SSE2 version of blit_lcd16, courtesy of Jin Yang.

Yields 25-30% speedup on Windows (32b), 4-7% on Linux (64b, less register
pressure), not invoked on Mac (lcd text is 32b instead of 16b).

Followup: GDI system settings on Windows can suppress LCD text for small
fonts, interfering with our benchmarks.
(http://code.google.com/p/skia/issues/detail?id=483)

http://codereview.appspot.com/5617058/



git-svn-id: http://skia.googlecode.com/svn/trunk@3189 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
tomhudson@google.com 2012-02-14 16:01:15 +00:00
parent 02f90e8ac1
commit d6770e69e0
8 changed files with 401 additions and 112 deletions

View File

@ -714,5 +714,116 @@ static inline uint32_t SkExpand32_4444(SkPMColor c) {
// used for cheap 2x2 dithering when the colors are opaque
void sk_dither_memset16(uint16_t dst[], uint16_t value, uint16_t other, int n);
///////////////////////////////////////////////////////////////////////////////
static inline int SkUpscale31To32(int value) {
SkASSERT((unsigned)value <= 31);
return value + (value >> 4);
}
static inline int SkBlend32(int src, int dst, int scale) {
SkASSERT((unsigned)src <= 0xFF);
SkASSERT((unsigned)dst <= 0xFF);
SkASSERT((unsigned)scale <= 32);
return dst + ((src - dst) * scale >> 5);
}
static SkPMColor SkBlendLCD16(int srcA, int srcR, int srcG, int srcB,
SkPMColor dst, uint16_t mask) {
if (mask == 0) {
return dst;
}
/* We want all of these in 5bits, hence the shifts in case one of them
* (green) is 6bits.
*/
int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
// Now upscale them to 0..32, so we can use blend32
maskR = SkUpscale31To32(maskR);
maskG = SkUpscale31To32(maskG);
maskB = SkUpscale31To32(maskB);
// srcA has been upscaled to 256 before passed into this function
maskR = maskR * srcA >> 8;
maskG = maskG * srcA >> 8;
maskB = maskB * srcA >> 8;
int dstR = SkGetPackedR32(dst);
int dstG = SkGetPackedG32(dst);
int dstB = SkGetPackedB32(dst);
// LCD blitting is only supported if the dst is known/required
// to be opaque
return SkPackARGB32(0xFF,
SkBlend32(srcR, dstR, maskR),
SkBlend32(srcG, dstG, maskG),
SkBlend32(srcB, dstB, maskB));
}
static SkPMColor SkBlendLCD16Opaque(int srcR, int srcG, int srcB,
SkPMColor dst, uint16_t mask,
SkPMColor opaqueDst) {
if (mask == 0) {
return dst;
}
if (0xFFFF == mask) {
return opaqueDst;
}
/* We want all of these in 5bits, hence the shifts in case one of them
* (green) is 6bits.
*/
int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
// Now upscale them to 0..32, so we can use blend32
maskR = SkUpscale31To32(maskR);
maskG = SkUpscale31To32(maskG);
maskB = SkUpscale31To32(maskB);
int dstR = SkGetPackedR32(dst);
int dstG = SkGetPackedG32(dst);
int dstB = SkGetPackedB32(dst);
// LCD blitting is only supported if the dst is known/required
// to be opaque
return SkPackARGB32(0xFF,
SkBlend32(srcR, dstR, maskR),
SkBlend32(srcG, dstG, maskG),
SkBlend32(srcB, dstB, maskB));
}
static void SkBlitLCD16Row(SkPMColor dst[], const uint16_t src[],
SkColor color, int width, SkPMColor) {
int srcA = SkColorGetA(color);
int srcR = SkColorGetR(color);
int srcG = SkColorGetG(color);
int srcB = SkColorGetB(color);
srcA = SkAlpha255To256(srcA);
for (int i = 0; i < width; i++) {
dst[i] = SkBlendLCD16(srcA, srcR, srcG, srcB, dst[i], src[i]);
}
}
static void SkBlitLCD16OpaqueRow(SkPMColor dst[], const uint16_t src[],
SkColor color, int width,
SkPMColor opaqueDst) {
int srcR = SkColorGetR(color);
int srcG = SkColorGetG(color);
int srcB = SkColorGetB(color);
for (int i = 0; i < width; i++) {
dst[i] = SkBlendLCD16Opaque(srcR, srcG, srcB, dst[i], src[i],
opaqueDst);
}
}
#endif

View File

@ -29,6 +29,15 @@ public:
typedef void (*ColorProc)(void* dst, size_t dstRB,
const void* mask, size_t maskRB,
SkColor color, int width, int height);
/**
* Function pointer that blits a row of mask(lcd16) into a row of dst
* colorized by a single color. The number of pixels to blit is specified
* by width.
*/
typedef void (*BlitLCD16RowProc)(SkPMColor dst[], const uint16_t src[],
SkColor color, int width,
SkPMColor opaqueDst);
/**
* Function pointer that blits a row of src colors through a row of a mask
@ -49,6 +58,17 @@ public:
* or NULL if no optimized routine is available.
*/
static ColorProc PlatformColorProcs(SkBitmap::Config, SkMask::Format, SkColor);
/**
* Public entry-point to return a blitcolor BlitLCD16RowProc.
*/
static BlitLCD16RowProc BlitLCD16RowFactory(bool isOpaque);
/**
* Return either platform specific optimized blitcolor BlitLCD16RowProc,
* or NULL if no optimized routine is available.
*/
static BlitLCD16RowProc PlatformBlitRowProcs16(bool isOpaque);
enum RowFlags {
kSrcIsOpaque_RowFlag = 1 << 0

View File

@ -64,106 +64,16 @@ static void D32_A8_Black(void* SK_RESTRICT dst, size_t dstRB,
} while (--height != 0);
}
///////////////////////////////////////////////////////////////////////////////
static inline int upscale31To32(int value) {
SkASSERT((unsigned)value <= 31);
return value + (value >> 4);
}
static inline int blend32(int src, int dst, int scale) {
SkASSERT((unsigned)src <= 0xFF);
SkASSERT((unsigned)dst <= 0xFF);
SkASSERT((unsigned)scale <= 32);
return dst + ((src - dst) * scale >> 5);
}
static void blit_lcd16_row(SkPMColor dst[], const uint16_t src[],
SkColor color, int width, SkPMColor) {
int srcA = SkColorGetA(color);
int srcR = SkColorGetR(color);
int srcG = SkColorGetG(color);
int srcB = SkColorGetB(color);
srcA = SkAlpha255To256(srcA);
for (int i = 0; i < width; i++) {
uint16_t mask = src[i];
if (0 == mask) {
continue;
}
SkPMColor d = dst[i];
/* We want all of these in 5bits, hence the shifts in case one of them
* (green) is 6bits.
*/
int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
// Now upscale them to 0..32, so we can use blend32
maskR = upscale31To32(maskR);
maskG = upscale31To32(maskG);
maskB = upscale31To32(maskB);
maskR = maskR * srcA >> 8;
maskG = maskG * srcA >> 8;
maskB = maskB * srcA >> 8;
int dstR = SkGetPackedR32(d);
int dstG = SkGetPackedG32(d);
int dstB = SkGetPackedB32(d);
// LCD blitting is only supported if the dst is known/required
// to be opaque
dst[i] = SkPackARGB32(0xFF,
blend32(srcR, dstR, maskR),
blend32(srcG, dstG, maskG),
blend32(srcB, dstB, maskB));
SkBlitMask::BlitLCD16RowProc SkBlitMask::BlitLCD16RowFactory(bool isOpaque) {
BlitLCD16RowProc proc = PlatformBlitRowProcs16(isOpaque);
if (proc) {
return proc;
}
}
static void blit_lcd16_opaque_row(SkPMColor dst[], const uint16_t src[],
SkColor color, int width, SkPMColor opaqueDst) {
int srcR = SkColorGetR(color);
int srcG = SkColorGetG(color);
int srcB = SkColorGetB(color);
for (int i = 0; i < width; i++) {
uint16_t mask = src[i];
if (0 == mask) {
continue;
}
if (0xFFFF == mask) {
dst[i] = opaqueDst;
continue;
}
SkPMColor d = dst[i];
/* We want all of these in 5bits, hence the shifts in case one of them
* (green) is 6bits.
*/
int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
// Now upscale them to 0..32, so we can use blend32
maskR = upscale31To32(maskR);
maskG = upscale31To32(maskG);
maskB = upscale31To32(maskB);
int dstR = SkGetPackedR32(d);
int dstG = SkGetPackedG32(d);
int dstB = SkGetPackedB32(d);
// LCD blitting is only supported if the dst is known/required
// to be opaque
dst[i] = SkPackARGB32(0xFF,
blend32(srcR, dstR, maskR),
blend32(srcG, dstG, maskG),
blend32(srcB, dstB, maskB));
if (isOpaque) {
return SkBlitLCD16OpaqueRow;
} else {
return SkBlitLCD16Row;
}
}
@ -175,13 +85,14 @@ static void D32_LCD16_Proc(void* SK_RESTRICT dst, size_t dstRB,
const uint16_t* srcRow = (const uint16_t*)mask;
SkPMColor opaqueDst;
void (*proc)(SkPMColor dst[], const uint16_t src[],
SkColor color, int width, SkPMColor);
if (0xFF == SkColorGetA(color)) {
proc = blit_lcd16_opaque_row;
SkBlitMask::BlitLCD16RowProc proc = NULL;
bool isOpaque = (0xFF == SkColorGetA(color));
proc = SkBlitMask::BlitLCD16RowFactory(isOpaque);
SkASSERT(proc != NULL);
if (isOpaque) {
opaqueDst = SkPreMultiplyColor(color);
} else {
proc = blit_lcd16_row;
opaqueDst = 0; // ignored
}
@ -546,9 +457,9 @@ static void LCD16_RowProc_Opaque(SkPMColor* SK_RESTRICT dst,
int maskB = SkGetPackedB16(m) >> (SK_B16_BITS - 5);
// Now upscale them to 0..32, so we can use blend32
maskR = upscale31To32(maskR);
maskG = upscale31To32(maskG);
maskB = upscale31To32(maskB);
maskR = SkUpscale31To32(maskR);
maskG = SkUpscale31To32(maskG);
maskB = SkUpscale31To32(maskB);
int dstR = SkGetPackedR32(d);
int dstG = SkGetPackedG32(d);
@ -557,9 +468,9 @@ static void LCD16_RowProc_Opaque(SkPMColor* SK_RESTRICT dst,
// LCD blitting is only supported if the dst is known/required
// to be opaque
dst[i] = SkPackARGB32(0xFF,
blend32(srcR, dstR, maskR),
blend32(srcG, dstG, maskG),
blend32(srcB, dstB, maskB));
SkBlend32(srcR, dstR, maskR),
SkBlend32(srcG, dstG, maskG),
SkBlend32(srcB, dstB, maskB));
}
}

View File

@ -386,8 +386,7 @@ void Color32_SSE2(SkPMColor dst[], const SkPMColor src[], int count,
void SkARGB32_A8_BlitMask_SSE2(void* device, size_t dstRB, const void* maskPtr,
size_t maskRB, SkColor origColor,
int width, int height)
{
int width, int height) {
SkPMColor color = SkPreMultiplyColor(origColor);
size_t dstOffset = dstRB - (width << 2);
size_t maskOffset = maskRB - width;
@ -482,3 +481,226 @@ void SkARGB32_A8_BlitMask_SSE2(void* device, size_t dstRB, const void* maskPtr,
mask += maskOffset;
} while (--height != 0);
}
static __m128i SkBlendLCD16_SSE2(__m128i &srci, __m128i &dst,
__m128i &mask, __m128i &scale) {
// Get the R,G,B of each 16bit mask pixel, we want all of them in 5 bits.
__m128i r = _mm_and_si128(_mm_slli_epi32(mask,
16-SK_R16_SHIFT-(SK_R16_BITS-5)),
_mm_set1_epi32(0x001F0000));
__m128i g = _mm_and_si128(_mm_slli_epi32(mask,
8-SK_G16_SHIFT-(SK_G16_BITS-5)),
_mm_set1_epi32(0x00001F00));
__m128i b = _mm_and_si128(_mm_slli_epi32(mask,
SK_B16_BITS-5),
_mm_set1_epi32(0x0000001F));
// Pack the 4 16bit mask pixels into 4 32bit pixels, (p0, p1, p2, p3)
mask = _mm_or_si128(_mm_or_si128(r, g), b);
// Interleave R,G,B into the lower byte of word.
__m128i maskLo, maskHi;
maskLo = _mm_unpacklo_epi8(mask, _mm_setzero_si128());
maskHi = _mm_unpackhi_epi8(mask, _mm_setzero_si128());
// Upscale to 0..32
maskLo = _mm_add_epi16(maskLo, _mm_srli_epi16(maskLo, 4));
maskHi = _mm_add_epi16(maskHi, _mm_srli_epi16(maskHi, 4));
maskLo = _mm_mullo_epi16(maskLo, scale);
maskHi = _mm_mullo_epi16(maskHi, scale);
maskLo = _mm_srli_epi16(maskLo, 8);
maskHi = _mm_srli_epi16(maskHi, 8);
// Interleave R,G,B into the lower byte of the word.
__m128i dstLo = _mm_unpacklo_epi8(dst, _mm_setzero_si128());
__m128i dstHi = _mm_unpackhi_epi8(dst, _mm_setzero_si128());
maskLo = _mm_mullo_epi16(maskLo, _mm_sub_epi16(srci, dstLo));
maskHi = _mm_mullo_epi16(maskHi, _mm_sub_epi16(srci, dstHi));
maskLo = _mm_srai_epi16(maskLo, 5);
maskHi = _mm_srai_epi16(maskHi, 5);
// Add two pixels into result.
__m128i resultLo = _mm_add_epi16(dstLo, maskLo);
__m128i resultHi = _mm_add_epi16(dstHi, maskHi);
// Pack into 4 32bit dst pixels
return _mm_packus_epi16(resultLo, resultHi);
}
static __m128i SkBlendLCD16Opaque_SSE2(__m128i &srci, __m128i &dst,
__m128i &mask) {
// Get the R,G,B of each 16bit mask pixel, we want all of them in 5 bits.
__m128i r = _mm_and_si128(_mm_slli_epi32(mask,
16-SK_R16_SHIFT-(SK_R16_BITS-5)),
_mm_set1_epi32(0x001F0000));
__m128i g = _mm_and_si128(_mm_slli_epi32(mask,
8-SK_G16_SHIFT-(SK_G16_BITS-5)),
_mm_set1_epi32(0x00001F00));
__m128i b = _mm_and_si128(_mm_slli_epi32(mask, SK_B16_BITS-5),
_mm_set1_epi32(0x0000001F));
// Pack the 4 16bit mask pixels into 4 32bit pixels, (p0, p1, p2, p3)
mask = _mm_or_si128(_mm_or_si128(r, g), b);
// Interleave R,G,B into the lower byte of word.
__m128i maskLo, maskHi;
maskLo = _mm_unpacklo_epi8(mask, _mm_setzero_si128());
maskHi = _mm_unpackhi_epi8(mask, _mm_setzero_si128());
// Upscale to 0..32
maskLo = _mm_add_epi16(maskLo, _mm_srli_epi16(maskLo, 4));
maskHi = _mm_add_epi16(maskHi, _mm_srli_epi16(maskHi, 4));
// Interleave R,G,B into the lower byte of the word.
__m128i dstLo = _mm_unpacklo_epi8(dst, _mm_setzero_si128());
__m128i dstHi = _mm_unpackhi_epi8(dst, _mm_setzero_si128());
maskLo = _mm_mullo_epi16(maskLo, _mm_sub_epi16(srci, dstLo));
maskHi = _mm_mullo_epi16(maskHi, _mm_sub_epi16(srci, dstHi));
maskLo = _mm_srai_epi16(maskLo, 5);
maskHi = _mm_srai_epi16(maskHi, 5);
// Add two pixels into result.
__m128i resultLo = _mm_add_epi16(dstLo, maskLo);
__m128i resultHi = _mm_add_epi16(dstHi, maskHi);
// Pack into 4 32bit dst pixels
return _mm_packus_epi16(resultLo, resultHi);
}
void SkBlitLCD16Row_SSE2(SkPMColor dst[], const uint16_t src[],
SkColor color, int width, SkPMColor) {
if (width <= 0) {
return;
}
int srcA = SkColorGetA(color);
int srcR = SkColorGetR(color);
int srcG = SkColorGetG(color);
int srcB = SkColorGetB(color);
srcA = SkAlpha255To256(srcA);
if (width >= 4) {
SkASSERT(((size_t)dst & 0x03) == 0);
while (((size_t)dst & 0x0F) != 0) {
*dst = SkBlendLCD16(srcA, srcR, srcG, srcB, *dst, *src);
src++;
dst++;
width--;
}
__m128i *d = reinterpret_cast<__m128i*>(dst);
__m128i srci = _mm_set1_epi32(SkPackARGB32(0xFF, srcR, srcG, srcB));
srci = _mm_unpacklo_epi8(srci, _mm_setzero_si128());
__m128i scale = _mm_set1_epi16(srcA);
while (width >= 4) {
__m128i dst_pixel = _mm_load_si128(d);
__m128i mask_pixel = _mm_loadl_epi64(
reinterpret_cast<const __m128i*>(src));
// Check whether mask_pixels are equal to 0 and get the highest bit
// of each byte of result, if mask pixes are all zero, we will get
// pack_cmp to 0xFFFF
int pack_cmp = _mm_movemask_epi8(_mm_cmpeq_epi16(mask_pixel,
_mm_setzero_si128()));
// if mask pixels are not all zero, we will blend the dst pixels
if (pack_cmp != 0xFFFF) {
// Unpack 4 16bit mask pixels to
// (p0, 0, p1, 0, p2, 0, p3, 0)
mask_pixel = _mm_unpacklo_epi16(mask_pixel,
_mm_setzero_si128());
// Process 4 32bit dst pixels
__m128i result = SkBlendLCD16_SSE2(srci, dst_pixel,
mask_pixel, scale);
_mm_store_si128(d, result);
}
d++;
src += 4;
width -= 4;
}
dst = reinterpret_cast<SkPMColor*>(d);
}
while (width > 0) {
*dst = SkBlendLCD16(srcA, srcR, srcG, srcB, *dst, *src);
src++;
dst++;
width--;
}
}
void SkBlitLCD16OpaqueRow_SSE2(SkPMColor dst[], const uint16_t src[],
SkColor color, int width, SkPMColor opaqueDst) {
if (width <= 0) {
return;
}
int srcR = SkColorGetR(color);
int srcG = SkColorGetG(color);
int srcB = SkColorGetB(color);
if (width >= 4) {
SkASSERT(((size_t)dst & 0x03) == 0);
while (((size_t)dst & 0x0F) != 0) {
*dst = SkBlendLCD16Opaque(srcR, srcG, srcB, *dst, *src, opaqueDst);
src++;
dst++;
width--;
}
__m128i *d = reinterpret_cast<__m128i*>(dst);
__m128i srci = _mm_set1_epi32(SkPackARGB32(0xFF, srcR, srcG, srcB));
srci = _mm_unpacklo_epi8(srci, _mm_setzero_si128());
while (width >= 4) {
__m128i dst_pixel = _mm_load_si128(d);
__m128i mask_pixel = _mm_loadl_epi64(
reinterpret_cast<const __m128i*>(src));
// Check whether mask_pixels are equal to 0 and get the highest bit
// of each byte of result, if mask pixes are all zero, we will get
// pack_cmp to 0xFFFF
int pack_cmp = _mm_movemask_epi8(_mm_cmpeq_epi16(mask_pixel,
_mm_setzero_si128()));
// if mask pixels are not all zero, we will blend the dst pixels
if (pack_cmp != 0xFFFF) {
// Unpack 4 16bit mask pixels to
// (p0, 0, p1, 0, p2, 0, p3, 0)
mask_pixel = _mm_unpacklo_epi16(mask_pixel,
_mm_setzero_si128());
// Process 4 32bit dst pixels
__m128i result = SkBlendLCD16Opaque_SSE2(srci, dst_pixel,
mask_pixel);
_mm_store_si128(d, result);
}
d++;
src += 4;
width -= 4;
}
dst = reinterpret_cast<SkPMColor*>(d);
}
while (width > 0) {
*dst = SkBlendLCD16Opaque(srcR, srcG, srcB, *dst, *src, opaqueDst);
src++;
dst++;
width--;
}
}

View File

@ -23,3 +23,8 @@ void S32A_Blend_BlitRow32_SSE2(SkPMColor* SK_RESTRICT dst,
void SkARGB32_A8_BlitMask_SSE2(void* device, size_t dstRB, const void* mask,
size_t maskRB, SkColor color,
int width, int height);
void SkBlitLCD16Row_SSE2(SkPMColor dst[], const uint16_t src[],
SkColor color, int width, SkPMColor);
void SkBlitLCD16OpaqueRow_SSE2(SkPMColor dst[], const uint16_t src[],
SkColor color, int width, SkPMColor opaqueDst);

View File

@ -1313,6 +1313,10 @@ SkBlitMask::ColorProc SkBlitMask::PlatformColorProcs(SkBitmap::Config dstConfig,
return NULL;
}
SkBlitMask::BlitLCD16RowProc SkBlitMask::PlatformBlitRowProcs16(bool isOpaque) {
return NULL;
}
SkBlitMask::RowProc SkBlitMask::PlatformRowProcs(SkBitmap::Config dstConfig,
SkMask::Format maskFormat,
RowFlags flags) {

View File

@ -31,7 +31,11 @@ SkBlitRow::ColorProc SkBlitRow::PlatformColorProc() {
SkBlitMask::ColorProc SkBlitMask::PlatformColorProcs(SkBitmap::Config dstConfig,
SkMask::Format maskFormat,
SkColor color) {
return NULL;
return NULL;
}
SkBlitMask::BlitLCD16RowProc SkBlitMask::PlatformBlitRowProcs16(bool isOpaque) {
return NULL;
}
SkBlitMask::RowProc SkBlitMask::PlatformRowProcs(SkBitmap::Config dstConfig,

View File

@ -126,6 +126,18 @@ SkBlitMask::ColorProc SkBlitMask::PlatformColorProcs(SkBitmap::Config dstConfig,
return proc;
}
SkBlitMask::BlitLCD16RowProc SkBlitMask::PlatformBlitRowProcs16(bool isOpaque) {
if (cachedHasSSE2()) {
if (isOpaque) {
return SkBlitLCD16OpaqueRow_SSE2;
} else {
return SkBlitLCD16Row_SSE2;
}
} else {
return NULL;
}
}
SkBlitMask::RowProc SkBlitMask::PlatformRowProcs(SkBitmap::Config dstConfig,
SkMask::Format maskFormat,
RowFlags flags) {