Update ARM and NEON optimizations for S32A_Opaque_BlitRow32.

These patches replace those written by ARM with ones provided by NVidia.

Review URL: https://codereview.appspot.com/6465075

git-svn-id: http://skia.googlecode.com/svn/trunk@5364 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
djsollen@google.com 2012-08-31 12:41:48 +00:00
parent ed01f12d13
commit dc1a3badc7
3 changed files with 657 additions and 48 deletions

View File

@ -21,25 +21,6 @@ static const char* gConfigName[] = {
"ERROR", "a1", "a8", "index8", "565", "4444", "8888" "ERROR", "a1", "a8", "index8", "565", "4444", "8888"
}; };
static void drawIntoBitmap(const SkBitmap& bm) {
const int w = bm.width();
const int h = bm.height();
SkCanvas canvas(bm);
SkPaint p;
p.setAntiAlias(true);
p.setColor(SK_ColorRED);
canvas.drawCircle(SkIntToScalar(w)/2, SkIntToScalar(h)/2,
SkIntToScalar(SkMin32(w, h))*3/8, p);
SkRect r;
r.set(0, 0, SkIntToScalar(w), SkIntToScalar(h));
p.setStyle(SkPaint::kStroke_Style);
p.setStrokeWidth(SkIntToScalar(4));
p.setColor(SK_ColorBLUE);
canvas.drawRect(r, p);
}
static int conv6ToByte(int x) { static int conv6ToByte(int x) {
return x * 0xFF / 5; return x * 0xFF / 5;
} }
@ -102,38 +83,23 @@ class BitmapBench : public SkBenchmark {
bool fIsOpaque; bool fIsOpaque;
bool fForceUpdate; //bitmap marked as dirty before each draw. forces bitmap to be updated on device cache bool fForceUpdate; //bitmap marked as dirty before each draw. forces bitmap to be updated on device cache
int fTileX, fTileY; // -1 means don't use shader int fTileX, fTileY; // -1 means don't use shader
bool fIsVolatile;
SkBitmap::Config fConfig;
SkString fName; SkString fName;
enum { N = SkBENCHLOOP(300) }; enum { N = SkBENCHLOOP(300) };
enum { W = 128 };
enum { H = 128 };
public: public:
BitmapBench(void* param, bool isOpaque, SkBitmap::Config c, BitmapBench(void* param, bool isOpaque, SkBitmap::Config c,
bool forceUpdate = false, bool bitmapVolatile = false, bool forceUpdate = false, bool bitmapVolatile = false,
int tx = -1, int ty = -1) int tx = -1, int ty = -1)
: INHERITED(param), fIsOpaque(isOpaque), fForceUpdate(forceUpdate), fTileX(tx), fTileY(ty) { : INHERITED(param)
const int w = 128; , fIsOpaque(isOpaque)
const int h = 128; , fForceUpdate(forceUpdate)
SkBitmap bm; , fIsVolatile(bitmapVolatile)
, fTileX(tx)
if (SkBitmap::kIndex8_Config == c) { , fTileY(ty)
bm.setConfig(SkBitmap::kARGB_8888_Config, w, h); , fConfig(c) {
} else {
bm.setConfig(c, w, h);
}
bm.allocPixels();
bm.eraseColor(isOpaque ? SK_ColorBLACK : 0);
drawIntoBitmap(bm);
if (SkBitmap::kIndex8_Config == c) {
convertToIndex666(bm, &fBitmap);
} else {
fBitmap = bm;
}
if (fBitmap.getColorTable()) {
fBitmap.getColorTable()->setIsOpaque(isOpaque);
}
fBitmap.setIsOpaque(isOpaque);
fBitmap.setIsVolatile(bitmapVolatile);
} }
protected: protected:
@ -145,16 +111,43 @@ protected:
fName.appendf("_%s", gTileName[fTileY]); fName.appendf("_%s", gTileName[fTileY]);
} }
} }
fName.appendf("_%s%s", gConfigName[fBitmap.config()], fName.appendf("_%s%s", gConfigName[fConfig],
fIsOpaque ? "" : "_A"); fIsOpaque ? "" : "_A");
if (fForceUpdate) if (fForceUpdate)
fName.append("_update"); fName.append("_update");
if (fBitmap.isVolatile()) if (fIsVolatile)
fName.append("_volatile"); fName.append("_volatile");
return fName.c_str(); return fName.c_str();
} }
virtual void onPreDraw() {
SkBitmap bm;
if (SkBitmap::kIndex8_Config == fConfig) {
bm.setConfig(SkBitmap::kARGB_8888_Config, W, H);
} else {
bm.setConfig(fConfig, W, H);
}
bm.allocPixels();
bm.eraseColor(fIsOpaque ? SK_ColorBLACK : 0);
onDrawIntoBitmap(bm);
if (SkBitmap::kIndex8_Config == fConfig) {
convertToIndex666(bm, &fBitmap);
} else {
fBitmap = bm;
}
if (fBitmap.getColorTable()) {
fBitmap.getColorTable()->setIsOpaque(fIsOpaque);
}
fBitmap.setIsOpaque(fIsOpaque);
fBitmap.setIsVolatile(fIsVolatile);
}
virtual void onDraw(SkCanvas* canvas) { virtual void onDraw(SkCanvas* canvas) {
SkIPoint dim = this->getSize(); SkIPoint dim = this->getSize();
SkRandom rand; SkRandom rand;
@ -177,6 +170,25 @@ protected:
} }
} }
virtual void onDrawIntoBitmap(const SkBitmap& bm) {
const int w = bm.width();
const int h = bm.height();
SkCanvas canvas(bm);
SkPaint p;
p.setAntiAlias(true);
p.setColor(SK_ColorRED);
canvas.drawCircle(SkIntToScalar(w)/2, SkIntToScalar(h)/2,
SkIntToScalar(SkMin32(w, h))*3/8, p);
SkRect r;
r.set(0, 0, SkIntToScalar(w), SkIntToScalar(h));
p.setStyle(SkPaint::kStroke_Style);
p.setStrokeWidth(SkIntToScalar(4));
p.setColor(SK_ColorBLUE);
canvas.drawRect(r, p);
}
private: private:
typedef SkBenchmark INHERITED; typedef SkBenchmark INHERITED;
}; };
@ -241,6 +253,95 @@ private:
typedef BitmapBench INHERITED; typedef BitmapBench INHERITED;
}; };
/** Verify optimizations that test source alpha values. */
class SourceAlphaBitmapBench : public BitmapBench {
public:
enum SourceAlpha { kOpaque_SourceAlpha, kTransparent_SourceAlpha,
kTwoStripes_SourceAlpha, kThreeStripes_SourceAlpha};
private:
SkString fFullName;
SourceAlpha fSourceAlpha;
public:
SourceAlphaBitmapBench(void* param, SourceAlpha alpha, SkBitmap::Config c,
bool forceUpdate = false, bool bitmapVolatile = false,
int tx = -1, int ty = -1)
: INHERITED(param, false, c, forceUpdate, bitmapVolatile, tx, ty)
, fSourceAlpha(alpha) {
}
protected:
virtual const char* onGetName() {
fFullName.set(INHERITED::onGetName());
if (fSourceAlpha == kOpaque_SourceAlpha) {
fFullName.append("_source_opaque");
} else if (fSourceAlpha == kTransparent_SourceAlpha) {
fFullName.append("_source_transparent");
} else if (fSourceAlpha == kTwoStripes_SourceAlpha) {
fFullName.append("_source_stripes_two");
} else if (fSourceAlpha == kThreeStripes_SourceAlpha) {
fFullName.append("_source_stripes_three");
}
return fFullName.c_str();
}
virtual void onDrawIntoBitmap(const SkBitmap& bm) SK_OVERRIDE {
const int w = bm.width();
const int h = bm.height();
if (kOpaque_SourceAlpha == fSourceAlpha) {
bm.eraseColor(SK_ColorBLACK);
} else if (kTransparent_SourceAlpha == fSourceAlpha) {
bm.eraseColor(0);
} else if (kTwoStripes_SourceAlpha == fSourceAlpha) {
bm.eraseColor(0);
SkCanvas canvas(bm);
SkPaint p;
p.setAntiAlias(false);
p.setStyle(SkPaint::kFill_Style);
p.setColor(SK_ColorRED);
// Draw red vertical stripes on transparent background
SkRect r;
for (int x = 0; x < w; x+=2)
{
r.set(SkIntToScalar(x), 0, SkIntToScalar(x+1), SkIntToScalar(h));
canvas.drawRect(r, p);
}
} else if (kThreeStripes_SourceAlpha == fSourceAlpha) {
bm.eraseColor(0);
SkCanvas canvas(bm);
SkPaint p;
p.setAntiAlias(false);
p.setStyle(SkPaint::kFill_Style);
// Draw vertical stripes on transparent background with a pattern
// where the first pixel is fully transparent, the next is semi-transparent
// and the third is fully opaque.
SkRect r;
for (int x = 0; x < w; x++)
{
if (x % 3 == 0) {
continue; // Keep transparent
} else if (x % 3 == 1) {
p.setColor(SkColorSetARGB(127, 127, 127, 127)); // Semi-transparent
} else if (x % 3 == 2) {
p.setColor(SK_ColorRED); // Opaque
}
r.set(SkIntToScalar(x), 0, SkIntToScalar(x+1), SkIntToScalar(h));
canvas.drawRect(r, p);
}
}
}
private:
typedef BitmapBench INHERITED;
};
static SkBenchmark* Fact0(void* p) { return new BitmapBench(p, false, SkBitmap::kARGB_8888_Config); } static SkBenchmark* Fact0(void* p) { return new BitmapBench(p, false, SkBitmap::kARGB_8888_Config); }
static SkBenchmark* Fact1(void* p) { return new BitmapBench(p, true, SkBitmap::kARGB_8888_Config); } static SkBenchmark* Fact1(void* p) { return new BitmapBench(p, true, SkBitmap::kARGB_8888_Config); }
static SkBenchmark* Fact2(void* p) { return new BitmapBench(p, true, SkBitmap::kRGB_565_Config); } static SkBenchmark* Fact2(void* p) { return new BitmapBench(p, true, SkBitmap::kRGB_565_Config); }
@ -263,6 +364,12 @@ static SkBenchmark* Fact14(void* p) { return new FilterBitmapBench(p, true, SkBi
static SkBenchmark* Fact15(void* p) { return new FilterBitmapBench(p, true, SkBitmap::kARGB_8888_Config, true, true, -1, -1, true, true, true); } static SkBenchmark* Fact15(void* p) { return new FilterBitmapBench(p, true, SkBitmap::kARGB_8888_Config, true, true, -1, -1, true, true, true); }
static SkBenchmark* Fact16(void* p) { return new FilterBitmapBench(p, true, SkBitmap::kARGB_8888_Config, true, false, -1, -1, true, true, true); } static SkBenchmark* Fact16(void* p) { return new FilterBitmapBench(p, true, SkBitmap::kARGB_8888_Config, true, false, -1, -1, true, true, true); }
// source alpha tests -> S32A_Opaque_BlitRow32_{arm,neon}
static SkBenchmark* Fact17(void* p) { return new SourceAlphaBitmapBench(p, SourceAlphaBitmapBench::kOpaque_SourceAlpha, SkBitmap::kARGB_8888_Config); }
static SkBenchmark* Fact18(void* p) { return new SourceAlphaBitmapBench(p, SourceAlphaBitmapBench::kTransparent_SourceAlpha, SkBitmap::kARGB_8888_Config); }
static SkBenchmark* Fact19(void* p) { return new SourceAlphaBitmapBench(p, SourceAlphaBitmapBench::kTwoStripes_SourceAlpha, SkBitmap::kARGB_8888_Config); }
static SkBenchmark* Fact20(void* p) { return new SourceAlphaBitmapBench(p, SourceAlphaBitmapBench::kThreeStripes_SourceAlpha, SkBitmap::kARGB_8888_Config); }
static BenchRegistry gReg0(Fact0); static BenchRegistry gReg0(Fact0);
static BenchRegistry gReg1(Fact1); static BenchRegistry gReg1(Fact1);
static BenchRegistry gReg2(Fact2); static BenchRegistry gReg2(Fact2);
@ -283,3 +390,7 @@ static BenchRegistry gReg14(Fact14);
static BenchRegistry gReg15(Fact15); static BenchRegistry gReg15(Fact15);
static BenchRegistry gReg16(Fact16); static BenchRegistry gReg16(Fact16);
static BenchRegistry gReg17(Fact17);
static BenchRegistry gReg18(Fact18);
static BenchRegistry gReg19(Fact19);
static BenchRegistry gReg20(Fact20);

View File

@ -185,6 +185,306 @@ static void S32A_Opaque_BlitRow32_arm(SkPMColor* SK_RESTRICT dst,
: "cc", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "ip", "memory" : "cc", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "ip", "memory"
); );
} }
static void __attribute__((naked)) S32A_Opaque_BlitRow32_arm_src_alpha
(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count, U8CPU alpha) {
/* Optimizes for alpha == 0, alpha == 255, and 1 < alpha < 255 cases individually */
/* Predicts that the next pixel will have the same alpha type as the current pixel */
asm volatile (
"\tSTMDB r13!, {r4-r12, r14} \n" /* saving r4-r12, lr on the stack */
/* we should not save r0-r3 according to ABI */
"\tCMP r2, #0 \n" /* if (count == 0) */
"\tBEQ 9f \n" /* go to EXIT */
"\tMOV r12, #0xff \n" /* load the 0xff mask in r12 */
"\tORR r12, r12, r12, LSL #16 \n" /* convert it to 0xff00ff in r12 */
"\tMOV r14, #255 \n" /* r14 = 255 */
/* will be used later for left-side comparison */
"\tADD r2, %[src], r2, LSL #2 \n" /* r2 points to last array element which can be used */
"\tSUB r2, r2, #16 \n" /* as a base for 4-way processing algorithm */
"\tCMP %[src], r2 \n" /* if our current [src] array pointer is bigger than */
"\tBGT 8f \n" /* calculated marker for 4-way -> */
/* use simple one-by-one processing */
/* START OF DISPATCHING BLOCK */
"\t0: \n"
"\tLDM %[src]!, {r3, r4, r5, r6} \n" /* 4-way loading of source values to r3-r6 */
"\tLSR r7, r3, #24 \n" /* if not all src alphas of 4-way block are equal -> */
"\tCMP r7, r4, LSR #24 \n"
"\tCMPEQ r7, r5, LSR #24 \n"
"\tCMPEQ r7, r6, LSR #24 \n"
"\tBNE 1f \n" /* -> go to general 4-way processing routine */
"\tCMP r14, r7 \n" /* if all src alphas are equal to 255 */
"\tBEQ 3f \n" /* go to alpha == 255 optimized routine */
"\tCMP r7, #0 \n" /* if all src alphas are equal to 0 */
"\tBEQ 6f \n" /* go to alpha == 0 optimized routine */
/* END OF DISPATCHING BLOCK */
/* START OF BLOCK OPTIMIZED FOR 0 < ALPHA < 255 */
"\t1: \n"
/* we do not have enough registers to make */
/* 4-way [dst] loading -> we are using 2 * 2-way */
"\tLDM %[dst], {r7, r8} \n" /* 1st 2-way loading of dst values to r7-r8 */
/* PROCESSING BLOCK 1 */
/* r3 = src, r7 = dst */
"\tLSR r11, r3, #24 \n" /* extracting alpha from source and storing to r11 */
"\tAND r9, r12, r7 \n" /* r9 = br masked by r12 (0xff00ff) */
"\tRSB r11, r11, #256 \n" /* subtracting the alpha from 255 -> r11 = scale */
"\tAND r10, r12, r7, LSR #8 \n" /* r10 = ag masked by r12 (0xff00ff) */
"\tMUL r9, r9, r11 \n" /* br = br * scale */
"\tAND r9, r12, r9, LSR #8 \n" /* lsr br by 8 and mask it */
"\tMUL r10, r10, r11 \n" /* ag = ag * scale */
"\tAND r10, r10, r12, LSL #8 \n" /* mask ag with reverse mask */
"\tORR r7, r9, r10 \n" /* br | ag */
"\tADD r7, r3, r7 \n" /* dst = src + calc dest(r8) */
/* PROCESSING BLOCK 2 */
/* r4 = src, r8 = dst */
"\tLSR r11, r4, #24 \n" /* see PROCESSING BLOCK 1 */
"\tAND r9, r12, r8 \n"
"\tRSB r11, r11, #256 \n"
"\tAND r10, r12, r8, LSR #8 \n"
"\tMUL r9, r9, r11 \n"
"\tAND r9, r12, r9, LSR #8 \n"
"\tMUL r10, r10, r11 \n"
"\tAND r10, r10, r12, LSL #8 \n"
"\tORR r8, r9, r10 \n"
"\tADD r8, r4, r8 \n"
"\tSTM %[dst]!, {r7, r8} \n" /* 1st 2-way storing of processed dst values */
"\tLDM %[dst], {r9, r10} \n" /* 2nd 2-way loading of dst values to r9-r10 */
/* PROCESSING BLOCK 3 */
/* r5 = src, r9 = dst */
"\tLSR r11, r5, #24 \n" /* see PROCESSING BLOCK 1 */
"\tAND r7, r12, r9 \n"
"\tRSB r11, r11, #256 \n"
"\tAND r8, r12, r9, LSR #8 \n"
"\tMUL r7, r7, r11 \n"
"\tAND r7, r12, r7, LSR #8 \n"
"\tMUL r8, r8, r11 \n"
"\tAND r8, r8, r12, LSL #8 \n"
"\tORR r9, r7, r8 \n"
"\tADD r9, r5, r9 \n"
/* PROCESSING BLOCK 4 */
/* r6 = src, r10 = dst */
"\tLSR r11, r6, #24 \n" /* see PROCESSING BLOCK 1 */
"\tAND r7, r12, r10 \n"
"\tRSB r11, r11, #256 \n"
"\tAND r8, r12, r10, LSR #8 \n"
"\tMUL r7, r7, r11 \n"
"\tAND r7, r12, r7, LSR #8 \n"
"\tMUL r8, r8, r11 \n"
"\tAND r8, r8, r12, LSL #8 \n"
"\tORR r10, r7, r8 \n"
"\tADD r10, r6, r10 \n"
"\tSTM %[dst]!, {r9, r10} \n" /* 2nd 2-way storing of processed dst values */
"\tCMP %[src], r2 \n" /* if our current [src] pointer <= calculated marker */
"\tBLE 0b \n" /* we could run 4-way processing -> go to dispatcher */
"\tBGT 8f \n" /* else -> use simple one-by-one processing */
/* END OF BLOCK OPTIMIZED FOR 0 < ALPHA < 255 */
/* START OF BLOCK OPTIMIZED FOR ALPHA == 255 */
"\t2: \n" /* ENTRY 1: LOADING [src] to registers */
"\tLDM %[src]!, {r3, r4, r5, r6} \n" /* 4-way loading of source values to r3-r6 */
"\tAND r7, r3, r4 \n" /* if not all alphas == 255 -> */
"\tAND r8, r5, r6 \n"
"\tAND r9, r7, r8 \n"
"\tCMP r14, r9, LSR #24 \n"
"\tBNE 4f \n" /* -> go to alpha == 0 check */
"\t3: \n" /* ENTRY 2: [src] already loaded by DISPATCHER */
"\tSTM %[dst]!, {r3, r4, r5, r6} \n" /* all alphas == 255 -> 4-way copy [src] to [dst] */
"\tCMP %[src], r2 \n" /* if our current [src] array pointer <= marker */
"\tBLE 2b \n" /* we could run 4-way processing */
/* because now we're in ALPHA == 255 state */
/* run next cycle with priority alpha == 255 checks */
"\tBGT 8f \n" /* if our current [src] array pointer > marker */
/* use simple one-by-one processing */
"\t4: \n"
"\tORR r7, r3, r4 \n" /* if not all alphas == 0 -> */
"\tORR r8, r5, r6 \n"
"\tORR r9, r7, r8 \n"
"\tLSRS r9, #24 \n"
"\tBNE 1b \n" /* -> go to general processing mode */
/* (we already checked for alpha == 255) */
"\tADD %[dst], %[dst], #16 \n" /* all src alphas == 0 -> do not change dst values */
"\tCMP %[src], r2 \n" /* if our current [src] array pointer <= marker */
"\tBLE 5f \n" /* we could run 4-way processing one more time */
/* because now we're in ALPHA == 0 state */
/* run next cycle with priority alpha == 0 checks */
"\tBGT 8f \n" /* if our current [src] array pointer > marker */
/* use simple one-by-one processing */
/* END OF BLOCK OPTIMIZED FOR ALPHA == 255 */
/* START OF BLOCK OPTIMIZED FOR ALPHA == 0 */
"\t5: \n" /* ENTRY 1: LOADING [src] to registers */
"\tLDM %[src]!, {r3, r4, r5, r6} \n" /* 4-way loading of source values to r3-r6 */
"\tORR r7, r3, r4 \n" /* if not all alphas == 0 -> */
"\tORR r8, r5, r6 \n"
"\tORR r9, r7, r8 \n"
"\tLSRS r9, #24 \n"
"\tBNE 7f \n" /* -> go to alpha == 255 check */
"\t6: \n" /* ENTRY 2: [src] already loaded by DISPATCHER */
"\tADD %[dst], %[dst], #16 \n" /* all src alphas == 0 -> do not change dst values */
"\tCMP %[src], r2 \n" /* if our current [src] array pointer <= marker */
"\tBLE 5b \n" /* we could run 4-way processing one more time */
/* because now we're in ALPHA == 0 state */
/* run next cycle with priority alpha == 0 checks */
"\tBGT 8f \n" /* if our current [src] array pointer > marker */
/* use simple one-by-one processing */
"\t7: \n"
"\tAND r7, r3, r4 \n" /* if not all alphas == 255 -> */
"\tAND r8, r5, r6 \n"
"\tAND r9, r7, r8 \n"
"\tCMP r14, r9, LSR #24 \n"
"\tBNE 1b \n" /* -> go to general processing mode */
/* (we already checked for alpha == 0) */
"\tSTM %[dst]!, {r3, r4, r5, r6} \n" /* all alphas == 255 -> 4-way copy [src] to [dst] */
"\tCMP %[src], r2 \n" /* if our current [src] array pointer <= marker */
"\tBLE 2b \n" /* we could run 4-way processing one more time */
/* because now we're in ALPHA == 255 state */
/* run next cycle with priority alpha == 255 checks */
"\tBGT 8f \n" /* if our current [src] array pointer > marker */
/* use simple one-by-one processing */
/* END OF BLOCK OPTIMIZED FOR ALPHA == 0 */
/* START OF TAIL BLOCK */
/* (used when array is too small to be processed with 4-way algorithm)*/
"\t8: \n"
"\tADD r2, r2, #16 \n" /* now r2 points to the element just after array */
/* we've done r2 = r2 - 16 at procedure start */
"\tCMP %[src], r2 \n" /* if our current [src] array pointer > final marker */
"\tBEQ 9f \n" /* goto EXIT */
/* TAIL PROCESSING BLOCK 1 */
"\tLDR r3, [%[src]], #4 \n" /* r3 = *src, src++ */
"\tLDR r7, [%[dst]] \n" /* r7 = *dst */
"\tLSR r11, r3, #24 \n" /* extracting alpha from source */
"\tAND r9, r12, r7 \n" /* r9 = br masked by r12 (0xff00ff) */
"\tRSB r11, r11, #256 \n" /* subtracting the alpha from 255 -> r11 = scale */
"\tAND r10, r12, r7, LSR #8 \n" /* r10 = ag masked by r12 (0xff00ff) */
"\tMUL r9, r9, r11 \n" /* br = br * scale */
"\tAND r9, r12, r9, LSR #8 \n" /* lsr br by 8 and mask it */
"\tMUL r10, r10, r11 \n" /* ag = ag * scale */
"\tAND r10, r10, r12, LSL #8 \n" /* mask ag with reverse mask */
"\tORR r7, r9, r10 \n" /* br | ag */
"\tADD r7, r3, r7 \n" /* dst = src + calc dest(r8) */
"\tSTR r7, [%[dst]], #4 \n" /* *dst = r7; dst++ */
"\tCMP %[src], r2 \n" /* if our current [src] array pointer > final marker */
"\tBEQ 9f \n" /* goto EXIT */
/* TAIL PROCESSING BLOCK 2 */
"\tLDR r3, [%[src]], #4 \n" /* see TAIL PROCESSING BLOCK 1 */
"\tLDR r7, [%[dst]] \n"
"\tLSR r11, r3, #24 \n"
"\tAND r9, r12, r7 \n"
"\tRSB r11, r11, #256 \n"
"\tAND r10, r12, r7, LSR #8 \n"
"\tMUL r9, r9, r11 \n"
"\tAND r9, r12, r9, LSR #8 \n"
"\tMUL r10, r10, r11 \n"
"\tAND r10, r10, r12, LSL #8 \n"
"\tORR r7, r9, r10 \n"
"\tADD r7, r3, r7 \n"
"\tSTR r7, [%[dst]], #4 \n"
"\tCMP %[src], r2 \n"
"\tBEQ 9f \n"
/* TAIL PROCESSING BLOCK 3 */
"\tLDR r3, [%[src]], #4 \n" /* see TAIL PROCESSING BLOCK 1 */
"\tLDR r7, [%[dst]] \n"
"\tLSR r11, r3, #24 \n"
"\tAND r9, r12, r7 \n"
"\tRSB r11, r11, #256 \n"
"\tAND r10, r12, r7, LSR #8 \n"
"\tMUL r9, r9, r11 \n"
"\tAND r9, r12, r9, LSR #8 \n"
"\tMUL r10, r10, r11 \n"
"\tAND r10, r10, r12, LSL #8 \n"
"\tORR r7, r9, r10 \n"
"\tADD r7, r3, r7 \n"
"\tSTR r7, [%[dst]], #4 \n"
/* END OF TAIL BLOCK */
"\t9: \n" /* EXIT */
"\tLDMIA r13!, {r4-r12, r14} \n" /* restoring r4-r12, lr from stack */
"\tBX lr \n" /* return */
: [dst] "+r" (dst), [src] "+r" (src)
:
: "cc", "r2", "r3", "memory"
);
}
#endif // USE_ARM_CODE #endif // USE_ARM_CODE
/* /*
@ -366,7 +666,21 @@ const SkBlitRow::Proc sk_blitrow_platform_4444_procs_arm[] = {
const SkBlitRow::Proc32 sk_blitrow_platform_32_procs_arm[] = { const SkBlitRow::Proc32 sk_blitrow_platform_32_procs_arm[] = {
NULL, // S32_Opaque, NULL, // S32_Opaque,
NULL, // S32_Blend, NULL, // S32_Blend,
/*
* We have two choices for S32A_Opaque procs. The one reads the src alpha
* value and attempts to optimize accordingly. The optimization is
* sensitive to the source content and is not a win in all cases. For
* example, if there are a lot of transitions between the alpha states,
* the performance will almost certainly be worse. However, for many
* common cases the performance is equivalent or better than the standard
* case where we do not inspect the src alpha.
*/
#if SK_A32_SHIFT == 24
// This proc assumes the alpha value occupies bits 24-32 of each SkPMColor
S32A_Opaque_BlitRow32_arm_src_alpha, // S32A_Opaque,
#else
S32A_Opaque_BlitRow32_arm, // S32A_Opaque, S32A_Opaque_BlitRow32_arm, // S32A_Opaque,
#endif
S32A_Blend_BlitRow32_arm // S32A_Blend S32A_Blend_BlitRow32_arm // S32A_Blend
}; };
#endif #endif

View File

@ -517,6 +517,176 @@ void S32A_Opaque_BlitRow32_neon(SkPMColor* SK_RESTRICT dst,
} }
} }
void S32A_Opaque_BlitRow32_neon_src_alpha(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count, U8CPU alpha) {
SkASSERT(255 == alpha);
if (count <= 0)
return;
/* Use these to check if src is transparent or opaque */
const unsigned int ALPHA_OPAQ = 0xFF000000;
const unsigned int ALPHA_TRANS = 0x00FFFFFF;
#define UNROLL 4
const SkPMColor* SK_RESTRICT src_end = src + count - (UNROLL + 1);
const SkPMColor* SK_RESTRICT src_temp = src;
/* set up the NEON variables */
uint8x8_t alpha_mask;
static const uint8_t alpha_mask_setup[] = {3,3,3,3,7,7,7,7};
alpha_mask = vld1_u8(alpha_mask_setup);
uint8x8_t src_raw, dst_raw, dst_final;
uint8x8_t src_raw_2, dst_raw_2, dst_final_2;
uint8x8_t dst_cooked;
uint16x8_t dst_wide;
uint8x8_t alpha_narrow;
uint16x8_t alpha_wide;
/* choose the first processing type */
if( src >= src_end)
goto TAIL;
if(*src <= ALPHA_TRANS)
goto ALPHA_0;
if(*src >= ALPHA_OPAQ)
goto ALPHA_255;
/* fall-thru */
ALPHA_1_TO_254:
do {
/* get the source */
src_raw = vreinterpret_u8_u32(vld1_u32(src));
src_raw_2 = vreinterpret_u8_u32(vld1_u32(src+2));
/* get and hold the dst too */
dst_raw = vreinterpret_u8_u32(vld1_u32(dst));
dst_raw_2 = vreinterpret_u8_u32(vld1_u32(dst+2));
/* get the alphas spread out properly */
alpha_narrow = vtbl1_u8(src_raw, alpha_mask);
/* reflect SkAlpha255To256() semantics a+1 vs a+a>>7 */
/* we collapsed (255-a)+1 ... */
alpha_wide = vsubw_u8(vdupq_n_u16(256), alpha_narrow);
/* spread the dest */
dst_wide = vmovl_u8(dst_raw);
/* alpha mul the dest */
dst_wide = vmulq_u16 (dst_wide, alpha_wide);
dst_cooked = vshrn_n_u16(dst_wide, 8);
/* sum -- ignoring any byte lane overflows */
dst_final = vadd_u8(src_raw, dst_cooked);
alpha_narrow = vtbl1_u8(src_raw_2, alpha_mask);
/* reflect SkAlpha255To256() semantics a+1 vs a+a>>7 */
/* we collapsed (255-a)+1 ... */
alpha_wide = vsubw_u8(vdupq_n_u16(256), alpha_narrow);
/* spread the dest */
dst_wide = vmovl_u8(dst_raw_2);
/* alpha mul the dest */
dst_wide = vmulq_u16 (dst_wide, alpha_wide);
dst_cooked = vshrn_n_u16(dst_wide, 8);
/* sum -- ignoring any byte lane overflows */
dst_final_2 = vadd_u8(src_raw_2, dst_cooked);
vst1_u32(dst, vreinterpret_u32_u8(dst_final));
vst1_u32(dst+2, vreinterpret_u32_u8(dst_final_2));
src += UNROLL;
dst += UNROLL;
/* if 2 of the next pixels aren't between 1 and 254
it might make sense to go to the optimized loops */
if((src[0] <= ALPHA_TRANS && src[1] <= ALPHA_TRANS) || (src[0] >= ALPHA_OPAQ && src[1] >= ALPHA_OPAQ))
break;
} while(src < src_end);
if (src >= src_end)
goto TAIL;
if(src[0] >= ALPHA_OPAQ && src[1] >= ALPHA_OPAQ)
goto ALPHA_255;
/*fall-thru*/
ALPHA_0:
/*In this state, we know the current alpha is 0 and
we optimize for the next alpha also being zero. */
src_temp = src; //so we don't have to increment dst every time
do {
if(*(++src) > ALPHA_TRANS)
break;
if(*(++src) > ALPHA_TRANS)
break;
if(*(++src) > ALPHA_TRANS)
break;
if(*(++src) > ALPHA_TRANS)
break;
} while(src < src_end);
dst += (src - src_temp);
/* no longer alpha 0, so determine where to go next. */
if( src >= src_end)
goto TAIL;
if(*src >= ALPHA_OPAQ)
goto ALPHA_255;
else
goto ALPHA_1_TO_254;
ALPHA_255:
while((src[0] & src[1] & src[2] & src[3]) >= ALPHA_OPAQ) {
dst[0]=src[0];
dst[1]=src[1];
dst[2]=src[2];
dst[3]=src[3];
src+=UNROLL;
dst+=UNROLL;
if(src >= src_end)
goto TAIL;
}
//Handle remainder.
if(*src >= ALPHA_OPAQ) { *dst++ = *src++;
if(*src >= ALPHA_OPAQ) { *dst++ = *src++;
if(*src >= ALPHA_OPAQ) { *dst++ = *src++; }
}
}
if( src >= src_end)
goto TAIL;
if(*src <= ALPHA_TRANS)
goto ALPHA_0;
else
goto ALPHA_1_TO_254;
TAIL:
/* do any residual iterations */
src_end += UNROLL + 1; //goto the real end
while(src != src_end) {
if( *src != 0 ) {
if( *src >= ALPHA_OPAQ ) {
*dst = *src;
}
else {
*dst = SkPMSrcOver(*src, *dst);
}
}
src++;
dst++;
}
return;
}
/* Neon version of S32_Blend_BlitRow32() /* Neon version of S32_Blend_BlitRow32()
* portable version is in src/core/SkBlitRow_D32.cpp * portable version is in src/core/SkBlitRow_D32.cpp
@ -1107,6 +1277,20 @@ const SkBlitRow::Proc sk_blitrow_platform_4444_procs_arm_neon[] = {
const SkBlitRow::Proc32 sk_blitrow_platform_32_procs_arm_neon[] = { const SkBlitRow::Proc32 sk_blitrow_platform_32_procs_arm_neon[] = {
NULL, // S32_Opaque, NULL, // S32_Opaque,
S32_Blend_BlitRow32_neon, // S32_Blend, S32_Blend_BlitRow32_neon, // S32_Blend,
S32A_Opaque_BlitRow32_neon, // S32A_Opaque, /*
* We have two choices for S32A_Opaque procs. The one reads the src alpha
* value and attempts to optimize accordingly. The optimization is
* sensitive to the source content and is not a win in all cases. For
* example, if there are a lot of transitions between the alpha states,
* the performance will almost certainly be worse. However, for many
* common cases the performance is equivalent or better than the standard
* case where we do not inspect the src alpha.
*/
#if SK_A32_SHIFT == 24
// This proc assumes the alpha value occupies bits 24-32 of each SkPMColor
S32A_Opaque_BlitRow32_neon_src_alpha, // S32A_Opaque,
#else
S32A_Opaque_BlitRow32_neon, // S32A_Opaque,
#endif
S32A_Blend_BlitRow32_arm // S32A_Blend S32A_Blend_BlitRow32_arm // S32A_Blend
}; };