Add config8888 support to writePixels

Review URL: http://codereview.appspot.com/5374052/



git-svn-id: http://skia.googlecode.com/svn/trunk@2662 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
bsalomon@google.com 2011-11-10 20:57:43 +00:00
parent 14debba629
commit d58a1cd00b
10 changed files with 843 additions and 161 deletions

View File

@ -52,6 +52,7 @@
'../src/core/SkComposeShader.cpp',
'../src/core/SkConcaveToTriangles.cpp',
'../src/core/SkConcaveToTriangles.h',
'../src/core/SkConfig8888.h',
'../src/core/SkCordic.cpp',
'../src/core/SkCordic.h',
'../src/core/SkCoreBlitters.h',

View File

@ -61,6 +61,7 @@
'../tests/TestSize.cpp',
'../tests/ToUnicode.cpp',
'../tests/UtilsTest.cpp',
'../tests/WritePixelsTest.cpp',
'../tests/Writer32Test.cpp',
'../tests/XfermodeTest.cpp',
],

View File

@ -106,12 +106,16 @@ public:
///////////////////////////////////////////////////////////////////////////
/**
* This enum can be used with readPixels to perform a readback into an 8888
* format other than Skia's native format (SkPMColor). There are three byte
* orders supported: native, BGRA, and RGBA. Each has a premultiplied and
* unpremultiplied variant. Unlike the other 8888 configs, the native 8888
* config is defined by shift values rather than byte order. The conversion
* from the native config to a byte order must consider endianness.
* This enum can be used with read/writePixels to perform a pixel ops to or
* from an 8888 config other than Skia's native config (SkPMColor). There
* are three byte orders supported: native, BGRA, and RGBA. Each has a
* premultiplied and unpremultiplied variant.
*
* Components of a 8888 pixel can be packed/unpacked from a 32bit word using
* either byte offsets or shift values. Byte offsets are endian-invariant
* while shifts are not. BGRA and RGBA configs are defined by byte
* orderings. The native config is defined by shift values (SK_A32_SHIFT,
* ..., SK_B32_SHIFT).
*/
enum Config8888 {
/**
@ -186,13 +190,22 @@ public:
/**
* Similar to draw sprite, this method will copy the pixels in bitmap onto
* the device, with the top/left corner specified by (x, y). The pixel
* values in the device are completely replaced: there is no blending.
* the canvas, with the top/left corner specified by (x, y). The canvas'
* pixel values are completely replaced: there is no blending.
*
* Currently if bitmap is backed by a texture this is a no-op. This may be
* relaxed in the future.
*
* If the bitmap has config kARGB_8888_Config then the config8888 param
* will determines how the pixel valuess are intepreted. If the bitmap is
* not kARGB_8888_Config then this parameter is ignored.
*
* Note: If you are recording drawing commands on this canvas to
* SkPicture, writePixels() is ignored!
*/
void writePixels(const SkBitmap& bitmap, int x, int y);
void writePixels(const SkBitmap& bitmap,
int x, int y,
Config8888 config8888 = kNative_Premul_Config8888);
///////////////////////////////////////////////////////////////////////////

View File

@ -107,13 +107,22 @@ public:
const SkBitmap& accessBitmap(bool changePixels);
/**
* DEPRECATED: This will be made protected once WebKit stops using it.
* DEPRECATED: This will be made protected once WebKit stops using it.
* Instead use Canvas' writePixels method.
*
* Similar to draw sprite, this method will copy the pixels in bitmap onto
* the device, with the top/left corner specified by (x, y). The pixel
* values in the device are completely replaced: there is no blending.
*
* Currently if bitmap is backed by a texture this is a no-op. This may be
* relaxed in the future.
*
* If the bitmap has config kARGB_8888_Config then the config8888 param
* will determines how the pixel valuess are intepreted. If the bitmap is
* not kARGB_8888_Config then this parameter is ignored.
*/
virtual void writePixels(const SkBitmap& bitmap, int x, int y);
virtual void writePixels(const SkBitmap& bitmap, int x, int y,
SkCanvas::Config8888 config8888);
/**
* Return the device's associated gpu render target, or NULL.

View File

@ -68,7 +68,8 @@ public:
// overrides from SkDevice
virtual void clear(SkColor color);
virtual void writePixels(const SkBitmap& bitmap, int x, int y);
virtual void writePixels(const SkBitmap& bitmap, int x, int y,
SkCanvas::Config8888 config8888) SK_OVERRIDE;
virtual void setMatrixClip(const SkMatrix& matrix, const SkRegion& clip,
const SkClipStack&);

View File

@ -580,10 +580,11 @@ bool SkCanvas::readPixels(const SkIRect& srcRect, SkBitmap* bitmap) {
}
}
void SkCanvas::writePixels(const SkBitmap& bitmap, int x, int y) {
void SkCanvas::writePixels(const SkBitmap& bitmap, int x, int y,
Config8888 config8888) {
SkDevice* device = this->getDevice();
if (device) {
device->writePixels(bitmap, x, y);
device->writePixels(bitmap, x, y, config8888);
}
}

286
src/core/SkConfig8888.h Normal file
View File

@ -0,0 +1,286 @@
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCanvas.h"
#include "SkColorPriv.h"
namespace {
/**
Copies all pixels from a bitmap to a dst ptr with a given rowBytes and
Config8888. The bitmap must have kARGB_8888_Config.
*/
inline void SkCopyBitmapToConfig8888(uint32_t* dstPixels,
size_t dstRowBytes,
SkCanvas::Config8888 dstConfig8888,
const SkBitmap& srcBmp);
/**
* Copies all pixels in a bitmap to a dst ptr with row bytes. The src bitmap
* is assumed to have pixels and be kARGB_8888_Config. No conversion is applied
*/
inline void SkCopyARGB8888BitmapTo(uint32_t* dstPixels,
size_t dstRowBytes,
const SkBitmap& srcBmp);
/**
Copies over all pixels in a bitmap from a src ptr with a given rowBytes and
Config8888. The bitmap must have pixels and be kARGB_8888_Config.
*/
inline void SkCopyConfig8888ToBitmap(const SkBitmap& dstBmp,
const uint32_t* srcPixels,
size_t srcRowBytes,
SkCanvas::Config8888 srcConfig8888);
}
///////////////////////////////////////////////////////////////////////////////
// Implementation
namespace {
template <int A_IDX, int R_IDX, int G_IDX, int B_IDX>
inline uint32_t pack_config8888(uint32_t a, uint32_t r,
uint32_t g, uint32_t b) {
#ifdef SK_CPU_LENDIAN
return (a << (A_IDX * 8)) | (r << (R_IDX * 8)) |
(g << (G_IDX * 8)) | (b << (B_IDX * 8));
#else
return (a << ((3-A_IDX) * 8)) | (r << ((3-R_IDX) * 8)) |
(g << ((3-G_IDX) * 8)) | (b << ((3-B_IDX) * 8));
#endif
}
template <int A_IDX, int R_IDX, int G_IDX, int B_IDX>
inline void unpack_config8888(uint32_t color,
uint32_t* a, uint32_t* r,
uint32_t* g, uint32_t* b) {
#ifdef SK_CPU_LENDIAN
*a = (color >> (A_IDX * 8)) & 0xff;
*r = (color >> (R_IDX * 8)) & 0xff;
*g = (color >> (G_IDX * 8)) & 0xff;
*b = (color >> (B_IDX * 8)) & 0xff;
#else
*a = (color >> ((3 - A_IDX) * 8)) & 0xff;
*r = (color >> ((3 - R_IDX) * 8)) & 0xff;
*g = (color >> ((3 - G_IDX) * 8)) & 0xff;
*b = (color >> ((3 - B_IDX) * 8)) & 0xff;
#endif
}
template <bool UNPM, int A_IDX, int R_IDX, int G_IDX, int B_IDX>
inline void bitmap_copy_to_config8888(uint32_t* dstPixels,
size_t dstRowBytes,
const SkBitmap& srcBmp) {
SkASSERT(SkBitmap::kARGB_8888_Config == srcBmp.config());
SkAutoLockPixels alp(srcBmp);
int w = srcBmp.width();
int h = srcBmp.height();
size_t srcRowBytes = srcBmp.rowBytes();
intptr_t src = reinterpret_cast<intptr_t>(srcBmp.getPixels());
intptr_t dst = reinterpret_cast<intptr_t>(dstPixels);
for (int y = 0; y < h; ++y) {
const SkPMColor* srcRow = reinterpret_cast<SkPMColor*>(src);
uint32_t* dstRow = reinterpret_cast<uint32_t*>(dst);
for (int x = 0; x < w; ++x) {
SkPMColor pmcolor = srcRow[x];
if (UNPM) {
U8CPU a, r, g, b;
a = SkGetPackedA32(pmcolor);
if (a) {
// We're doing the explicit divide to match WebKit layout
// test expectations. We can modify and rebaseline if there
// it can be shown that there is a more performant way to
// unpremul.
r = SkGetPackedR32(pmcolor) * 0xff / a;
g = SkGetPackedG32(pmcolor) * 0xff / a;
b = SkGetPackedB32(pmcolor) * 0xff / a;
dstRow[x] = pack_config8888<A_IDX, R_IDX,
G_IDX, B_IDX>(a, r, g, b);
} else {
dstRow[x] = 0;
}
} else {
dstRow[x] = pack_config8888<A_IDX, R_IDX,
G_IDX, B_IDX>(
SkGetPackedA32(pmcolor),
SkGetPackedR32(pmcolor),
SkGetPackedG32(pmcolor),
SkGetPackedB32(pmcolor));
}
}
dst += dstRowBytes;
src += srcRowBytes;
}
}
template <bool PM, int A_IDX, int R_IDX, int G_IDX, int B_IDX>
inline void config8888_copy_to_bitmap(const SkBitmap& dstBmp,
const uint32_t* srcPixels,
size_t srcRowBytes) {
SkASSERT(SkBitmap::kARGB_8888_Config == dstBmp.config());
SkAutoLockPixels alp(dstBmp);
int w = dstBmp.width();
int h = dstBmp.height();
size_t dstRowBytes = dstBmp.rowBytes();
intptr_t src = reinterpret_cast<intptr_t>(srcPixels);
intptr_t dst = reinterpret_cast<intptr_t>(dstBmp.getPixels());
for (int y = 0; y < h; ++y) {
const uint32_t* srcRow = reinterpret_cast<uint32_t*>(src);
SkPMColor* dstRow = reinterpret_cast<SkPMColor*>(dst);
for (int x = 0; x < w; ++x) {
uint32_t c8888 = srcRow[x];
uint32_t a, r, g, b;
unpack_config8888<A_IDX, R_IDX, G_IDX, B_IDX>(c8888, &a, &r,
&g, &b);
if (PM) {
// This matches WebKit's conversion which we are replacing.
// We can consider alternative rounding rules for performance.
r = SkMulDiv255Ceiling(r, a);
g = SkMulDiv255Ceiling(g, a);
b = SkMulDiv255Ceiling(b, a);
}
dstRow[x] = SkPackARGB32(a, r, g, b);
}
src += srcRowBytes;
dst += dstRowBytes;
}
}
#ifdef SK_CPU_LENDIAN
static const int SK_NATIVE_A_IDX = SK_A32_SHIFT / 8;
static const int SK_NATIVE_R_IDX = SK_R32_SHIFT / 8;
static const int SK_NATIVE_G_IDX = SK_G32_SHIFT / 8;
static const int SK_NATIVE_B_IDX = SK_B32_SHIFT / 8;
#else
static const int SK_NATIVE_A_IDX = 3 - (SK_A32_SHIFT / 8);
static const int SK_NATIVE_R_IDX = 3 - (SK_R32_SHIFT / 8);
static const int SK_NATIVE_G_IDX = 3 - (SK_G32_SHIFT / 8);
static const int SK_NATIVE_B_IDX = 3 - (SK_B32_SHIFT / 8);
#endif
inline void SkCopyBitmapToConfig8888(uint32_t* dstPixels,
size_t dstRowBytes,
SkCanvas::Config8888 dstConfig8888,
const SkBitmap& srcBmp) {
switch (dstConfig8888) {
case SkCanvas::kNative_Premul_Config8888:
bitmap_copy_to_config8888<false,
SK_NATIVE_A_IDX, SK_NATIVE_R_IDX,
SK_NATIVE_G_IDX, SK_NATIVE_B_IDX>(
dstPixels,
dstRowBytes,
srcBmp);
break;
case SkCanvas::kNative_Unpremul_Config8888:
bitmap_copy_to_config8888<true,
SK_NATIVE_A_IDX, SK_NATIVE_R_IDX,
SK_NATIVE_G_IDX, SK_NATIVE_B_IDX>(
dstPixels,
dstRowBytes,
srcBmp);
break;
case SkCanvas::kBGRA_Premul_Config8888:
bitmap_copy_to_config8888<false, 3, 2, 1, 0> (
dstPixels, dstRowBytes, srcBmp);
break;
case SkCanvas::kBGRA_Unpremul_Config8888:
bitmap_copy_to_config8888<true, 3, 2, 1, 0> (
dstPixels, dstRowBytes, srcBmp);
break;
case SkCanvas::kRGBA_Premul_Config8888:
bitmap_copy_to_config8888<false, 3, 0, 1, 2> (
dstPixels, dstRowBytes, srcBmp);
break;
case SkCanvas::kRGBA_Unpremul_Config8888:
bitmap_copy_to_config8888<true, 3, 0, 1, 2> (
dstPixels, dstRowBytes, srcBmp);
break;
default:
SkASSERT(false && "unexpected Config8888");
break;
}
}
inline void SkCopyConfig8888ToBitmap(const SkBitmap& dstBmp,
const uint32_t* srcPixels,
size_t srcRowBytes,
SkCanvas::Config8888 srcConfig8888) {
switch (srcConfig8888) {
case SkCanvas::kNative_Premul_Config8888:
config8888_copy_to_bitmap<false,
SK_NATIVE_A_IDX, SK_NATIVE_R_IDX,
SK_NATIVE_G_IDX, SK_NATIVE_B_IDX>(
dstBmp,
srcPixels,
srcRowBytes);
break;
case SkCanvas::kNative_Unpremul_Config8888:
config8888_copy_to_bitmap<true,
SK_NATIVE_A_IDX, SK_NATIVE_R_IDX,
SK_NATIVE_G_IDX, SK_NATIVE_B_IDX>(
dstBmp,
srcPixels,
srcRowBytes);
break;
case SkCanvas::kBGRA_Premul_Config8888:
config8888_copy_to_bitmap<false, 3, 2, 1, 0> (
dstBmp, srcPixels, srcRowBytes);
break;
case SkCanvas::kBGRA_Unpremul_Config8888:
config8888_copy_to_bitmap<true, 3, 2, 1, 0> (
dstBmp, srcPixels, srcRowBytes);
break;
case SkCanvas::kRGBA_Premul_Config8888:
config8888_copy_to_bitmap<false, 3, 0, 1, 2> (
dstBmp, srcPixels, srcRowBytes);
break;
case SkCanvas::kRGBA_Unpremul_Config8888:
config8888_copy_to_bitmap<true, 3, 0, 1, 2> (
dstBmp, srcPixels, srcRowBytes);
break;
default:
SkASSERT(false && "unexpected Config8888");
break;
}
}
inline void SkCopyARGB8888BitmapTo(uint32_t* dstPixels,
size_t dstRowBytes,
const SkBitmap& srcBmp) {
SkASSERT(SkBitmap::kARGB_8888_Config == srcBmp.config());
SkAutoLockPixels alp(srcBmp);
int w = srcBmp.width();
int h = srcBmp.height();
size_t srcRowBytes = srcBmp.rowBytes();
size_t tightRowBytes = w * 4;
char* src = reinterpret_cast<char*>(srcBmp.getPixels());
char* dst = reinterpret_cast<char*>(dstPixels);
if (tightRowBytes == srcRowBytes &&
tightRowBytes == dstRowBytes) {
memcpy(dst, src, tightRowBytes * h);
} else {
for (int y = 0; y < h; ++y) {
memcpy(dst, src, tightRowBytes);
dst += dstRowBytes;
src += srcRowBytes;
}
}
}
}

View File

@ -159,10 +159,6 @@ bool SkDevice::readPixels(SkBitmap* bitmap, int x, int y,
const SkCanvas::Config8888 SkDevice::kPMColorAlias =
(SkCanvas::Config8888) -1;
#endif
static const int NATIVE_A_IDX = SK_A32_SHIFT / 8;
static const int NATIVE_R_IDX = SK_R32_SHIFT / 8;
static const int NATIVE_G_IDX = SK_G32_SHIFT / 8;
static const int NATIVE_B_IDX = SK_B32_SHIFT / 8;
#else
#if 0 == SK_A32_SHIFT && 8 == SK_R32_SHIFT && \
16 == SK_G32_SHIFT && 24 == SK_B32_SHIFT
@ -176,105 +172,9 @@ bool SkDevice::readPixels(SkBitmap* bitmap, int x, int y,
const SkCanvas::Config8888 SkDevice::kPMColorAlias =
(SkCanvas::Config8888) -1;
#endif
static const int NATIVE_A_IDX = 3 - (SK_A32_SHIFT / 8);
static const int NATIVE_R_IDX = 3 - (SK_R32_SHIFT / 8);
static const int NATIVE_G_IDX = 3 - (SK_G32_SHIFT / 8);
static const int NATIVE_B_IDX = 3 - (SK_B32_SHIFT / 8);
#endif
#include <SkColorPriv.h>
namespace {
template <int A_IDX, int R_IDX, int G_IDX, int B_IDX>
inline uint32_t pack_config8888(uint32_t a, uint32_t r,
uint32_t g, uint32_t b) {
#ifdef SK_CPU_LENDIAN
return (a << (A_IDX * 8)) | (r << (R_IDX * 8)) |
(g << (G_IDX * 8)) | (b << (B_IDX * 8));
#else
return (a << ((3-A_IDX) * 8)) | (r << ((3-R_IDX) * 8)) |
(g << ((3-G_IDX) * 8)) | (b << ((3-B_IDX) * 8));
#endif
}
template <bool UNPM, int A_IDX, int R_IDX, int G_IDX, int B_IDX>
inline void bitmap_copy_to_config8888(const SkBitmap& srcBmp,
uint32_t* dstPixels,
size_t dstRowBytes) {
SkASSERT(SkBitmap::kARGB_8888_Config == srcBmp.config());
SkAutoLockPixels alp(srcBmp);
int w = srcBmp.width();
int h = srcBmp.height();
size_t srcRowBytes = srcBmp.rowBytes();
intptr_t src = reinterpret_cast<intptr_t>(srcBmp.getPixels());
intptr_t dst = reinterpret_cast<intptr_t>(dstPixels);
for (int y = 0; y < h; ++y) {
const SkPMColor* srcRow = reinterpret_cast<SkPMColor*>(src);
uint32_t* dstRow = reinterpret_cast<uint32_t*>(dst);
for (int x = 0; x < w; ++x) {
SkPMColor pmcolor = srcRow[x];
if (UNPM) {
U8CPU a, r, g, b;
a = SkGetPackedA32(pmcolor);
if (a) {
// We're doing the explicit divide to match WebKit layout
// test expectations. We can modify and rebaseline if there
// it can be shown that there is a more performant way to
// unpremul.
r = SkGetPackedR32(pmcolor) * 0xff / a;
g = SkGetPackedG32(pmcolor) * 0xff / a;
b = SkGetPackedB32(pmcolor) * 0xff / a;
dstRow[x] = pack_config8888<A_IDX, R_IDX,
G_IDX, B_IDX>(a, r, g, b);
} else {
dstRow[x] = 0;
}
} else {
dstRow[x] = pack_config8888<A_IDX, R_IDX,
G_IDX, B_IDX>(
SkGetPackedA32(pmcolor),
SkGetPackedR32(pmcolor),
SkGetPackedG32(pmcolor),
SkGetPackedB32(pmcolor));
}
}
dst += dstRowBytes;
src += srcRowBytes;
}
}
inline void bitmap_copy_to_native(const SkBitmap& srcBmp,
uint32_t* dstPixels,
size_t dstRowBytes) {
SkASSERT(SkBitmap::kARGB_8888_Config == srcBmp.config());
SkAutoLockPixels alp(srcBmp);
int w = srcBmp.width();
int h = srcBmp.height();
size_t srcRowBytes = srcBmp.rowBytes();
size_t tightRowBytes = w * 4;
char* src = reinterpret_cast<char*>(srcBmp.getPixels());
char* dst = reinterpret_cast<char*>(dstPixels);
if (tightRowBytes == srcRowBytes &&
tightRowBytes == dstRowBytes) {
memcpy(dst, src, tightRowBytes * h);
} else {
for (int y = 0; y < h; ++y) {
memcpy(dst, src, tightRowBytes);
dst += dstRowBytes;
src += srcRowBytes;
}
}
}
}
#include <SkConfig8888.h>
bool SkDevice::onReadPixels(const SkBitmap& bitmap,
int x, int y,
@ -299,55 +199,78 @@ bool SkDevice::onReadPixels(const SkBitmap& bitmap,
uint32_t* bmpPixels = reinterpret_cast<uint32_t*>(bitmap.getPixels());
if ((SkCanvas::kNative_Premul_Config8888 == config8888 ||
kPMColorAlias == config8888)) {
bitmap_copy_to_native(subset, bmpPixels, bitmap.rowBytes());
SkCopyARGB8888BitmapTo(bmpPixels, bitmap.rowBytes(), subset);
} else {
switch (config8888) {
case SkCanvas::kNative_Premul_Config8888:
bitmap_copy_to_config8888<false,
NATIVE_A_IDX, NATIVE_R_IDX,
NATIVE_G_IDX, NATIVE_B_IDX>(
subset,
bmpPixels,
bitmap.rowBytes());
break;
case SkCanvas::kNative_Unpremul_Config8888:
bitmap_copy_to_config8888<true,
NATIVE_A_IDX, NATIVE_R_IDX,
NATIVE_G_IDX, NATIVE_B_IDX>(
subset,
bmpPixels,
bitmap.rowBytes());
break;
case SkCanvas::kBGRA_Premul_Config8888:
bitmap_copy_to_config8888<false, 3, 2, 1, 0> (
subset, bmpPixels, bitmap.rowBytes());
break;
case SkCanvas::kBGRA_Unpremul_Config8888:
bitmap_copy_to_config8888<true, 3, 2, 1, 0> (
subset, bmpPixels, bitmap.rowBytes());
break;
case SkCanvas::kRGBA_Premul_Config8888:
bitmap_copy_to_config8888<false, 3, 0, 1, 2> (
subset, bmpPixels, bitmap.rowBytes());
break;
case SkCanvas::kRGBA_Unpremul_Config8888:
bitmap_copy_to_config8888<true, 3, 0, 1, 2> (
subset, bmpPixels, bitmap.rowBytes());
break;
default:
SkASSERT(false && "unexpected Config8888");
break;
}
SkCopyBitmapToConfig8888(bmpPixels,
bitmap.rowBytes(),
config8888,
subset);
}
return true;
}
void SkDevice::writePixels(const SkBitmap& bitmap, int x, int y) {
void SkDevice::writePixels(const SkBitmap& bitmap,
int x, int y,
SkCanvas::Config8888 config8888) {
if (bitmap.isNull() || bitmap.getTexture()) {
return;
}
const SkBitmap* sprite = &bitmap;
// check whether we have to handle a config8888 that doesn't match SkPMColor
if (SkBitmap::kARGB_8888_Config == bitmap.config() &&
SkCanvas::kNative_Premul_Config8888 != config8888 &&
kPMColorAlias != config8888) {
// We're going to have to convert from a config8888 to the native config
// First we clip to the device bounds.
SkBitmap dstBmp = this->accessBitmap(true);
SkIRect spriteRect = SkIRect::MakeXYWH(x, y,
bitmap.width(), bitmap.height());
SkIRect devRect = SkIRect::MakeWH(dstBmp.width(), dstBmp.height());
if (!spriteRect.intersect(devRect)) {
return;
}
// write directly to the device if it has pixels and is SkPMColor
bool drawSprite;
if (SkBitmap::kARGB_8888_Config == dstBmp.config() && !dstBmp.isNull()) {
// we can write directly to the dst when doing the conversion
dstBmp.extractSubset(&dstBmp, spriteRect);
drawSprite = false;
} else {
// we convert to a temporary bitmap and draw that as a sprite
dstBmp.setConfig(SkBitmap::kARGB_8888_Config,
spriteRect.width(),
spriteRect.height());
if (!dstBmp.allocPixels()) {
return;
}
drawSprite = true;
}
// copy pixels to dstBmp and convert from config8888 to native config.
SkAutoLockPixels alp(bitmap);
uint32_t* srcPixels = bitmap.getAddr32(spriteRect.fLeft - x,
spriteRect.fTop - y);
SkCopyConfig8888ToBitmap(dstBmp,
srcPixels,
bitmap.rowBytes(),
config8888);
if (drawSprite) {
// we've clipped the sprite when we made a copy
x = spriteRect.fLeft;
y = spriteRect.fTop;
sprite = &dstBmp;
} else {
return;
}
}
SkPaint paint;
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
SkCanvas canvas(this);
canvas.drawSprite(bitmap, x, y, &paint);
canvas.drawSprite(*sprite, x, y, &paint);
}
///////////////////////////////////////////////////////////////////////////////

View File

@ -299,20 +299,48 @@ bool SkGpuDevice::onReadPixels(const SkBitmap& bitmap,
bitmap.rowBytes());
}
void SkGpuDevice::writePixels(const SkBitmap& bitmap, int x, int y) {
// This can be removed when temporary code in writePixels is removed
#include "SkConfig8888.h"
void SkGpuDevice::writePixels(const SkBitmap& bitmap, int x, int y,
SkCanvas::Config8888 config8888) {
SkAutoLockPixels alp(bitmap);
if (!bitmap.readyToDraw()) {
return;
}
GrPixelConfig config = SkGr::BitmapConfig2PixelConfig(bitmap.config(),
bitmap.isOpaque());
GrPixelConfig config;
if (SkBitmap::kARGB_8888_Config == bitmap.config()) {
config = config8888_to_gr_config(config8888);
} else {
config= SkGr::BitmapConfig2PixelConfig(bitmap.config(),
bitmap.isOpaque());
}
// Temporary until we add support for drawing from an unpremul config in
// GrContext
const SkBitmap* src = &bitmap;
SkBitmap tmp;
if (GrPixelConfigIsUnpremultiplied(config)) {
config = kSkia8888_PM_GrPixelConfig;
tmp.setConfig(SkBitmap::kARGB_8888_Config,
bitmap.width(), bitmap.height());
if (!tmp.allocPixels()) {
return;
}
SkAutoLockPixels alp(bitmap);
uint32_t* pixels = reinterpret_cast<uint32_t*>(bitmap.getPixels());
SkCopyConfig8888ToBitmap(tmp, pixels, bitmap.rowBytes(), config8888);
src = &tmp;
}
fContext->setRenderTarget(fRenderTarget);
// we aren't setting the clip or matrix, so mark as dirty
// we don't need to set them for this call and don't have them anyway
fNeedPrepareRenderTarget = true;
fContext->writePixels(x, y, bitmap.width(), bitmap.height(),
config, bitmap.getPixels(), bitmap.rowBytes());
fContext->writePixels(x, y, src->width(), src->height(),
config, src->getPixels(), src->rowBytes());
}
///////////////////////////////////////////////////////////////////////////////

419
tests/WritePixelsTest.cpp Normal file
View File

@ -0,0 +1,419 @@
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Test.h"
#include "SkCanvas.h"
#include "SkRegion.h"
#include "SkGpuDevice.h"
static const int DEV_W = 100, DEV_H = 100;
static const SkIRect DEV_RECT = SkIRect::MakeWH(DEV_W, DEV_H);
static const SkRect DEV_RECT_S = SkRect::MakeWH(DEV_W * SK_Scalar1,
DEV_H * SK_Scalar1);
static const U8CPU DEV_PAD = 0xee;
namespace {
SkPMColor getCanvasColor(int x, int y) {
SkASSERT(x >= 0 && x < DEV_W);
SkASSERT(y >= 0 && y < DEV_H);
U8CPU r = x;
U8CPU g = y;
U8CPU b = 0xc;
U8CPU a = 0xff;
switch ((x+y) % 5) {
case 0:
a = 0xff;
break;
case 1:
a = 0x80;
break;
case 2:
a = 0xCC;
break;
case 4:
a = 0x01;
break;
case 3:
a = 0x00;
break;
}
return SkPremultiplyARGBInline(a, r, g, b);
}
bool config8888IsPremul(SkCanvas::Config8888 config8888) {
switch (config8888) {
case SkCanvas::kNative_Premul_Config8888:
case SkCanvas::kBGRA_Premul_Config8888:
case SkCanvas::kRGBA_Premul_Config8888:
return true;
case SkCanvas::kNative_Unpremul_Config8888:
case SkCanvas::kBGRA_Unpremul_Config8888:
case SkCanvas::kRGBA_Unpremul_Config8888:
return false;
default:
SkASSERT(0);
return false;
}
}
// assumes any premu/.unpremul has been applied
uint32_t packConfig8888(SkCanvas::Config8888 config8888,
U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
uint32_t r32;
uint8_t* result = reinterpret_cast<uint8_t*>(&r32);
switch (config8888) {
case SkCanvas::kNative_Premul_Config8888:
case SkCanvas::kNative_Unpremul_Config8888:
r32 = SkPackARGB32NoCheck(a, r, g, b);
break;
case SkCanvas::kBGRA_Premul_Config8888:
case SkCanvas::kBGRA_Unpremul_Config8888:
result[0] = b;
result[1] = g;
result[2] = r;
result[3] = a;
break;
case SkCanvas::kRGBA_Premul_Config8888:
case SkCanvas::kRGBA_Unpremul_Config8888:
result[0] = r;
result[1] = g;
result[2] = b;
result[3] = a;
break;
default:
SkASSERT(0);
return 0;
}
return r32;
}
uint32_t getBitmapColor(int x, int y, int w, int h, SkCanvas::Config8888 config8888) {
int n = y * w + x;
U8CPU b = n & 0xff;
U8CPU g = (n >> 8) & 0xff;
U8CPU r = (n >> 16) & 0xff;
U8CPU a;
switch ((x+y) % 5) {
case 4:
a = 0xff;
break;
case 3:
a = 0x80;
break;
case 2:
a = 0xCC;
break;
case 1:
a = 0x01;
break;
case 0:
a = 0x00;
break;
}
if (config8888IsPremul(config8888)) {
r = SkMulDiv255Ceiling(r, a);
g = SkMulDiv255Ceiling(g, a);
b = SkMulDiv255Ceiling(b, a);
}
return packConfig8888(config8888, a, r, g , b);
}
void fillCanvas(SkCanvas* canvas) {
static SkBitmap bmp;
if (bmp.isNull()) {
bmp.setConfig(SkBitmap::kARGB_8888_Config, DEV_W, DEV_H);
bool alloc = bmp.allocPixels();
SkASSERT(alloc);
SkAutoLockPixels alp(bmp);
intptr_t pixels = reinterpret_cast<intptr_t>(bmp.getPixels());
for (int y = 0; y < DEV_H; ++y) {
for (int x = 0; x < DEV_W; ++x) {
SkPMColor* pixel = reinterpret_cast<SkPMColor*>(pixels + y * bmp.rowBytes() + x * bmp.bytesPerPixel());
*pixel = getCanvasColor(x, y);
}
}
}
canvas->save();
canvas->setMatrix(SkMatrix::I());
canvas->clipRect(DEV_RECT_S, SkRegion::kReplace_Op);
SkPaint paint;
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
canvas->drawBitmap(bmp, 0, 0, &paint);
canvas->restore();
}
SkPMColor convertConfig8888ToPMColor(SkCanvas::Config8888 config8888,
uint32_t color,
bool* premul) {
const uint8_t* c = reinterpret_cast<uint8_t*>(&color);
U8CPU a,r,g,b;
*premul = false;
switch (config8888) {
case SkCanvas::kNative_Premul_Config8888:
return color;
case SkCanvas::kNative_Unpremul_Config8888:
*premul = true;
a = SkGetPackedA32(color);
r = SkGetPackedR32(color);
g = SkGetPackedG32(color);
b = SkGetPackedB32(color);
break;
case SkCanvas::kBGRA_Unpremul_Config8888:
*premul = true; // fallthru
case SkCanvas::kBGRA_Premul_Config8888:
a = static_cast<U8CPU>(c[3]);
r = static_cast<U8CPU>(c[2]);
g = static_cast<U8CPU>(c[1]);
b = static_cast<U8CPU>(c[0]);
break;
case SkCanvas::kRGBA_Unpremul_Config8888:
*premul = true; // fallthru
case SkCanvas::kRGBA_Premul_Config8888:
a = static_cast<U8CPU>(c[3]);
r = static_cast<U8CPU>(c[0]);
g = static_cast<U8CPU>(c[1]);
b = static_cast<U8CPU>(c[2]);
break;
default:
GrCrash("Unexpected Config8888");
}
if (*premul) {
r = SkMulDiv255Ceiling(r, a);
g = SkMulDiv255Ceiling(g, a);
b = SkMulDiv255Ceiling(b, a);
}
return SkPackARGB32(a, r, g, b);
}
bool checkPixel(SkPMColor a, SkPMColor b, bool didPremulConversion) {
if (!didPremulConversion) {
return a == b;
}
int32_t aA = static_cast<int32_t>(SkGetPackedA32(a));
int32_t aR = static_cast<int32_t>(SkGetPackedR32(a));
int32_t aG = static_cast<int32_t>(SkGetPackedG32(a));
int32_t aB = SkGetPackedB32(a);
int32_t bA = static_cast<int32_t>(SkGetPackedA32(b));
int32_t bR = static_cast<int32_t>(SkGetPackedR32(b));
int32_t bG = static_cast<int32_t>(SkGetPackedG32(b));
int32_t bB = static_cast<int32_t>(SkGetPackedB32(b));
return aA == bA &&
SkAbs32(aR - bR) <= 1 &&
SkAbs32(aG - bG) <= 1 &&
SkAbs32(aB - bB) <= 1;
}
bool checkWrite(skiatest::Reporter* reporter,
SkCanvas* canvas,
const SkBitmap& bitmap,
int writeX, int writeY,
SkCanvas::Config8888 config8888) {
SkDevice* dev = canvas->getDevice();
if (!dev) {
return false;
}
SkBitmap devBmp = dev->accessBitmap(false);
if (devBmp.width() != DEV_W ||
devBmp.height() != DEV_H ||
devBmp.config() != SkBitmap::kARGB_8888_Config ||
devBmp.isNull()) {
return false;
}
SkAutoLockPixels alp(devBmp);
intptr_t canvasPixels = reinterpret_cast<intptr_t>(devBmp.getPixels());
size_t canvasRowBytes = devBmp.rowBytes();
SkIRect writeRect = SkIRect::MakeXYWH(writeX, writeY, bitmap.width(), bitmap.height());
bool success = true;
for (int cy = 0; cy < DEV_H; ++cy) {
const SkPMColor* canvasRow = reinterpret_cast<const SkPMColor*>(canvasPixels);
for (int cx = 0; cx < DEV_W; ++cx) {
SkPMColor canvasPixel = canvasRow[cx];
if (writeRect.contains(cx, cy)) {
int bx = cx - writeX;
int by = cy - writeY;
uint32_t bmpColor8888 = getBitmapColor(bx, by, bitmap.width(), bitmap.height(), config8888);
bool mul;
SkPMColor bmpPMColor = convertConfig8888ToPMColor(config8888, bmpColor8888, &mul);
bool check;
// do we need fuzzy test?
REPORTER_ASSERT(reporter, check = checkPixel(bmpPMColor, canvasPixel, mul));
if (!check) {
success = false;
}
} else {
bool check;
SkPMColor testColor = getCanvasColor(cx, cy);
REPORTER_ASSERT(reporter, check = (canvasPixel == testColor));
if (!check) {
success = false;
}
}
}
if (cy != DEV_H -1) {
const char* pad = reinterpret_cast<const char*>(canvasPixels + 4 * DEV_W);
for (size_t px = 0; px < canvasRowBytes - 4 * DEV_W; ++px) {
bool check;
REPORTER_ASSERT(reporter, check = (pad[px] == static_cast<char>(DEV_PAD)));
if (!check) {
success = false;
}
}
}
canvasPixels += canvasRowBytes;
}
return success;
}
enum DevType {
kRaster_DevType,
kGpu_DevType,
};
struct CanvasConfig {
DevType fDevType;
bool fTightRowBytes;
};
static const CanvasConfig gCanvasConfigs[] = {
{kRaster_DevType, true},
{kRaster_DevType, false},
{kGpu_DevType, true}, // row bytes has no meaning on gpu devices
};
bool setupCanvas(SkCanvas* canvas, const CanvasConfig& c, GrContext* grCtx) {
switch (c.fDevType) {
case kRaster_DevType: {
SkBitmap bmp;
size_t rowBytes = c.fTightRowBytes ? 0 : 4 * DEV_W + 100;
bmp.setConfig(SkBitmap::kARGB_8888_Config, DEV_W, DEV_H, rowBytes);
if (!bmp.allocPixels()) {
return false;
}
// if rowBytes isn't tight then set the padding to a known value
if (rowBytes) {
SkAutoLockPixels alp(bmp);
memset(bmp.getPixels(), DEV_PAD, bmp.getSafeSize());
}
canvas->setDevice(new SkDevice(bmp))->unref();
} break;
case kGpu_DevType:
canvas->setDevice(new SkGpuDevice(grCtx,
SkBitmap::kARGB_8888_Config,
DEV_W, DEV_H))->unref();
break;
}
return true;
}
bool setupBitmap(SkBitmap* bitmap,
SkCanvas::Config8888 config8888,
int w, int h,
bool tightRowBytes) {
size_t rowBytes = tightRowBytes ? 0 : 4 * w + 60;
bitmap->setConfig(SkBitmap::kARGB_8888_Config, w, h, rowBytes);
if (!bitmap->allocPixels()) {
return false;
}
SkAutoLockPixels alp(*bitmap);
intptr_t pixels = reinterpret_cast<intptr_t>(bitmap->getPixels());
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
uint32_t* pixel = reinterpret_cast<uint32_t*>(pixels + y * bitmap->rowBytes() + x * 4);
*pixel = getBitmapColor(x, y, w, h, config8888);
}
}
return true;
}
void WritePixelsTest(skiatest::Reporter* reporter, GrContext* context) {
SkCanvas canvas;
const SkIRect testRects[] = {
// entire thing
DEV_RECT,
// larger on all sides
SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H + 10),
// fully contained
SkIRect::MakeLTRB(DEV_W / 4, DEV_H / 4, 3 * DEV_W / 4, 3 * DEV_H / 4),
// outside top left
SkIRect::MakeLTRB(-10, -10, -1, -1),
// touching top left corner
SkIRect::MakeLTRB(-10, -10, 0, 0),
// overlapping top left corner
SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H / 4),
// overlapping top left and top right corners
SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H / 4),
// touching entire top edge
SkIRect::MakeLTRB(-10, -10, DEV_W + 10, 0),
// overlapping top right corner
SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H / 4),
// contained in x, overlapping top edge
SkIRect::MakeLTRB(DEV_W / 4, -10, 3 * DEV_W / 4, DEV_H / 4),
// outside top right corner
SkIRect::MakeLTRB(DEV_W + 1, -10, DEV_W + 10, -1),
// touching top right corner
SkIRect::MakeLTRB(DEV_W, -10, DEV_W + 10, 0),
// overlapping top left and bottom left corners
SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H + 10),
// touching entire left edge
SkIRect::MakeLTRB(-10, -10, 0, DEV_H + 10),
// overlapping bottom left corner
SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W / 4, DEV_H + 10),
// contained in y, overlapping left edge
SkIRect::MakeLTRB(-10, DEV_H / 4, DEV_W / 4, 3 * DEV_H / 4),
// outside bottom left corner
SkIRect::MakeLTRB(-10, DEV_H + 1, -1, DEV_H + 10),
// touching bottom left corner
SkIRect::MakeLTRB(-10, DEV_H, 0, DEV_H + 10),
// overlapping bottom left and bottom right corners
SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10),
// touching entire left edge
SkIRect::MakeLTRB(0, DEV_H, DEV_W, DEV_H + 10),
// overlapping bottom right corner
SkIRect::MakeLTRB(3 * DEV_W / 4, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10),
// overlapping top right and bottom right corners
SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H + 10),
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gCanvasConfigs); ++i) {
REPORTER_ASSERT(reporter, setupCanvas(&canvas, gCanvasConfigs[i], context));
static const SkCanvas::Config8888 gReadConfigs[] = {
SkCanvas::kNative_Premul_Config8888,
SkCanvas::kNative_Unpremul_Config8888,
SkCanvas::kBGRA_Premul_Config8888,
SkCanvas::kBGRA_Unpremul_Config8888,
SkCanvas::kRGBA_Premul_Config8888,
SkCanvas::kRGBA_Unpremul_Config8888,
};
for (int r = 0; r < SK_ARRAY_COUNT(testRects); ++r) {
const SkIRect& rect = testRects[r];
for (int tightBmp = 0; tightBmp < 2; ++tightBmp) {
for (int c = 0; c < SK_ARRAY_COUNT(gReadConfigs); ++c) {
fillCanvas(&canvas);
SkCanvas::Config8888 config8888 = gReadConfigs[c];
SkBitmap bmp;
REPORTER_ASSERT(reporter, setupBitmap(&bmp, config8888, rect.width(), rect.height(), SkToBool(tightBmp)));
canvas.writePixels(bmp, rect.fLeft, rect.fTop, config8888);
REPORTER_ASSERT(reporter, checkWrite(reporter, &canvas, bmp, rect.fLeft, rect.fTop, config8888));
}
}
}
}
}
}
#include "TestClassDef.h"
DEFINE_GPUTESTCLASS("WritePixels", WritePixelsTestClass, WritePixelsTest)