use conics for arcTo

guarded by SK_SUPPORT_LEGACY_ARCTO_QUADS

BUG=skia:

Review URL: https://codereview.chromium.org/892703002
This commit is contained in:
reed 2015-02-09 13:54:43 -08:00 committed by Commit bot
parent 8e85761e5a
commit d5d27d9b14
4 changed files with 159 additions and 24 deletions

View File

@ -1555,3 +1555,89 @@ SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w,
w = SkScalarSqrt((w1 * w1) / (w0 * w2));
return w;
}
int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
// rotate by x,y so that uStart is (1.0)
SkScalar x = SkPoint::DotProduct(uStart, uStop);
SkScalar y = SkPoint::CrossProduct(uStart, uStop);
SkScalar absY = SkScalarAbs(y);
// check for (effectively) coincident vectors
// this can happen if our angle is nearly 0 or nearly 180 (y == 0)
// ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
(y <= 0 && kCCW_SkRotationDirection == dir))) {
return 0;
}
if (dir == kCCW_SkRotationDirection) {
y = -y;
}
// We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
// 0 == [0 .. 90)
// 1 == [90 ..180)
// 2 == [180..270)
// 3 == [270..360)
//
int quadrant = 0;
if (0 == y) {
quadrant = 2; // 180
SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
} else if (0 == x) {
SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
quadrant = y > 0 ? 1 : 3; // 90 : 270
} else {
if (y < 0) {
quadrant += 2;
}
if ((x < 0) != (y < 0)) {
quadrant += 1;
}
}
const SkPoint quadrantPts[] = {
{ 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
};
const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
int conicCount = quadrant;
for (int i = 0; i < conicCount; ++i) {
dst[i].set(&quadrantPts[i * 2], quadrantWeight);
}
// Now compute any remaing (sub-90-degree) arc for the last conic
const SkPoint finalP = { x, y };
const SkPoint& lastQ = quadrantPts[quadrant * 2]; // will already be a unit-vector
const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
SkASSERT(0 <= dot && dot <= SK_Scalar1);
if (dot < 1 - SK_ScalarNearlyZero) {
SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
// compute the bisector vector, and then rescale to be the off-curve point.
// we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
// length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
// This is nice, since our computed weight is cos(theta/2) as well!
//
const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
offCurve.setLength(SkScalarInvert(cosThetaOver2));
dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
conicCount += 1;
}
// now handle counter-clockwise and the initial unitStart rotation
SkMatrix matrix;
matrix.setSinCos(uStart.fY, uStart.fX);
if (dir == kCCW_SkRotationDirection) {
matrix.preScale(SK_Scalar1, -SK_Scalar1);
}
if (userMatrix) {
matrix.postConcat(*userMatrix);
}
for (int i = 0; i < conicCount; ++i) {
matrix.mapPoints(dst[i].fPts, 3);
}
return conicCount;
}

View File

@ -226,7 +226,6 @@ enum SkRotationDirection {
int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop,
SkRotationDirection, const SkMatrix*, SkPoint quadPoints[]);
// experimental
struct SkConic {
SkConic() {}
SkConic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
@ -248,6 +247,13 @@ struct SkConic {
fW = w;
}
void set(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
fPts[0] = p0;
fPts[1] = p1;
fPts[2] = p2;
fW = w;
}
/**
* Given a t-value [0...1] return its position and/or tangent.
* If pos is not null, return its position at the t-value.
@ -292,6 +298,12 @@ struct SkConic {
bool findMaxCurvature(SkScalar* t) const;
static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix&);
enum {
kMaxConicsForArc = 5
};
static int BuildUnitArc(const SkVector& start, const SkVector& stop, SkRotationDirection,
const SkMatrix*, SkConic conics[kMaxConicsForArc]);
};
#include "SkTemplates.h"

View File

@ -915,23 +915,22 @@ static bool arc_is_lone_point(const SkRect& oval, SkScalar startAngle, SkScalar
return false;
}
static int build_arc_points(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle,
SkPoint pts[kSkBuildQuadArcStorage]) {
SkVector start, stop;
start.fY = SkScalarSinCos(SkDegreesToRadians(startAngle), &start.fX);
stop.fY = SkScalarSinCos(SkDegreesToRadians(startAngle + sweepAngle),
&stop.fX);
// Return the unit vectors pointing at the start/stop points for the given start/sweep angles
//
static void angles_to_unit_vectors(SkScalar startAngle, SkScalar sweepAngle,
SkVector* startV, SkVector* stopV, SkRotationDirection* dir) {
startV->fY = SkScalarSinCos(SkDegreesToRadians(startAngle), &startV->fX);
stopV->fY = SkScalarSinCos(SkDegreesToRadians(startAngle + sweepAngle), &stopV->fX);
/* If the sweep angle is nearly (but less than) 360, then due to precision
loss in radians-conversion and/or sin/cos, we may end up with coincident
vectors, which will fool SkBuildQuadArc into doing nothing (bad) instead
of drawing a nearly complete circle (good).
e.g. canvas.drawArc(0, 359.99, ...)
-vs- canvas.drawArc(0, 359.9, ...)
We try to detect this edge case, and tweak the stop vector
loss in radians-conversion and/or sin/cos, we may end up with coincident
vectors, which will fool SkBuildQuadArc into doing nothing (bad) instead
of drawing a nearly complete circle (good).
e.g. canvas.drawArc(0, 359.99, ...)
-vs- canvas.drawArc(0, 359.9, ...)
We try to detect this edge case, and tweak the stop vector
*/
if (start == stop) {
if (*startV == *stopV) {
SkScalar sw = SkScalarAbs(sweepAngle);
if (sw < SkIntToScalar(360) && sw > SkIntToScalar(359)) {
SkScalar stopRad = SkDegreesToRadians(startAngle + sweepAngle);
@ -940,21 +939,34 @@ static int build_arc_points(const SkRect& oval, SkScalar startAngle, SkScalar sw
// not sure how much will be enough, so we use a loop
do {
stopRad -= deltaRad;
stop.fY = SkScalarSinCos(stopRad, &stop.fX);
} while (start == stop);
stopV->fY = SkScalarSinCos(stopRad, &stopV->fX);
} while (*startV == *stopV);
}
}
*dir = sweepAngle > 0 ? kCW_SkRotationDirection : kCCW_SkRotationDirection;
}
#ifdef SK_SUPPORT_LEGACY_ARCTO_QUADS
static int build_arc_points(const SkRect& oval, const SkVector& start, const SkVector& stop,
SkRotationDirection dir, SkPoint pts[kSkBuildQuadArcStorage]) {
SkMatrix matrix;
matrix.setScale(SkScalarHalf(oval.width()), SkScalarHalf(oval.height()));
matrix.postTranslate(oval.centerX(), oval.centerY());
return SkBuildQuadArc(start, stop,
sweepAngle > 0 ? kCW_SkRotationDirection :
kCCW_SkRotationDirection,
&matrix, pts);
return SkBuildQuadArc(start, stop, dir, &matrix, pts);
}
#else
static int build_arc_conics(const SkRect& oval, const SkVector& start, const SkVector& stop,
SkRotationDirection dir, SkConic conics[SkConic::kMaxConicsForArc]) {
SkMatrix matrix;
matrix.setScale(SkScalarHalf(oval.width()), SkScalarHalf(oval.height()));
matrix.postTranslate(oval.centerX(), oval.centerY());
return SkConic::BuildUnitArc(start, stop, dir, &matrix, conics);
}
#endif
void SkPath::addRoundRect(const SkRect& rect, const SkScalar radii[],
Direction dir) {
@ -1320,8 +1332,13 @@ void SkPath::arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle,
return;
}
SkVector startV, stopV;
SkRotationDirection dir;
angles_to_unit_vectors(startAngle, sweepAngle, &startV, &stopV, &dir);
#ifdef SK_SUPPORT_LEGACY_ARCTO_QUADS
SkPoint pts[kSkBuildQuadArcStorage];
int count = build_arc_points(oval, startAngle, sweepAngle, pts);
int count = build_arc_points(oval, startV, stopV, dir, pts);
SkASSERT((count & 1) == 1);
this->incReserve(count);
@ -1329,6 +1346,18 @@ void SkPath::arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle,
for (int i = 1; i < count; i += 2) {
this->quadTo(pts[i], pts[i+1]);
}
#else
SkConic conics[SkConic::kMaxConicsForArc];
int count = build_arc_conics(oval, startV, stopV, dir, conics);
if (count) {
this->incReserve(count * 2 + 1);
const SkPoint& pt = conics[0].fPts[0];
forceMoveTo ? this->moveTo(pt) : this->lineTo(pt);
for (int i = 0; i < count; ++i) {
this->conicTo(conics[i].fPts[1], conics[i].fPts[2], conics[i].fW);
}
}
#endif
}
void SkPath::addArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle) {

View File

@ -3230,6 +3230,13 @@ static void check_path_is_quad_and_reset(skiatest::Reporter* reporter, SkPath* p
check_done_and_reset(reporter, p, &iter);
}
static bool nearly_equal(const SkRect& a, const SkRect& b) {
return SkScalarNearlyEqual(a.fLeft, b.fLeft) &&
SkScalarNearlyEqual(a.fTop, b.fTop) &&
SkScalarNearlyEqual(a.fRight, b.fRight) &&
SkScalarNearlyEqual(a.fBottom, b.fBottom);
}
static void test_arcTo(skiatest::Reporter* reporter) {
SkPath p;
p.arcTo(0, 0, 1, 2, 1);
@ -3256,15 +3263,16 @@ static void test_arcTo(skiatest::Reporter* reporter) {
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
p.arcTo(oval, 360, 0, false);
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
for (float sweep = 359, delta = 0.5f; sweep != (float) (sweep + delta); ) {
p.arcTo(oval, 0, sweep, false);
REPORTER_ASSERT(reporter, p.getBounds() == oval);
REPORTER_ASSERT(reporter, nearly_equal(p.getBounds(), oval));
sweep += delta;
delta /= 2;
}
for (float sweep = 361, delta = 0.5f; sweep != (float) (sweep - delta);) {
p.arcTo(oval, 0, sweep, false);
REPORTER_ASSERT(reporter, p.getBounds() == oval);
REPORTER_ASSERT(reporter, nearly_equal(p.getBounds(), oval));
sweep -= delta;
delta /= 2;
}