Move tiled bitmap code into SkGpuDevice_drawTexture.cpp

This is purely moving code, to make changes in the next CL clearer when
most of these functions can be made static in the cpp file.

Change-Id: I9b23dd96bfc4b6ab3b5f6c8ad8b62365a6d82db2
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/276199
Reviewed-by: Greg Daniel <egdaniel@google.com>
Commit-Queue: Michael Ludwig <michaelludwig@google.com>
This commit is contained in:
Michael Ludwig 2020-03-10 09:55:35 -04:00 committed by Skia Commit-Bot
parent d1a8af69ef
commit dd86fb3531
2 changed files with 329 additions and 324 deletions

View File

@ -635,333 +635,10 @@ void SkGpuDevice::drawPath(const SkPath& origSrcPath, const SkPaint& paint, bool
paint, this->localToDevice(), shape);
}
static const int kBmpSmallTileSize = 1 << 10;
static inline int get_tile_count(const SkIRect& srcRect, int tileSize) {
int tilesX = (srcRect.fRight / tileSize) - (srcRect.fLeft / tileSize) + 1;
int tilesY = (srcRect.fBottom / tileSize) - (srcRect.fTop / tileSize) + 1;
return tilesX * tilesY;
}
static int determine_tile_size(const SkIRect& src, int maxTileSize) {
if (maxTileSize <= kBmpSmallTileSize) {
return maxTileSize;
}
size_t maxTileTotalTileSize = get_tile_count(src, maxTileSize);
size_t smallTotalTileSize = get_tile_count(src, kBmpSmallTileSize);
maxTileTotalTileSize *= maxTileSize * maxTileSize;
smallTotalTileSize *= kBmpSmallTileSize * kBmpSmallTileSize;
if (maxTileTotalTileSize > 2 * smallTotalTileSize) {
return kBmpSmallTileSize;
} else {
return maxTileSize;
}
}
// Given a bitmap, an optional src rect, and a context with a clip and matrix determine what
// pixels from the bitmap are necessary.
static void determine_clipped_src_rect(int width, int height,
const GrClip& clip,
const SkMatrix& viewMatrix,
const SkMatrix& srcToDstRect,
const SkISize& imageDimensions,
const SkRect* srcRectPtr,
SkIRect* clippedSrcIRect) {
clip.getConservativeBounds(width, height, clippedSrcIRect, nullptr);
SkMatrix inv = SkMatrix::Concat(viewMatrix, srcToDstRect);
if (!inv.invert(&inv)) {
clippedSrcIRect->setEmpty();
return;
}
SkRect clippedSrcRect = SkRect::Make(*clippedSrcIRect);
inv.mapRect(&clippedSrcRect);
if (srcRectPtr) {
if (!clippedSrcRect.intersect(*srcRectPtr)) {
clippedSrcIRect->setEmpty();
return;
}
}
clippedSrcRect.roundOut(clippedSrcIRect);
SkIRect bmpBounds = SkIRect::MakeSize(imageDimensions);
if (!clippedSrcIRect->intersect(bmpBounds)) {
clippedSrcIRect->setEmpty();
}
}
const GrCaps* SkGpuDevice::caps() const {
return fContext->priv().caps();
}
bool SkGpuDevice::shouldTileImageID(uint32_t imageID,
const SkIRect& imageRect,
const SkMatrix& viewMatrix,
const SkMatrix& srcToDstRect,
const SkRect* srcRectPtr,
int maxTileSize,
int* tileSize,
SkIRect* clippedSubset) const {
ASSERT_SINGLE_OWNER
// if it's larger than the max tile size, then we have no choice but tiling.
if (imageRect.width() > maxTileSize || imageRect.height() > maxTileSize) {
determine_clipped_src_rect(fRenderTargetContext->width(), fRenderTargetContext->height(),
this->clip(), viewMatrix, srcToDstRect, imageRect.size(),
srcRectPtr, clippedSubset);
*tileSize = determine_tile_size(*clippedSubset, maxTileSize);
return true;
}
// If the image would only produce 4 tiles of the smaller size, don't bother tiling it.
const size_t area = imageRect.width() * imageRect.height();
if (area < 4 * kBmpSmallTileSize * kBmpSmallTileSize) {
return false;
}
// At this point we know we could do the draw by uploading the entire bitmap
// as a texture. However, if the texture would be large compared to the
// cache size and we don't require most of it for this draw then tile to
// reduce the amount of upload and cache spill.
// assumption here is that sw bitmap size is a good proxy for its size as
// a texture
size_t bmpSize = area * sizeof(SkPMColor); // assume 32bit pixels
size_t cacheSize = fContext->getResourceCacheLimit();
if (bmpSize < cacheSize / 2) {
return false;
}
// Figure out how much of the src we will need based on the src rect and clipping. Reject if
// tiling memory savings would be < 50%.
determine_clipped_src_rect(fRenderTargetContext->width(), fRenderTargetContext->height(),
this->clip(), viewMatrix, srcToDstRect, imageRect.size(), srcRectPtr,
clippedSubset);
*tileSize = kBmpSmallTileSize; // already know whole bitmap fits in one max sized tile.
size_t usedTileBytes = get_tile_count(*clippedSubset, kBmpSmallTileSize) *
kBmpSmallTileSize * kBmpSmallTileSize *
sizeof(SkPMColor); // assume 32bit pixels;
return usedTileBytes * 2 < bmpSize;
}
bool SkGpuDevice::shouldTileImage(const SkImage* image, const SkRect* srcRectPtr,
SkCanvas::SrcRectConstraint constraint, SkFilterQuality quality,
const SkMatrix& viewMatrix,
const SkMatrix& srcToDstRect) const {
ASSERT_SINGLE_OWNER
// If image is explicitly texture backed then we shouldn't get here.
SkASSERT(!image->isTextureBacked());
bool doBicubic;
GrSamplerState::Filter textureFilterMode = GrSkFilterQualityToGrFilterMode(
image->width(), image->height(), quality, viewMatrix, srcToDstRect,
fContext->priv().options().fSharpenMipmappedTextures, &doBicubic);
int tileFilterPad;
if (doBicubic) {
tileFilterPad = GrBicubicEffect::kFilterTexelPad;
} else if (GrSamplerState::Filter::kNearest == textureFilterMode) {
tileFilterPad = 0;
} else {
tileFilterPad = 1;
}
int maxTileSize = this->caps()->maxTileSize() - 2 * tileFilterPad;
// these are output, which we safely ignore, as we just want to know the predicate
int outTileSize;
SkIRect outClippedSrcRect;
return this->shouldTileImageID(image->unique(), image->bounds(), viewMatrix, srcToDstRect,
srcRectPtr, maxTileSize, &outTileSize, &outClippedSrcRect);
}
// This method outsets 'iRect' by 'outset' all around and then clamps its extents to
// 'clamp'. 'offset' is adjusted to remain positioned over the top-left corner
// of 'iRect' for all possible outsets/clamps.
static inline void clamped_outset_with_offset(SkIRect* iRect,
int outset,
SkPoint* offset,
const SkIRect& clamp) {
iRect->outset(outset, outset);
int leftClampDelta = clamp.fLeft - iRect->fLeft;
if (leftClampDelta > 0) {
offset->fX -= outset - leftClampDelta;
iRect->fLeft = clamp.fLeft;
} else {
offset->fX -= outset;
}
int topClampDelta = clamp.fTop - iRect->fTop;
if (topClampDelta > 0) {
offset->fY -= outset - topClampDelta;
iRect->fTop = clamp.fTop;
} else {
offset->fY -= outset;
}
if (iRect->fRight > clamp.fRight) {
iRect->fRight = clamp.fRight;
}
if (iRect->fBottom > clamp.fBottom) {
iRect->fBottom = clamp.fBottom;
}
}
// Break 'bitmap' into several tiles to draw it since it has already
// been determined to be too large to fit in VRAM
void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap,
const SkMatrix& viewMatrix,
const SkMatrix& dstMatrix,
const SkRect& srcRect,
const SkIRect& clippedSrcIRect,
GrSamplerState::Filter filter,
const SkPaint& origPaint,
SkCanvas::SrcRectConstraint constraint,
int tileSize,
bool bicubic) {
ASSERT_SINGLE_OWNER
// This is the funnel for all paths that draw tiled bitmaps/images. Log histogram entries.
SK_HISTOGRAM_BOOLEAN("DrawTiled", true);
LogDrawScaleFactor(viewMatrix, SkMatrix::I(), origPaint.getFilterQuality());
const SkPaint* paint = &origPaint;
SkPaint tempPaint;
if (origPaint.isAntiAlias() && fRenderTargetContext->numSamples() <= 1) {
// Drop antialiasing to avoid seams at tile boundaries.
tempPaint = origPaint;
tempPaint.setAntiAlias(false);
paint = &tempPaint;
}
SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect);
int nx = bitmap.width() / tileSize;
int ny = bitmap.height() / tileSize;
for (int x = 0; x <= nx; x++) {
for (int y = 0; y <= ny; y++) {
SkRect tileR;
tileR.setLTRB(SkIntToScalar(x * tileSize), SkIntToScalar(y * tileSize),
SkIntToScalar((x + 1) * tileSize), SkIntToScalar((y + 1) * tileSize));
if (!SkRect::Intersects(tileR, clippedSrcRect)) {
continue;
}
if (!tileR.intersect(srcRect)) {
continue;
}
SkIRect iTileR;
tileR.roundOut(&iTileR);
SkVector offset = SkPoint::Make(SkIntToScalar(iTileR.fLeft),
SkIntToScalar(iTileR.fTop));
SkRect rectToDraw = tileR;
dstMatrix.mapRect(&rectToDraw);
if (filter != GrSamplerState::Filter::kNearest || bicubic) {
SkIRect iClampRect;
if (SkCanvas::kFast_SrcRectConstraint == constraint) {
// In bleed mode we want to always expand the tile on all edges
// but stay within the bitmap bounds
iClampRect = SkIRect::MakeWH(bitmap.width(), bitmap.height());
} else {
// In texture-domain/clamp mode we only want to expand the
// tile on edges interior to "srcRect" (i.e., we want to
// not bleed across the original clamped edges)
srcRect.roundOut(&iClampRect);
}
int outset = bicubic ? GrBicubicEffect::kFilterTexelPad : 1;
clamped_outset_with_offset(&iTileR, outset, &offset, iClampRect);
}
SkBitmap tmpB;
if (bitmap.extractSubset(&tmpB, iTileR)) {
// now offset it to make it "local" to our tmp bitmap
tileR.offset(-offset.fX, -offset.fY);
// de-optimized this determination
bool needsTextureDomain = true;
this->drawBitmapTile(tmpB,
viewMatrix,
rectToDraw,
tileR,
filter,
*paint,
constraint,
bicubic,
needsTextureDomain);
}
}
}
}
void SkGpuDevice::drawBitmapTile(const SkBitmap& bitmap,
const SkMatrix& viewMatrix,
const SkRect& dstRect,
const SkRect& srcRect,
GrSamplerState::Filter filter,
const SkPaint& paint,
SkCanvas::SrcRectConstraint constraint,
bool bicubic,
bool needsTextureDomain) {
// We should have already handled bitmaps larger than the max texture size.
SkASSERT(bitmap.width() <= this->caps()->maxTextureSize() &&
bitmap.height() <= this->caps()->maxTextureSize());
// We should be respecting the max tile size by the time we get here.
SkASSERT(bitmap.width() <= this->caps()->maxTileSize() &&
bitmap.height() <= this->caps()->maxTileSize());
GrMipMapped mipMapped = filter == GrSamplerState::Filter::kMipMap ? GrMipMapped::kYes
: GrMipMapped::kNo;
GrSurfaceProxyView view = GrRefCachedBitmapView(fContext.get(), bitmap, mipMapped);
if (!view) {
return;
}
// Compute a matrix that maps the rect we will draw to the src rect.
SkMatrix texMatrix = SkMatrix::MakeRectToRect(dstRect, srcRect, SkMatrix::kFill_ScaleToFit);
SkAlphaType srcAlphaType = bitmap.alphaType();
// Construct a GrPaint by setting the bitmap texture as the first effect and then configuring
// the rest from the SkPaint.
std::unique_ptr<GrFragmentProcessor> fp;
const auto& caps = *this->caps();
if (needsTextureDomain && (SkCanvas::kStrict_SrcRectConstraint == constraint)) {
if (bicubic) {
static constexpr auto kDir = GrBicubicEffect::Direction::kXY;
fp = GrBicubicEffect::MakeSubset(std::move(view), srcAlphaType, texMatrix,
GrSamplerState::WrapMode::kClamp,
GrSamplerState::WrapMode::kClamp, srcRect, kDir, caps);
} else {
fp = GrTextureEffect::MakeSubset(std::move(view), srcAlphaType, texMatrix, filter,
srcRect, caps);
}
} else if (bicubic) {
SkASSERT(GrSamplerState::Filter::kNearest == filter);
static constexpr auto kDir = GrBicubicEffect::Direction::kXY;
fp = GrBicubicEffect::Make(std::move(view), srcAlphaType, texMatrix, kDir);
} else {
fp = GrTextureEffect::Make(std::move(view), srcAlphaType, texMatrix, filter);
}
fp = GrColorSpaceXformEffect::Make(std::move(fp), bitmap.colorSpace(), bitmap.alphaType(),
fRenderTargetContext->colorInfo().colorSpace());
GrPaint grPaint;
if (!SkPaintToGrPaintWithTexture(this->context(), fRenderTargetContext->colorInfo(), paint,
viewMatrix, std::move(fp),
kAlpha_8_SkColorType == bitmap.colorType(), &grPaint)) {
return;
}
// Coverage-based AA would cause seams between tiles.
GrAA aa = GrAA(paint.isAntiAlias() && fRenderTargetContext->numSamples() > 1);
fRenderTargetContext->drawRect(this->clip(), std::move(grPaint), aa, viewMatrix, dstRect);
}
void SkGpuDevice::drawSprite(const SkBitmap& bitmap,
int left, int top, const SkPaint& paint) {
ASSERT_SINGLE_OWNER
@ -979,7 +656,6 @@ void SkGpuDevice::drawSprite(const SkBitmap& bitmap,
this->drawSpecial(srcImg.get(), left, top, paint, nullptr, SkMatrix::I());
}
void SkGpuDevice::drawSpecial(SkSpecialImage* special, int left, int top, const SkPaint& paint,
SkImage* clipImage, const SkMatrix& clipMatrix) {
SkASSERT(!paint.getMaskFilter());

View File

@ -94,6 +94,185 @@ static bool can_ignore_bilerp_constraint(const GrTextureProducer& producer,
return false;
}
//////////////////////////////////////////////////////////////////////////////
// Helper functions for tiling a large SkBitmap
static const int kBmpSmallTileSize = 1 << 10;
static inline int get_tile_count(const SkIRect& srcRect, int tileSize) {
int tilesX = (srcRect.fRight / tileSize) - (srcRect.fLeft / tileSize) + 1;
int tilesY = (srcRect.fBottom / tileSize) - (srcRect.fTop / tileSize) + 1;
return tilesX * tilesY;
}
static int determine_tile_size(const SkIRect& src, int maxTileSize) {
if (maxTileSize <= kBmpSmallTileSize) {
return maxTileSize;
}
size_t maxTileTotalTileSize = get_tile_count(src, maxTileSize);
size_t smallTotalTileSize = get_tile_count(src, kBmpSmallTileSize);
maxTileTotalTileSize *= maxTileSize * maxTileSize;
smallTotalTileSize *= kBmpSmallTileSize * kBmpSmallTileSize;
if (maxTileTotalTileSize > 2 * smallTotalTileSize) {
return kBmpSmallTileSize;
} else {
return maxTileSize;
}
}
// Given a bitmap, an optional src rect, and a context with a clip and matrix determine what
// pixels from the bitmap are necessary.
static void determine_clipped_src_rect(int width, int height,
const GrClip& clip,
const SkMatrix& viewMatrix,
const SkMatrix& srcToDstRect,
const SkISize& imageDimensions,
const SkRect* srcRectPtr,
SkIRect* clippedSrcIRect) {
clip.getConservativeBounds(width, height, clippedSrcIRect, nullptr);
SkMatrix inv = SkMatrix::Concat(viewMatrix, srcToDstRect);
if (!inv.invert(&inv)) {
clippedSrcIRect->setEmpty();
return;
}
SkRect clippedSrcRect = SkRect::Make(*clippedSrcIRect);
inv.mapRect(&clippedSrcRect);
if (srcRectPtr) {
if (!clippedSrcRect.intersect(*srcRectPtr)) {
clippedSrcIRect->setEmpty();
return;
}
}
clippedSrcRect.roundOut(clippedSrcIRect);
SkIRect bmpBounds = SkIRect::MakeSize(imageDimensions);
if (!clippedSrcIRect->intersect(bmpBounds)) {
clippedSrcIRect->setEmpty();
}
}
} // temporary anonymous namespace boundary before shouldTileImageID is removed from SkGPUDevice
bool SkGpuDevice::shouldTileImageID(uint32_t imageID,
const SkIRect& imageRect,
const SkMatrix& viewMatrix,
const SkMatrix& srcToDstRect,
const SkRect* srcRectPtr,
int maxTileSize,
int* tileSize,
SkIRect* clippedSubset) const {
// if it's larger than the max tile size, then we have no choice but tiling.
if (imageRect.width() > maxTileSize || imageRect.height() > maxTileSize) {
determine_clipped_src_rect(fRenderTargetContext->width(), fRenderTargetContext->height(),
this->clip(), viewMatrix, srcToDstRect, imageRect.size(),
srcRectPtr, clippedSubset);
*tileSize = determine_tile_size(*clippedSubset, maxTileSize);
return true;
}
// If the image would only produce 4 tiles of the smaller size, don't bother tiling it.
const size_t area = imageRect.width() * imageRect.height();
if (area < 4 * kBmpSmallTileSize * kBmpSmallTileSize) {
return false;
}
// At this point we know we could do the draw by uploading the entire bitmap
// as a texture. However, if the texture would be large compared to the
// cache size and we don't require most of it for this draw then tile to
// reduce the amount of upload and cache spill.
// assumption here is that sw bitmap size is a good proxy for its size as
// a texture
size_t bmpSize = area * sizeof(SkPMColor); // assume 32bit pixels
size_t cacheSize = fContext->getResourceCacheLimit();
if (bmpSize < cacheSize / 2) {
return false;
}
// Figure out how much of the src we will need based on the src rect and clipping. Reject if
// tiling memory savings would be < 50%.
determine_clipped_src_rect(fRenderTargetContext->width(), fRenderTargetContext->height(),
this->clip(), viewMatrix, srcToDstRect, imageRect.size(), srcRectPtr,
clippedSubset);
*tileSize = kBmpSmallTileSize; // already know whole bitmap fits in one max sized tile.
size_t usedTileBytes = get_tile_count(*clippedSubset, kBmpSmallTileSize) *
kBmpSmallTileSize * kBmpSmallTileSize *
sizeof(SkPMColor); // assume 32bit pixels;
return usedTileBytes * 2 < bmpSize;
}
bool SkGpuDevice::shouldTileImage(const SkImage* image, const SkRect* srcRectPtr,
SkCanvas::SrcRectConstraint constraint, SkFilterQuality quality,
const SkMatrix& viewMatrix,
const SkMatrix& srcToDstRect) const {
// If image is explicitly texture backed then we shouldn't get here.
SkASSERT(!image->isTextureBacked());
bool doBicubic;
GrSamplerState::Filter textureFilterMode = GrSkFilterQualityToGrFilterMode(
image->width(), image->height(), quality, viewMatrix, srcToDstRect,
fContext->priv().options().fSharpenMipmappedTextures, &doBicubic);
int tileFilterPad;
if (doBicubic) {
tileFilterPad = GrBicubicEffect::kFilterTexelPad;
} else if (GrSamplerState::Filter::kNearest == textureFilterMode) {
tileFilterPad = 0;
} else {
tileFilterPad = 1;
}
int maxTileSize = this->caps()->maxTileSize() - 2 * tileFilterPad;
// these are output, which we safely ignore, as we just want to know the predicate
int outTileSize;
SkIRect outClippedSrcRect;
return this->shouldTileImageID(image->unique(), image->bounds(), viewMatrix, srcToDstRect,
srcRectPtr, maxTileSize, &outTileSize, &outClippedSrcRect);
}
namespace {
// This method outsets 'iRect' by 'outset' all around and then clamps its extents to
// 'clamp'. 'offset' is adjusted to remain positioned over the top-left corner
// of 'iRect' for all possible outsets/clamps.
static inline void clamped_outset_with_offset(SkIRect* iRect,
int outset,
SkPoint* offset,
const SkIRect& clamp) {
iRect->outset(outset, outset);
int leftClampDelta = clamp.fLeft - iRect->fLeft;
if (leftClampDelta > 0) {
offset->fX -= outset - leftClampDelta;
iRect->fLeft = clamp.fLeft;
} else {
offset->fX -= outset;
}
int topClampDelta = clamp.fTop - iRect->fTop;
if (topClampDelta > 0) {
offset->fY -= outset - topClampDelta;
iRect->fTop = clamp.fTop;
} else {
offset->fY -= outset;
}
if (iRect->fRight > clamp.fRight) {
iRect->fRight = clamp.fRight;
}
if (iRect->fBottom > clamp.fBottom) {
iRect->fBottom = clamp.fBottom;
}
}
//////////////////////////////////////////////////////////////////////////////
// Helper functions for drawing an image with GrRenderTargetContext
enum class ImageDrawMode {
// Src and dst have been restricted to the image content. May need to clamp, no need to decal.
kOptimized,
@ -363,6 +542,156 @@ static void draw_texture_producer(GrContext* context,
} // anonymous namespace
// Break 'bitmap' into several tiles to draw it since it has already
// been determined to be too large to fit in VRAM
void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap,
const SkMatrix& viewMatrix,
const SkMatrix& dstMatrix,
const SkRect& srcRect,
const SkIRect& clippedSrcIRect,
GrSamplerState::Filter filter,
const SkPaint& origPaint,
SkCanvas::SrcRectConstraint constraint,
int tileSize,
bool bicubic) {
// This is the funnel for all paths that draw tiled bitmaps/images. Log histogram entries.
SK_HISTOGRAM_BOOLEAN("DrawTiled", true);
LogDrawScaleFactor(viewMatrix, SkMatrix::I(), origPaint.getFilterQuality());
const SkPaint* paint = &origPaint;
SkPaint tempPaint;
if (origPaint.isAntiAlias() && fRenderTargetContext->numSamples() <= 1) {
// Drop antialiasing to avoid seams at tile boundaries.
tempPaint = origPaint;
tempPaint.setAntiAlias(false);
paint = &tempPaint;
}
SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect);
int nx = bitmap.width() / tileSize;
int ny = bitmap.height() / tileSize;
for (int x = 0; x <= nx; x++) {
for (int y = 0; y <= ny; y++) {
SkRect tileR;
tileR.setLTRB(SkIntToScalar(x * tileSize), SkIntToScalar(y * tileSize),
SkIntToScalar((x + 1) * tileSize), SkIntToScalar((y + 1) * tileSize));
if (!SkRect::Intersects(tileR, clippedSrcRect)) {
continue;
}
if (!tileR.intersect(srcRect)) {
continue;
}
SkIRect iTileR;
tileR.roundOut(&iTileR);
SkVector offset = SkPoint::Make(SkIntToScalar(iTileR.fLeft),
SkIntToScalar(iTileR.fTop));
SkRect rectToDraw = tileR;
dstMatrix.mapRect(&rectToDraw);
if (filter != GrSamplerState::Filter::kNearest || bicubic) {
SkIRect iClampRect;
if (SkCanvas::kFast_SrcRectConstraint == constraint) {
// In bleed mode we want to always expand the tile on all edges
// but stay within the bitmap bounds
iClampRect = SkIRect::MakeWH(bitmap.width(), bitmap.height());
} else {
// In texture-domain/clamp mode we only want to expand the
// tile on edges interior to "srcRect" (i.e., we want to
// not bleed across the original clamped edges)
srcRect.roundOut(&iClampRect);
}
int outset = bicubic ? GrBicubicEffect::kFilterTexelPad : 1;
clamped_outset_with_offset(&iTileR, outset, &offset, iClampRect);
}
SkBitmap tmpB;
if (bitmap.extractSubset(&tmpB, iTileR)) {
// now offset it to make it "local" to our tmp bitmap
tileR.offset(-offset.fX, -offset.fY);
// de-optimized this determination
bool needsTextureDomain = true;
this->drawBitmapTile(tmpB,
viewMatrix,
rectToDraw,
tileR,
filter,
*paint,
constraint,
bicubic,
needsTextureDomain);
}
}
}
}
void SkGpuDevice::drawBitmapTile(const SkBitmap& bitmap,
const SkMatrix& viewMatrix,
const SkRect& dstRect,
const SkRect& srcRect,
GrSamplerState::Filter filter,
const SkPaint& paint,
SkCanvas::SrcRectConstraint constraint,
bool bicubic,
bool needsTextureDomain) {
// We should have already handled bitmaps larger than the max texture size.
SkASSERT(bitmap.width() <= this->caps()->maxTextureSize() &&
bitmap.height() <= this->caps()->maxTextureSize());
// We should be respecting the max tile size by the time we get here.
SkASSERT(bitmap.width() <= this->caps()->maxTileSize() &&
bitmap.height() <= this->caps()->maxTileSize());
GrMipMapped mipMapped = filter == GrSamplerState::Filter::kMipMap ? GrMipMapped::kYes
: GrMipMapped::kNo;
GrSurfaceProxyView view = GrRefCachedBitmapView(fContext.get(), bitmap, mipMapped);
if (!view) {
return;
}
// Compute a matrix that maps the rect we will draw to the src rect.
SkMatrix texMatrix = SkMatrix::MakeRectToRect(dstRect, srcRect, SkMatrix::kFill_ScaleToFit);
SkAlphaType srcAlphaType = bitmap.alphaType();
// Construct a GrPaint by setting the bitmap texture as the first effect and then configuring
// the rest from the SkPaint.
std::unique_ptr<GrFragmentProcessor> fp;
const auto& caps = *this->caps();
if (needsTextureDomain && (SkCanvas::kStrict_SrcRectConstraint == constraint)) {
if (bicubic) {
static constexpr auto kDir = GrBicubicEffect::Direction::kXY;
fp = GrBicubicEffect::MakeSubset(std::move(view), srcAlphaType, texMatrix,
GrSamplerState::WrapMode::kClamp,
GrSamplerState::WrapMode::kClamp, srcRect, kDir, caps);
} else {
fp = GrTextureEffect::MakeSubset(std::move(view), srcAlphaType, texMatrix, filter,
srcRect, caps);
}
} else if (bicubic) {
SkASSERT(GrSamplerState::Filter::kNearest == filter);
static constexpr auto kDir = GrBicubicEffect::Direction::kXY;
fp = GrBicubicEffect::Make(std::move(view), srcAlphaType, texMatrix, kDir);
} else {
fp = GrTextureEffect::Make(std::move(view), srcAlphaType, texMatrix, filter);
}
fp = GrColorSpaceXformEffect::Make(std::move(fp), bitmap.colorSpace(), bitmap.alphaType(),
fRenderTargetContext->colorInfo().colorSpace());
GrPaint grPaint;
if (!SkPaintToGrPaintWithTexture(this->context(), fRenderTargetContext->colorInfo(), paint,
viewMatrix, std::move(fp),
kAlpha_8_SkColorType == bitmap.colorType(), &grPaint)) {
return;
}
// Coverage-based AA would cause seams between tiles.
GrAA aa = GrAA(paint.isAntiAlias() && fRenderTargetContext->numSamples() > 1);
fRenderTargetContext->drawRect(this->clip(), std::move(grPaint), aa, viewMatrix, dstRect);
}
//////////////////////////////////////////////////////////////////////////////
void SkGpuDevice::drawImageQuad(const SkImage* image, const SkRect* srcRect, const SkRect* dstRect,