBitmap(bitmap, loc.fX, loc.fY, paint);
} break;
case DRAW_BITMAP_RECT_TO_RECT: {
const SkPaint* paint = fPictureData->getPaint(reader);
const SkBitmap& bitmap = fPictureData->getBitmap(reader);
const SkRect* src = get_rect_ptr(reader); // may be null
const SkRect& dst = reader.skipT<SkRect>(); // required
SkCanvas::DrawBitmapRectFlags flags;
flags = (SkCanvas::DrawBitmapRectFlags) reader.readInt();
canvas->drawBitmapRectToRect(bitmap, src, dst, paint, flags);
} break;
case DRAW_BITMAP_MATRIX: {
const SkPaint* paint = fPictureData->getPaint(reader);
const SkBitmap& bitmap = fPictureData->getBitmap(reader);
SkMatrix matrix;
reader.readMatrix(&matrix);
canvas->drawBitmapMatrix(bitmap, matrix, paint);
} break;
case DRAW_BITMAP_NINE: {
const SkPaint* paint = fPictureData->getPaint(reader);
const SkBitmap& bitmap = fPictureData->getBitmap(reader);
const SkIRect& src = reader.skipT<SkIRect>();
const SkRect& dst = reader.skipT<SkRect>();
canvas->drawBitmapNine(bitmap, src, dst, paint);
} break;
case DRAW_CLEAR:
canvas->clear(reader.readInt());
break;
case DRAW_DATA: {
size_t length = reader.readInt();
canvas->drawData(reader.skip(length), length);
// skip handles padding the read out to a multiple of 4
} break;
case DRAW_DRRECT: {
const SkPaint& paint = *fPictureData->getPaint(reader);
SkRRect outer, inner;
reader.readRRect(&outer);
reader.readRRect(&inner);
canvas->drawDRRect(outer, inner, paint);
} break;
case BEGIN_COMMENT_GROUP: {
const char* desc = reader.readString();
canvas->beginCommentGroup(desc);
} break;
case COMMENT: {
const char* kywd = reader.readString();
const char* value = reader.readString();
canvas->addComment(kywd, value);
} break;
case END_COMMENT_GROUP: {
canvas->endCommentGroup();
} break;
case DRAW_OVAL: {
const SkPaint& paint = *fPictureData->getPaint(reader);
canvas->drawOval(reader.skipT<SkRect>(), paint);
} break;
case DRAW_PAINT:
canvas->drawPaint(*fPictureData->getPaint(reader));
break;
case DRAW_PATH: {
const SkPaint& paint = *fPictureData->getPaint(reader);
canvas->drawPath(fPictureData->getPath(reader), paint);
} break;
case DRAW_PICTURE:
canvas->drawPicture(fPictureData->getPicture(reader));
break;
case DRAW_POINTS: {
const SkPaint& paint = *fPictureData->getPaint(reader);
SkCanvas::PointMode mode = (SkCanvas::PointMode)reader.readInt();
size_t count = reader.readInt();
const SkPoint* pts = (const SkPoint*)reader.skip(sizeof(SkPoint)* count);
canvas->drawPoints(mode, count, pts, paint);
} break;
case DRAW_POS_TEXT: {
const SkPaint& paint = *fPictureData->getPaint(reader);
get_text(&reader, &text);
size_t points = reader.readInt();
const SkPoint* pos = (const SkPoint*)reader.skip(points * sizeof(SkPoint));
canvas->drawPosText(text.text(), text.length(), pos, paint);
} break;
case DRAW_POS_TEXT_TOP_BOTTOM: {
const SkPaint& paint = *fPictureData->getPaint(reader);
get_text(&reader, &text);
size_t points = reader.readInt();
const SkPoint* pos = (const SkPoint*)reader.skip(points * sizeof(SkPoint));
const SkScalar top = reader.readScalar();
const SkScalar bottom = reader.readScalar();
if (!canvas->quickRejectY(top, bottom)) {
canvas->drawPosText(text.text(), text.length(), pos, paint);
}
} break;
case DRAW_POS_TEXT_H: {
const SkPaint& paint = *fPictureData->getPaint(reader);
get_text(&reader, &text);
size_t xCount = reader.readInt();
const SkScalar constY = reader.readScalar();
const SkScalar* xpos = (const SkScalar*)reader.skip(xCount * sizeof(SkScalar));
canvas->drawPosTextH(text.text(), text.length(), xpos, constY, paint);
} break;
case DRAW_POS_TEXT_H_TOP_BOTTOM: {
const SkPaint& paint = *fPictureData->getPaint(reader);
get_text(&reader, &text);
size_t xCount = reader.readInt();
const SkScalar* xpos = (const SkScalar*)reader.skip((3 + xCount) * sizeof(SkScalar));
const SkScalar top = *xpos++;
const SkScalar bottom = *xpos++;
const SkScalar constY = *xpos++;
if (!canvas->quickRejectY(top, bottom)) {
canvas->drawPosTextH(text.text(), text.length(), xpos, constY, paint);
}
} break;
case DRAW_RECT: {
const SkPaint& paint = *fPictureData->getPaint(reader);
canvas->drawRect(reader.skipT<SkRect>(), paint);
} break;
case DRAW_RRECT: {
const SkPaint& paint = *fPictureData->getPaint(reader);
SkRRect rrect;
reader.readRRect(&rrect);
canvas->drawRRect(rrect, paint);
} break;
case DRAW_SPRITE: {
const SkPaint* paint = fPictureData->getPaint(reader);
const SkBitmap& bitmap = fPictureData->getBitmap(reader);
int left = reader.readInt();
int top = reader.readInt();
canvas->drawSprite(bitmap, left, top, paint);
} break;
case DRAW_TEXT: {
const SkPaint& paint = *fPictureData->getPaint(reader);
get_text(&reader, &text);
SkScalar x = reader.readScalar();
SkScalar y = reader.readScalar();
canvas->drawText(text.text(), text.length(), x, y, paint);
} break;
case DRAW_TEXT_TOP_BOTTOM: {
const SkPaint& paint = *fPictureData->getPaint(reader);
get_text(&reader, &text);
const SkScalar* ptr = (const SkScalar*)reader.skip(4 * sizeof(SkScalar));
// ptr[0] == x
// ptr[1] == y
// ptr[2] == top
// ptr[3] == bottom
if (!canvas->quickRejectY(ptr[2], ptr[3])) {
canvas->drawText(text.text(), text.length(), ptr[0], ptr[1], paint);
}
} break;
case DRAW_TEXT_ON_PATH: {
const SkPaint& paint = *fPictureData->getPaint(reader);
get_text(&reader, &text);
const SkPath& path = fPictureData->getPath(reader);
SkMatrix matrix;
reader.readMatrix(&matrix);
canvas->drawTextOnPath(text.text(), text.length(), path, &matrix, paint);
} break;
case DRAW_VERTICES: {
SkAutoTUnref<SkXfermode> xfer;
const SkPaint& paint = *fPictureData->getPaint(reader);
DrawVertexFlags flags = (DrawVertexFlags)reader.readInt();
SkCanvas::VertexMode vmode = (SkCanvas::VertexMode)reader.readInt();
int vCount = reader.readInt();
const SkPoint* verts = (const SkPoint*)reader.skip(vCount * sizeof(SkPoint));
const SkPoint* texs = NULL;
const SkColor* colors = NULL;
const uint16_t* indices = NULL;
int iCount = 0;
if (flags & DRAW_VERTICES_HAS_TEXS) {
texs = (const SkPoint*)reader.skip(vCount * sizeof(SkPoint));
}
if (flags & DRAW_VERTICES_HAS_COLORS) {
colors = (const SkColor*)reader.skip(vCount * sizeof(SkColor));
}
if (flags & DRAW_VERTICES_HAS_INDICES) {
iCount = reader.readInt();
indices = (const uint16_t*)reader.skip(iCount * sizeof(uint16_t));
}
if (flags & DRAW_VERTICES_HAS_XFER) {
int mode = reader.readInt();
if (mode < 0 || mode > SkXfermode::kLastMode) {
mode = SkXfermode::kModulate_Mode;
}
xfer.reset(SkXfermode::Create((SkXfermode::Mode)mode));
}
canvas->drawVertices(vmode, vCount, verts, texs, colors, xfer, indices, iCount, paint);
} break;
case RESTORE:
canvas->restore();
break;
case ROTATE:
canvas->rotate(reader.readScalar());
break;
case SAVE:
// SKPs with version < 29 also store a SaveFlags param.
if (size > 4) {
SkASSERT(8 == size);
reader.readInt();
}
canvas->save();
break;
case SAVE_LAYER: {
const SkRect* boundsPtr = get_rect_ptr(reader);
const SkPaint* paint = fPictureData->getPaint(reader);
canvas->saveLayer(boundsPtr, paint, (SkCanvas::SaveFlags) reader.readInt());
} break;
case SCALE: {
SkScalar sx = reader.readScalar();
SkScalar sy = reader.readScalar();
canvas->scale(sx, sy);
} break;
case SET_MATRIX: {
SkMatrix matrix;
reader.readMatrix(&matrix);
matrix.postConcat(initialMatrix);
canvas->setMatrix(matrix);
} break;
case SKEW: {
SkScalar sx = reader.readScalar();
SkScalar sy = reader.readScalar();
canvas->skew(sx, sy);
} break;
case TRANSLATE: {
SkScalar dx = reader.readScalar();
SkScalar dy = reader.readScalar();
canvas->translate(dx, dy);
} break;
default:
SkASSERT(0);
}
#ifdef SK_DEVELOPER
this->postDraw(opIndex);
#endif
if (it.isValid()) {
uint32_t skipTo = it.nextDraw();
if (kDrawComplete == skipTo) {
break;
}
reader.setOffset(skipTo);
}
}
#ifdef SPEW_CLIP_SKIPPING
{
size_t size = skipRect.fSize + skipRRect.fSize + skipPath.fSize + skipRegion.fSize +
skipCull.fSize;
SkDebugf("--- Clip skips %d%% rect:%d rrect:%d path:%d rgn:%d cull:%d\n",
size * 100 / reader.offset(), skipRect.fCount, skipRRect.fCount,
skipPath.fCount, skipRegion.fCount, skipCull.fCount);
SkDebugf("--- Total ops: %d\n", opCount);
}
#endif
// this->dumpSize();
}

View File

@ -0,0 +1,118 @@
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPicturePlayback_DEFINED
#define SkPicturePlayback_DEFINED
#include "SkTypes.h"
class SkBitmap;
class SkCanvas;
class SkDrawPictureCallback;
class SkPaint;
class SkPictureData;
class SkPicturePlayback : SkNoncopyable {
public:
SkPicturePlayback(const SkPicture* picture)
: fPictureData(picture->fData.get())
, fCurOffset(0)
, fUseBBH(true)
, fStart(0)
, fStop(0)
, fReplacements(NULL) {
}
virtual ~SkPicturePlayback() { }
void draw(SkCanvas* canvas, SkDrawPictureCallback*);
// Return the ID of the operation currently being executed when playing
// back. 0 indicates no call is active.
size_t curOpID() const { return fCurOffset; }
void resetOpID() { fCurOffset = 0; }
void setUseBBH(bool useBBH) { fUseBBH = useBBH; }
// Limit the opcode playback to be between the offsets 'start' and 'stop'.
// The opcode at 'start' should be a saveLayer while the opcode at
// 'stop' should be a restore. Neither of those commands will be issued.
// Set both start & stop to 0 to disable draw limiting
// Draw limiting cannot be enabled at the same time as draw replacing
void setDrawLimits(size_t start, size_t stop) {
SkASSERT(NULL == fReplacements);
fStart = start;
fStop = stop;
}
// PlaybackReplacements collects op ranges that can be replaced with
// a single drawBitmap call (using a precomputed bitmap).
class PlaybackReplacements {
public:
// All the operations between fStart and fStop (inclusive) will be replaced with
// a single drawBitmap call using fPos, fBM and fPaint.
// fPaint will be NULL if the picture's paint wasn't copyable
struct ReplacementInfo {
size_t fStart;
size_t fStop;
SkIPoint fPos;
SkBitmap* fBM; // fBM is allocated so ReplacementInfo can remain POD
const SkPaint* fPaint; // Note: this object doesn't own the paint
SkIRect fSrcRect;
};
~PlaybackReplacements() { this->freeAll(); }
// Add a new replacement range. The replacement ranges should be
// sorted in increasing order and non-overlapping (esp. no nested
// saveLayers).
ReplacementInfo* push();
private:
friend class SkPicturePlayback; // for access to lookupByStart
// look up a replacement range by its start offset
ReplacementInfo* lookupByStart(size_t start);
void freeAll();
#ifdef SK_DEBUG
void validate() const;
#endif
SkTDArray<ReplacementInfo> fReplacements;
};
// Replace all the draw ops in the replacement ranges in 'replacements' with
// the associated drawBitmap call
// Draw replacing cannot be enabled at the same time as draw limiting
void setReplacements(PlaybackReplacements* replacements) {
SkASSERT(fStart == 0 && fStop == 0);
fReplacements = replacements;
}
protected:
const SkPictureData* fPictureData;
// The offset of the current operation when within the draw method
size_t fCurOffset;
bool fUseBBH;
size_t fStart;
size_t fStop;
PlaybackReplacements* fReplacements;
#ifdef SK_DEVELOPER
virtual bool preDraw(int opIndex, int type) { return false; }
virtual void postDraw(int opIndex) { }
#endif
private:
typedef SkNoncopyable INHERITED;
};
#endif

View File

@ -10,6 +10,7 @@
#include "SkDraw.h"
#include "SkPaintPriv.h"
#include "SkPictureData.h"
#include "SkPicturePlayback.h"
SkPicture::AccelData::Key GPUAccelData::ComputeAccelDataKey() {
static const SkPicture::AccelData::Key gGPUID = SkPicture::AccelData::GenerateDomain();
@ -29,14 +30,14 @@ class GrGatherDevice : public SkBaseDevice {
public:
SK_DECLARE_INST_COUNT(GrGatherDevice)
GrGatherDevice(int width, int height, const SkPicture* picture, GPUAccelData* accelData,
GrGatherDevice(int width, int height, SkPicturePlayback* playback, GPUAccelData* accelData,
int saveLayerDepth) {
fPicture = picture;
fPlayback = playback;
fSaveLayerDepth = saveLayerDepth;
fInfo.fValid = true;
fInfo.fSize.set(width, height);
fInfo.fPaint = NULL;
fInfo.fSaveLayerOpID = fPicture->EXPERIMENTAL_curOpID();
fInfo.fSaveLayerOpID = fPlayback->curOpID();
fInfo.fRestoreOpID = 0;
fInfo.fHasNestedLayers = false;
fInfo.fIsNested = (2 == fSaveLayerDepth);
@ -123,7 +124,7 @@ protected:
return;
}
device->fInfo.fRestoreOpID = fPicture->EXPERIMENTAL_curOpID();
device->fInfo.fRestoreOpID = fPlayback->curOpID();
device->fInfo.fCTM = *draw.fMatrix;
device->fInfo.fCTM.postTranslate(SkIntToScalar(-device->getOrigin().fX),
SkIntToScalar(-device->getOrigin().fY));
@ -163,8 +164,8 @@ protected:
}
private:
// The picture being processed
const SkPicture *fPicture;
// The playback object driving this rendering
SkPicturePlayback *fPlayback;
SkBitmap fEmptyBitmap; // legacy -- need to remove
@ -190,7 +191,7 @@ private:
SkASSERT(kSaveLayer_Usage == usage);
fInfo.fHasNestedLayers = true;
return SkNEW_ARGS(GrGatherDevice, (info.width(), info.height(), fPicture,
return SkNEW_ARGS(GrGatherDevice, (info.width(), info.height(), fPlayback,
fAccelData, fSaveLayerDepth+1));
}
@ -215,21 +216,7 @@ private:
// which is all just to fill in 'accelData'
class SK_API GrGatherCanvas : public SkCanvas {
public:
GrGatherCanvas(GrGatherDevice* device, const SkPicture* pict)
: INHERITED(device)
, fPicture(pict) {
}
void gather() {
if (NULL == fPicture || 0 == fPicture->width() || 0 == fPicture->height()) {
return;
}
this->clipRect(SkRect::MakeWH(SkIntToScalar(fPicture->width()),
SkIntToScalar(fPicture->height())),
SkRegion::kIntersect_Op, false);
this->drawPicture(fPicture);
}
GrGatherCanvas(GrGatherDevice* device) : INHERITED(device) {}
protected:
// disable aa for speed
@ -248,32 +235,41 @@ protected:
}
virtual void onDrawPicture(const SkPicture* picture) SK_OVERRIDE {
// BBH-based rendering doesn't re-issue many of the operations the gather
// process cares about (e.g., saves and restores) so it must be disabled.
if (NULL != picture->fData.get()) {
picture->fData->setUseBBH(false);
}
picture->draw(this);
if (NULL != picture->fData.get()) {
picture->fData->setUseBBH(true);
// Disable the BBH for the old path so all the draw calls
// will be seen. The stock SkPicture::draw method can't be
// invoked since it just uses a vanilla SkPicturePlayback.
SkPicturePlayback playback(picture);
playback.setUseBBH(false);
playback.draw(this, NULL);
} else {
// Since we know this is the SkRecord path we can just call
// SkPicture::draw.
picture->draw(this);
}
}
private:
const SkPicture* fPicture;
typedef SkCanvas INHERITED;
};
// GatherGPUInfo is only intended to be called within the context of SkGpuDevice's
// EXPERIMENTAL_optimize method.
void GatherGPUInfo(const SkPicture* pict, GPUAccelData* accelData) {
if (0 == pict->width() || 0 == pict->height()) {
if (NULL == pict || 0 == pict->width() || 0 == pict->height()) {
return ;
}
GrGatherDevice device(pict->width(), pict->height(), pict, accelData, 0);
GrGatherCanvas canvas(&device, pict);
// BBH-based rendering doesn't re-issue many of the operations the gather
// process cares about (e.g., saves and restores) so it must be disabled.
SkPicturePlayback playback(pict);
playback.setUseBBH(false);
canvas.gather();
GrGatherDevice device(pict->width(), pict->height(), &playback, accelData, 0);
GrGatherCanvas canvas(&device);
canvas.clipRect(SkRect::MakeWH(SkIntToScalar(pict->width()),
SkIntToScalar(pict->height())),
SkRegion::kIntersect_Op, false);
playback.draw(&canvas, NULL);
}

View File

@ -30,6 +30,7 @@
#include "SkPathEffect.h"
#include "SkPicture.h"
#include "SkPictureData.h"
#include "SkPicturePlayback.h"
#include "SkRRect.h"
#include "SkStroke.h"
#include "SkSurface.h"
@ -1859,7 +1860,7 @@ bool SkGpuDevice::EXPERIMENTAL_drawPicture(SkCanvas* canvas, const SkPicture* pi
SkIRect query;
clipBounds.roundOut(&query);
const SkPicture::OperationList& ops = picture->EXPERIMENTAL_getActiveOps(query);
SkAutoTDelete<const SkPicture::OperationList> ops(picture->EXPERIMENTAL_getActiveOps(query));
// This code pre-renders the entire layer since it will be cached and potentially
// reused with different clips (e.g., in different tiles). Because of this the
@ -1867,12 +1868,12 @@ bool SkGpuDevice::EXPERIMENTAL_drawPicture(SkCanvas* canvas, const SkPicture* pi
// is used to limit which clips are pre-rendered.
static const int kSaveLayerMaxSize = 256;
if (ops.valid()) {
if (NULL != ops.get()) {
// In this case the picture has been generated with a BBH so we use
// the BBH to limit the pre-rendering to just the layers needed to cover
// the region being drawn
for (int i = 0; i < ops.numOps(); ++i) {
uint32_t offset = ops.offset(i);
for (int i = 0; i < ops->numOps(); ++i) {
uint32_t offset = ops->offset(i);
// For now we're saving all the layers in the GPUAccelData so they
// can be nested. Additionally, the nested layers appear before
@ -1928,7 +1929,7 @@ bool SkGpuDevice::EXPERIMENTAL_drawPicture(SkCanvas* canvas, const SkPicture* pi
}
}
SkPictureData::PlaybackReplacements replacements;
SkPicturePlayback::PlaybackReplacements replacements;
// Generate the layer and/or ensure it is locked
for (int i = 0; i < gpuData->numSaveLayers(); ++i) {
@ -1937,7 +1938,7 @@ bool SkGpuDevice::EXPERIMENTAL_drawPicture(SkCanvas* canvas, const SkPicture* pi
const GPUAccelData::SaveLayerInfo& info = gpuData->saveLayerInfo(i);
SkPictureData::PlaybackReplacements::ReplacementInfo* layerInfo =
SkPicturePlayback::PlaybackReplacements::ReplacementInfo* layerInfo =
replacements.push();
layerInfo->fStart = info.fSaveLayerOpID;
layerInfo->fStop = info.fRestoreOpID;
@ -2009,9 +2010,9 @@ bool SkGpuDevice::EXPERIMENTAL_drawPicture(SkCanvas* canvas, const SkPicture* pi
SkIntToScalar(layer->rect().fTop));
}
picture->fData->setDrawLimits(info.fSaveLayerOpID, info.fRestoreOpID);
picture->fData->draw(*canvas, NULL);
picture->fData->setDrawLimits(0, 0);
SkPicturePlayback playback(picture);
playback.setDrawLimits(info.fSaveLayerOpID, info.fRestoreOpID);
playback.draw(canvas, NULL);
canvas->flush();
}
@ -2019,9 +2020,10 @@ bool SkGpuDevice::EXPERIMENTAL_drawPicture(SkCanvas* canvas, const SkPicture* pi
}
// Playback using new layers
picture->fData->setReplacements(&replacements);
picture->fData->draw(*canvas, NULL);
picture->fData->setReplacements(NULL);
SkPicturePlayback playback(picture);
playback.setReplacements(&replacements);
playback.draw(canvas, NULL);
// unlock the layers
for (int i = 0; i < gpuData->numSaveLayers(); ++i) {

View File

@ -190,7 +190,7 @@ private:
typedef SkBaseDevice INHERITED;
};
SkData* SkPictureUtils::GatherPixelRefs(SkPicture* pict, const SkRect& area) {
SkData* SkPictureUtils::GatherPixelRefs(const SkPicture* pict, const SkRect& area) {
if (NULL == pict) {
return NULL;
}

View File

@ -314,9 +314,11 @@ private:
void applyUserTransform(SkCanvas* canvas);
size_t getOpID() const {
#if 0
if (NULL != fPicture) {
return fPicture->EXPERIMENTAL_curOpID();
}
#endif
return 0;
}

View File

@ -20,7 +20,7 @@ namespace sk_tools {
: fXTilesPerLargeTile(x)
, fYTilesPerLargeTile(y) {
}
void CopyTilesRenderer::init(SkPicture* pict, const SkString* writePath,
void CopyTilesRenderer::init(const SkPicture* pict, const SkString* writePath,
const SkString* mismatchPath, const SkString* inputFilename,
bool useChecksumBasedFilenames) {
// Do not call INHERITED::init(), which would create a (potentially large) canvas which is

View File

@ -23,7 +23,9 @@ namespace sk_tools {
public:
CopyTilesRenderer(int x, int y);
virtual void init(SkPicture* pict, const SkString* writePath, const SkString* mismatchPath,
virtual void init(const SkPicture* pict,
const SkString* writePath,
const SkString* mismatchPath,
const SkString* inputFilename,
bool useChecksumBasedFilenames) SK_OVERRIDE;

View File

@ -48,8 +48,11 @@ enum {
kDefaultTileHeight = 256
};
void PictureRenderer::init(SkPicture* pict, const SkString* writePath, const SkString* mismatchPath,
const SkString* inputFilename, bool useChecksumBasedFilenames) {
void PictureRenderer::init(const SkPicture* pict,
const SkString* writePath,
const SkString* mismatchPath,
const SkString* inputFilename,
bool useChecksumBasedFilenames) {
this->CopyString(&fWritePath, writePath);
this->CopyString(&fMismatchPath, mismatchPath);
this->CopyString(&fInputFilename, inputFilename);
@ -406,7 +409,7 @@ SkString PipePictureRenderer::getConfigNameInternal() {
///////////////////////////////////////////////////////////////////////////////////////////////
void SimplePictureRenderer::init(SkPicture* picture, const SkString* writePath,
void SimplePictureRenderer::init(const SkPicture* picture, const SkString* writePath,
const SkString* mismatchPath, const SkString* inputFilename,
bool useChecksumBasedFilenames) {
INHERITED::init(picture, writePath, mismatchPath, inputFilename, useChecksumBasedFilenames);
@ -451,7 +454,7 @@ TiledPictureRenderer::TiledPictureRenderer()
, fTilesX(0)
, fTilesY(0) { }
void TiledPictureRenderer::init(SkPicture* pict, const SkString* writePath,
void TiledPictureRenderer::init(const SkPicture* pict, const SkString* writePath,
const SkString* mismatchPath, const SkString* inputFilename,
bool useChecksumBasedFilenames) {
SkASSERT(NULL != pict);
@ -579,7 +582,9 @@ void TiledPictureRenderer::setupPowerOf2Tiles() {
* Saves and restores so that the initial clip and matrix return to their state before this function
* is called.
*/
static void draw_tile_to_canvas(SkCanvas* canvas, const SkRect& tileRect, SkPicture* picture) {
static void draw_tile_to_canvas(SkCanvas* canvas,
const SkRect& tileRect,
const SkPicture* picture) {
int saveCount = canvas->save();
// Translate so that we draw the correct portion of the picture.
// Perform a postTranslate so that the scaleFactor does not interfere with the positioning.

View File

@ -90,8 +90,11 @@ public:
* @param useChecksumBasedFilenames Whether to use checksum-based filenames when writing
* bitmap images to disk.
*/
virtual void init(SkPicture* pict, const SkString* writePath, const SkString* mismatchPath,
const SkString* inputFilename, bool useChecksumBasedFilenames);
virtual void init(const SkPicture* pict,
const SkString* writePath,
const SkString* mismatchPath,
const SkString* inputFilename,
bool useChecksumBasedFilenames);
/**
* TODO(epoger): Temporary hack, while we work on http://skbug.com/2584 ('bench_pictures is
@ -406,7 +409,7 @@ public:
return fCanvas;
}
SkPicture* getPicture() {
const SkPicture* getPicture() {
return fPicture;
}
@ -436,7 +439,7 @@ public:
protected:
SkAutoTUnref<SkCanvas> fCanvas;
SkAutoTUnref<SkPicture> fPicture;
SkAutoTUnref<const SkPicture> fPicture;
bool fUseChecksumBasedFilenames;
ImageResultsAndExpectations* fJsonSummaryPtr;
SkDeviceTypes fDeviceType;
@ -522,8 +525,11 @@ private:
class SimplePictureRenderer : public PictureRenderer {
public:
virtual void init(SkPicture* pict, const SkString* writePath, const SkString* mismatchPath,
const SkString* inputFilename, bool useChecksumBasedFilenames) SK_OVERRIDE;
virtual void init(const SkPicture* pict,
const SkString* writePath,
const SkString* mismatchPath,
const SkString* inputFilename,
bool useChecksumBasedFilenames) SK_OVERRIDE;
virtual bool render(SkBitmap** out = NULL) SK_OVERRIDE;
@ -537,8 +543,11 @@ class TiledPictureRenderer : public PictureRenderer {
public:
TiledPictureRenderer();
virtual void init(SkPicture* pict, const SkString* writePath, const SkString* mismatchPath,
const SkString* inputFilename, bool useChecksumBasedFilenames) SK_OVERRIDE;
virtual void init(const SkPicture* pict,
const SkString* writePath,
const SkString* mismatchPath,
const SkString* inputFilename,
bool useChecksumBasedFilenames) SK_OVERRIDE;
/**
* Renders to tiles, rather than a single canvas.