Optimize RGB16 blitV functions with NEON for ARM platform.

Here are some performance resultsi on Nexus 9:
SkRGB16BlitterBlitV_neon:
+--------+-----------+
|height  |  C/NEON   |
+--------+-----------+
|1       | 0.765230  |
+--------+-----------+
|8       | 1.273330  |
+--------+-----------+
|18      | 1.441462  |
+--------+-----------+
|32      | 1.627798  |
+--------+-----------+
|76      | 1.683131  |
+--------+-----------+
|85      | 1.679456  |
+--------+-----------+
|120     | 1.721311  |
+--------+-----------+
|128     | 1.725482  |
+--------+-----------+
|512     | 1.784117  |
+--------+-----------+

BUG=skia:

Review URL: https://codereview.chromium.org/1213723002
This commit is contained in:
yang.zhang 2015-07-15 07:07:30 -07:00 committed by Commit bot
parent 004aebd42c
commit dc77b35918
3 changed files with 88 additions and 0 deletions

View File

@ -36,3 +36,4 @@ Steve Singer <steve@ssinger.info>
The Chromium Authors <*@chromium.org>
Thiago Fransosi Farina <thiago.farina@gmail.com>
Jose Mayol <jei.mayol@gmail.com>
Linaro <*@linaro.org>

View File

@ -22,6 +22,11 @@ extern void blitmask_d565_opaque_mips(int width, int height, uint16_t* device,
#if SK_ARM_NEON_IS_ALWAYS && defined(SK_CPU_LENDIAN)
#include <arm_neon.h>
extern void SkRGB16BlitterBlitV_neon(uint16_t* device,
int height,
size_t deviceRB,
unsigned scale,
uint32_t src32);
#else
// if we don't have neon, then our black blitter is worth the extra code
#define USE_BLACK_BLITTER
@ -484,11 +489,15 @@ void SkRGB16_Opaque_Blitter::blitV(int x, int y, int height, SkAlpha alpha) {
unsigned scale5 = SkAlpha255To256(alpha) >> 3;
uint32_t src32 = fExpandedRaw16 * scale5;
scale5 = 32 - scale5;
#if SK_ARM_NEON_IS_ALWAYS && defined(SK_CPU_LENDIAN)
SkRGB16BlitterBlitV_neon(device, height, deviceRB, scale5, src32);
#else
do {
uint32_t dst32 = SkExpand_rgb_16(*device) * scale5;
*device = SkCompact_rgb_16((src32 + dst32) >> 5);
device = (uint16_t*)((char*)device + deviceRB);
} while (--height != 0);
#endif
}
void SkRGB16_Opaque_Blitter::blitRect(int x, int y, int width, int height) {
@ -659,11 +668,15 @@ void SkRGB16_Blitter::blitV(int x, int y, int height, SkAlpha alpha) {
unsigned scale5 = SkAlpha255To256(alpha) * fScale >> (8 + 3);
uint32_t src32 = fExpandedRaw16 * scale5;
scale5 = 32 - scale5;
#if SK_ARM_NEON_IS_ALWAYS && defined(SK_CPU_LENDIAN)
SkRGB16BlitterBlitV_neon(device, height, deviceRB, scale5, src32);
#else
do {
uint32_t dst32 = SkExpand_rgb_16(*device) * scale5;
*device = SkCompact_rgb_16((src32 + dst32) >> 5);
device = (uint16_t*)((char*)device + deviceRB);
} while (--height != 0);
#endif
}
void SkRGB16_Blitter::blitRect(int x, int y, int width, int height) {

View File

@ -258,3 +258,77 @@ void SkBlitLCD16Row_neon(SkPMColor dst[], const uint16_t src[],
dst[i] = SkBlendLCD16(colA, colR, colG, colB, dst[i], src[i]);
}
}
#define LOAD_LANE_16(reg, n) \
reg = vld1q_lane_u16(device, reg, n); \
device = (uint16_t*)((char*)device + deviceRB);
#define STORE_LANE_16(reg, n) \
vst1_lane_u16(dst, reg, n); \
dst = (uint16_t*)((char*)dst + deviceRB);
void SkRGB16BlitterBlitV_neon(uint16_t* device,
int height,
size_t deviceRB,
unsigned scale,
uint32_t src32) {
if (height >= 8)
{
uint16_t* dst = device;
// prepare constants
uint16x8_t vdev = vdupq_n_u16(0);
uint16x8_t vmaskq_g16 = vdupq_n_u16(SK_G16_MASK_IN_PLACE);
uint16x8_t vmaskq_ng16 = vdupq_n_u16(~SK_G16_MASK_IN_PLACE);
uint32x4_t vsrc32 = vdupq_n_u32(src32);
uint32x4_t vscale5 = vdupq_n_u32((uint32_t)scale);
while (height >= 8){
LOAD_LANE_16(vdev, 0)
LOAD_LANE_16(vdev, 1)
LOAD_LANE_16(vdev, 2)
LOAD_LANE_16(vdev, 3)
LOAD_LANE_16(vdev, 4)
LOAD_LANE_16(vdev, 5)
LOAD_LANE_16(vdev, 6)
LOAD_LANE_16(vdev, 7)
// Expand_rgb_16
uint16x8x2_t vdst = vzipq_u16((vdev & vmaskq_ng16), (vdev & vmaskq_g16));
uint32x4_t vdst32_lo = vmulq_u32(vreinterpretq_u32_u16(vdst.val[0]), vscale5);
uint32x4_t vdst32_hi = vmulq_u32(vreinterpretq_u32_u16(vdst.val[1]), vscale5);
// Compact_rgb_16
vdst32_lo = vaddq_u32(vdst32_lo, vsrc32);
vdst32_hi = vaddq_u32(vdst32_hi, vsrc32);
vdst32_lo = vshrq_n_u32(vdst32_lo, 5);
vdst32_hi = vshrq_n_u32(vdst32_hi, 5);
uint16x4_t vtmp_lo = vmovn_u32(vdst32_lo) & vget_low_u16(vmaskq_ng16);
uint16x4_t vtmp_hi = vshrn_n_u32(vdst32_lo, 16) & vget_low_u16(vmaskq_g16);
uint16x4_t vdst16_lo = vorr_u16(vtmp_lo, vtmp_hi);
vtmp_lo = vmovn_u32(vdst32_hi) & vget_low_u16(vmaskq_ng16);
vtmp_hi = vshrn_n_u32(vdst32_hi, 16) & vget_low_u16(vmaskq_g16);
uint16x4_t vdst16_hi = vorr_u16(vtmp_lo, vtmp_hi);
STORE_LANE_16(vdst16_lo, 0)
STORE_LANE_16(vdst16_lo, 1)
STORE_LANE_16(vdst16_lo, 2)
STORE_LANE_16(vdst16_lo, 3)
STORE_LANE_16(vdst16_hi, 0)
STORE_LANE_16(vdst16_hi, 1)
STORE_LANE_16(vdst16_hi, 2)
STORE_LANE_16(vdst16_hi, 3)
height -= 8;
}
}
while (height != 0){
uint32_t dst32 = SkExpand_rgb_16(*device) * scale;
*device = SkCompact_rgb_16((src32 + dst32) >> 5);
device = (uint16_t*)((char*)device + deviceRB);
height--;
}
}
#undef LOAD_LANE_16
#undef STORE_LANE_16