Clean up SkXfermode_opts.h

It seems that MSVC + __vectorcall don't play well together,
so back ourselves out into a situation where we don't need it.

   - Inline transfermode functions.  This removes the need for SK_VECTORCALL.
   - Remove 565 destination specializations.
     Blending into 565 is not speed-critical enough to merit the code bloat.
   - Removing 565 specializations means a bunch of Sk4px code is now dead.

8888 xfermodes generally speed up a bit from inlining, smoothly ranging from no change down to 0.65x for the fastest functions like Plus or Modulate.

565 xfermodes generally slow down because we're doing 565 -> 8888 and 8888->565 conversion serially[1] and using the stack, smoothly ranging from no change up to 2x slower for the fastest functions like Plus and Modulate.

[1] the 565->8888 conversion is actually being autovectorized

BUG=skia:4765,skia:4776
GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1565223002
CQ_EXTRA_TRYBOTS=client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot

No public API changes.
TBR=reed@google.com

Review URL: https://codereview.chromium.org/1565223002
This commit is contained in:
mtklein 2016-01-08 11:45:21 -08:00 committed by Commit bot
parent 1a1efeacf7
commit defa0daa6a
6 changed files with 79 additions and 260 deletions

View File

@ -300,14 +300,6 @@
# endif
#endif
#if defined(SK_BUILD_FOR_WIN) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#define SK_VECTORCALL __vectorcall
#elif defined(SK_CPU_ARM32)
#define SK_VECTORCALL __attribute__((pcs("aapcs-vfp")))
#else
#define SK_VECTORCALL
#endif
//////////////////////////////////////////////////////////////////////
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1

View File

@ -48,14 +48,6 @@ public:
void store2(SkPMColor[2]) const;
void store1(SkPMColor[1]) const;
// Same as above for 565.
static Sk4px Load4(const SkPMColor16 src[4]);
static Sk4px Load2(const SkPMColor16 src[2]);
static Sk4px Load1(const SkPMColor16 src[1]);
void store4(SkPMColor16 dst[4]) const;
void store2(SkPMColor16 dst[2]) const;
void store1(SkPMColor16 dst[1]) const;
// 1, 2, or 4 SkPMColors with 16-bit components.
// This is most useful as the result of a multiply, e.g. from mulWiden().
class Wide : public Sk16h {
@ -105,8 +97,8 @@ public:
// A generic driver that maps fn over a src array into a dst array.
// fn should take an Sk4px (4 src pixels) and return an Sk4px (4 dst pixels).
template <typename Fn, typename Dst>
static void MapSrc(int n, Dst* dst, const SkPMColor* src, const Fn& fn) {
template <typename Fn>
static void MapSrc(int n, SkPMColor* dst, const SkPMColor* src, const Fn& fn) {
SkASSERT(dst);
SkASSERT(src);
// This looks a bit odd, but it helps loop-invariant hoisting across different calls to fn.
@ -137,8 +129,8 @@ public:
}
// As above, but with dst4' = fn(dst4, src4).
template <typename Fn, typename Dst>
static void MapDstSrc(int n, Dst* dst, const SkPMColor* src, const Fn& fn) {
template <typename Fn>
static void MapDstSrc(int n, SkPMColor* dst, const SkPMColor* src, const Fn& fn) {
SkASSERT(dst);
SkASSERT(src);
while (n > 0) {
@ -167,8 +159,8 @@ public:
}
// As above, but with dst4' = fn(dst4, alpha4).
template <typename Fn, typename Dst>
static void MapDstAlpha(int n, Dst* dst, const SkAlpha* a, const Fn& fn) {
template <typename Fn>
static void MapDstAlpha(int n, SkPMColor* dst, const SkAlpha* a, const Fn& fn) {
SkASSERT(dst);
SkASSERT(a);
while (n > 0) {
@ -197,8 +189,8 @@ public:
}
// As above, but with dst4' = fn(dst4, src4, alpha4).
template <typename Fn, typename Dst>
static void MapDstSrcAlpha(int n, Dst* dst, const SkPMColor* src, const SkAlpha* a,
template <typename Fn>
static void MapDstSrcAlpha(int n, SkPMColor* dst, const SkPMColor* src, const SkAlpha* a,
const Fn& fn) {
SkASSERT(dst);
SkASSERT(src);

View File

@ -95,76 +95,5 @@ inline Sk4px Sk4px::zeroAlphas() const {
return Sk16b(vbicq_u8(this->fVec, (uint8x16_t)vdupq_n_u32(0xFF << SK_A32_SHIFT)));
}
static inline uint8x16_t widen_to_8888(uint16x4_t v) {
// RGB565 format: |R....|G.....|B....|
// Bit: 16 11 5 0
// First get each pixel into its own 32-bit lane.
// v == rgb3 rgb2 rgb1 rgb0
// spread == 0000 rgb3 0000 rgb2 0000 rgb1 0000 rgb0
uint32x4_t spread = vmovl_u16(v);
// Get each color independently, still in 565 precison but down at bit 0.
auto r5 = vshrq_n_u32(spread, 11),
g6 = vandq_u32(vdupq_n_u32(63), vshrq_n_u32(spread, 5)),
b5 = vandq_u32(vdupq_n_u32(31), spread);
// Scale 565 precision up to 8-bit each, filling low 323 bits with high bits of each component.
auto r8 = vorrq_u32(vshlq_n_u32(r5, 3), vshrq_n_u32(r5, 2)),
g8 = vorrq_u32(vshlq_n_u32(g6, 2), vshrq_n_u32(g6, 4)),
b8 = vorrq_u32(vshlq_n_u32(b5, 3), vshrq_n_u32(b5, 2));
// Now put all the 8-bit components into SkPMColor order.
return (uint8x16_t)vorrq_u32(vshlq_n_u32(r8, SK_R32_SHIFT), // TODO: one shift is zero...
vorrq_u32(vshlq_n_u32(g8, SK_G32_SHIFT),
vorrq_u32(vshlq_n_u32(b8, SK_B32_SHIFT),
vdupq_n_u32(0xFF << SK_A32_SHIFT))));
}
static inline uint16x4_t narrow_to_565(uint8x16_t w8x16) {
uint32x4_t w = (uint32x4_t)w8x16;
// Extract out top RGB 565 bits of each pixel, with no rounding.
auto r5 = vandq_u32(vdupq_n_u32(31), vshrq_n_u32(w, SK_R32_SHIFT + 3)),
g6 = vandq_u32(vdupq_n_u32(63), vshrq_n_u32(w, SK_G32_SHIFT + 2)),
b5 = vandq_u32(vdupq_n_u32(31), vshrq_n_u32(w, SK_B32_SHIFT + 3));
// Now put the bits in place in the low 16-bits of each 32-bit lane.
auto spread = vorrq_u32(vshlq_n_u32(r5, 11),
vorrq_u32(vshlq_n_u32(g6, 5),
b5));
// Pack the low 16-bits of our 128-bit register down into a 64-bit register.
// spread == 0000 rgb3 0000 rgb2 0000 rgb1 0000 rgb0
// v == rgb3 rgb2 rgb1 rgb0
auto v = vmovn_u32(spread);
return v;
}
inline Sk4px Sk4px::Load4(const SkPMColor16 src[4]) {
return Sk16b(widen_to_8888(vld1_u16(src)));
}
inline Sk4px Sk4px::Load2(const SkPMColor16 src[2]) {
auto src2 = ((uint32_t)src[0] )
| ((uint32_t)src[1] << 16);
return Sk16b(widen_to_8888(vcreate_u16(src2)));
}
inline Sk4px Sk4px::Load1(const SkPMColor16 src[1]) {
return Sk16b(widen_to_8888(vcreate_u16(src[0])));
}
inline void Sk4px::store4(SkPMColor16 dst[4]) const {
vst1_u16(dst, narrow_to_565(this->fVec));
}
inline void Sk4px::store2(SkPMColor16 dst[2]) const {
auto v = narrow_to_565(this->fVec);
dst[0] = vget_lane_u16(v, 0);
dst[1] = vget_lane_u16(v, 1);
}
inline void Sk4px::store1(SkPMColor16 dst[1]) const {
dst[0] = vget_lane_u16(narrow_to_565(this->fVec), 0);
}
} // namespace

View File

@ -101,79 +101,4 @@ inline Sk4px Sk4px::zeroAlphas() const {
return Sk16b(_mm_andnot_si128(_mm_set1_epi32(0xFF << SK_A32_SHIFT), this->fVec));
}
static inline __m128i widen_low_half_to_8888(__m128i v) {
// RGB565 format: |R....|G.....|B....|
// Bit: 16 11 5 0
// First get each pixel into its own 32-bit lane.
// v == ____ ____ ____ ____ rgb3 rgb2 rgb1 rgb0
// spread == 0000 rgb3 0000 rgb2 0000 rgb1 0000 rgb0
auto spread = _mm_unpacklo_epi16(v, _mm_setzero_si128());
// Get each color independently, still in 565 precison but down at bit 0.
auto r5 = _mm_srli_epi32(spread, 11),
g6 = _mm_and_si128(_mm_set1_epi32(63), _mm_srli_epi32(spread, 5)),
b5 = _mm_and_si128(_mm_set1_epi32(31), spread);
// Scale 565 precision up to 8-bit each, filling low 323 bits with high bits of each component.
auto r8 = _mm_or_si128(_mm_slli_epi32(r5, 3), _mm_srli_epi32(r5, 2)),
g8 = _mm_or_si128(_mm_slli_epi32(g6, 2), _mm_srli_epi32(g6, 4)),
b8 = _mm_or_si128(_mm_slli_epi32(b5, 3), _mm_srli_epi32(b5, 2));
// Now put all the 8-bit components into SkPMColor order.
return _mm_or_si128(_mm_slli_epi32(r8, SK_R32_SHIFT), // TODO: one of these shifts is zero...
_mm_or_si128(_mm_slli_epi32(g8, SK_G32_SHIFT),
_mm_or_si128(_mm_slli_epi32(b8, SK_B32_SHIFT),
_mm_set1_epi32(0xFF << SK_A32_SHIFT))));
}
static inline __m128i narrow_to_565(__m128i w) {
// Extract out top RGB 565 bits of each pixel, with no rounding.
auto r5 = _mm_and_si128(_mm_set1_epi32(31), _mm_srli_epi32(w, SK_R32_SHIFT + 3)),
g6 = _mm_and_si128(_mm_set1_epi32(63), _mm_srli_epi32(w, SK_G32_SHIFT + 2)),
b5 = _mm_and_si128(_mm_set1_epi32(31), _mm_srli_epi32(w, SK_B32_SHIFT + 3));
// Now put the bits in place in the low 16-bits of each 32-bit lane.
auto spread = _mm_or_si128(_mm_slli_epi32(r5, 11),
_mm_or_si128(_mm_slli_epi32(g6, 5),
b5));
// We want to pack the bottom 16-bits of spread down into the low half of the register, v.
// spread == 0000 rgb3 0000 rgb2 0000 rgb1 0000 rgb0
// v == ____ ____ ____ ____ rgb3 rgb2 rgb1 rgb0
// Ideally now we'd use _mm_packus_epi32(spread, <anything>) to pack v. But that's from SSE4.
// With only SSE2, we need to use _mm_packs_epi32. That does signed saturation, and
// we need to preserve all 16 bits. So we pretend our data is signed by sign-extending first.
// TODO: is it faster to just _mm_shuffle_epi8 this when we have SSSE3?
auto signExtended = _mm_srai_epi32(_mm_slli_epi32(spread, 16), 16);
auto v = _mm_packs_epi32(signExtended, signExtended);
return v;
}
inline Sk4px Sk4px::Load4(const SkPMColor16 src[4]) {
return Sk16b(widen_low_half_to_8888(_mm_loadl_epi64((const __m128i*)src)));
}
inline Sk4px Sk4px::Load2(const SkPMColor16 src[2]) {
auto src2 = ((uint32_t)src[0] )
| ((uint32_t)src[1] << 16);
return Sk16b(widen_low_half_to_8888(_mm_cvtsi32_si128(src2)));
}
inline Sk4px Sk4px::Load1(const SkPMColor16 src[1]) {
return Sk16b(widen_low_half_to_8888(_mm_insert_epi16(_mm_setzero_si128(), src[0], 0)));
}
inline void Sk4px::store4(SkPMColor16 dst[4]) const {
_mm_storel_epi64((__m128i*)dst, narrow_to_565(this->fVec));
}
inline void Sk4px::store2(SkPMColor16 dst[2]) const {
uint32_t dst2 = _mm_cvtsi128_si32(narrow_to_565(this->fVec));
dst[0] = dst2;
dst[1] = dst2 >> 16;
}
inline void Sk4px::store1(SkPMColor16 dst[1]) const {
uint32_t dst2 = _mm_cvtsi128_si32(narrow_to_565(this->fVec));
dst[0] = dst2;
}
} // namespace

View File

@ -106,35 +106,4 @@ inline Sk4px Sk4px::zeroColors() const {
0,0,0, this->kth<15>());
}
inline Sk4px Sk4px::Load4(const SkPMColor16 src[4]) {
SkPMColor src32[4];
for (int i = 0; i < 4; i++) { src32[i] = SkPixel16ToPixel32(src[i]); }
return Load4(src32);
}
inline Sk4px Sk4px::Load2(const SkPMColor16 src[2]) {
SkPMColor src32[2];
for (int i = 0; i < 2; i++) { src32[i] = SkPixel16ToPixel32(src[i]); }
return Load2(src32);
}
inline Sk4px Sk4px::Load1(const SkPMColor16 src[1]) {
SkPMColor src32 = SkPixel16ToPixel32(src[0]);
return Load1(&src32);
}
inline void Sk4px::store4(SkPMColor16 dst[4]) const {
SkPMColor dst32[4];
this->store4(dst32);
for (int i = 0; i < 4; i++) { dst[i] = SkPixel32ToPixel16(dst32[i]); }
}
inline void Sk4px::store2(SkPMColor16 dst[2]) const {
SkPMColor dst32[2];
this->store2(dst32);
for (int i = 0; i < 2; i++) { dst[i] = SkPixel32ToPixel16(dst32[i]); }
}
inline void Sk4px::store1(SkPMColor16 dst[1]) const {
SkPMColor dst32;
this->store1(&dst32);
dst[0] = SkPixel32ToPixel16(dst32);
}
} // namespace

View File

@ -15,7 +15,9 @@
namespace {
// Most xfermodes can be done most efficiently 4 pixels at a time in 8 or 16-bit fixed point.
#define XFERMODE(Name) static Sk4px SK_VECTORCALL Name(Sk4px s, Sk4px d)
#define XFERMODE(Xfermode) \
struct Xfermode { Sk4px operator()(const Sk4px&, const Sk4px&) const; }; \
inline Sk4px Xfermode::operator()(const Sk4px& s, const Sk4px& d) const
XFERMODE(Clear) { return Sk4px::DupPMColor(0); }
XFERMODE(Src) { return s; }
@ -23,13 +25,13 @@ XFERMODE(Dst) { return d; }
XFERMODE(SrcIn) { return s.approxMulDiv255(d.alphas() ); }
XFERMODE(SrcOut) { return s.approxMulDiv255(d.alphas().inv()); }
XFERMODE(SrcOver) { return s + d.approxMulDiv255(s.alphas().inv()); }
XFERMODE(DstIn) { return SrcIn (d,s); }
XFERMODE(DstOut) { return SrcOut (d,s); }
XFERMODE(DstOver) { return SrcOver(d,s); }
XFERMODE(DstIn) { return SrcIn ()(d,s); }
XFERMODE(DstOut) { return SrcOut ()(d,s); }
XFERMODE(DstOver) { return SrcOver()(d,s); }
// [ S * Da + (1 - Sa) * D]
XFERMODE(SrcATop) { return (s * d.alphas() + d * s.alphas().inv()).div255(); }
XFERMODE(DstATop) { return SrcATop(d,s); }
XFERMODE(DstATop) { return SrcATop()(d,s); }
//[ S * (1 - Da) + (1 - Sa) * D ]
XFERMODE(Xor) { return (s * d.alphas().inv() + d * s.alphas().inv()).div255(); }
// [S + D ]
@ -79,7 +81,7 @@ XFERMODE(HardLight) {
auto colors = (both + isLite.thenElse(lite, dark)).div255();
return alphas.zeroColors() + colors.zeroAlphas();
}
XFERMODE(Overlay) { return HardLight(d,s); }
XFERMODE(Overlay) { return HardLight()(d,s); }
XFERMODE(Darken) {
auto sa = s.alphas(),
@ -110,7 +112,9 @@ XFERMODE(Lighten) {
#undef XFERMODE
// Some xfermodes use math like divide or sqrt that's best done in floats 1 pixel at a time.
#define XFERMODE(Name) static Sk4f SK_VECTORCALL Name(Sk4f d, Sk4f s)
#define XFERMODE(Xfermode) \
struct Xfermode { Sk4f operator()(const Sk4f&, const Sk4f&) const; }; \
inline Sk4f Xfermode::operator()(const Sk4f& d, const Sk4f& s) const
static inline Sk4f a_rgb(const Sk4f& a, const Sk4f& rgb) {
static_assert(SK_A32_SHIFT == 24, "");
@ -181,15 +185,15 @@ XFERMODE(SoftLight) {
// A reasonable fallback mode for doing AA is to simply apply the transfermode first,
// then linearly interpolate the AA.
template <Sk4px (SK_VECTORCALL *Mode)(Sk4px, Sk4px)>
static Sk4px SK_VECTORCALL xfer_aa(Sk4px s, Sk4px d, Sk4px aa) {
Sk4px bw = Mode(s, d);
template <typename Xfermode>
static Sk4px xfer_aa(const Sk4px& s, const Sk4px& d, const Sk4px& aa) {
Sk4px bw = Xfermode()(s, d);
return (bw * aa + d * aa.inv()).div255();
}
// For some transfermodes we specialize AA, either for correctness or performance.
#define XFERMODE_AA(Name) \
template <> Sk4px SK_VECTORCALL xfer_aa<Name>(Sk4px s, Sk4px d, Sk4px aa)
#define XFERMODE_AA(Xfermode) \
template <> Sk4px xfer_aa<Xfermode>(const Sk4px& s, const Sk4px& d, const Sk4px& aa)
// Plus' clamp needs to happen after AA. skia:3852
XFERMODE_AA(Plus) { // [ clamp( (1-AA)D + (AA)(S+D) ) == clamp(D + AA*S) ]
@ -198,95 +202,103 @@ XFERMODE_AA(Plus) { // [ clamp( (1-AA)D + (AA)(S+D) ) == clamp(D + AA*S) ]
#undef XFERMODE_AA
template <typename Xfermode>
class Sk4pxXfermode : public SkProcCoeffXfermode {
public:
typedef Sk4px (SK_VECTORCALL *Proc4)(Sk4px, Sk4px);
typedef Sk4px (SK_VECTORCALL *AAProc4)(Sk4px, Sk4px, Sk4px);
Sk4pxXfermode(const ProcCoeff& rec, SkXfermode::Mode mode, Proc4 proc4, AAProc4 aaproc4)
: INHERITED(rec, mode)
, fProc4(proc4)
, fAAProc4(aaproc4) {}
Sk4pxXfermode(const ProcCoeff& rec, SkXfermode::Mode mode)
: INHERITED(rec, mode) {}
void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
if (nullptr == aa) {
Sk4px::MapDstSrc(n, dst, src, [&](const Sk4px& dst4, const Sk4px& src4) {
return fProc4(src4, dst4);
return Xfermode()(src4, dst4);
});
} else {
Sk4px::MapDstSrcAlpha(n, dst, src, aa,
[&](const Sk4px& dst4, const Sk4px& src4, const Sk4px& alpha) {
return fAAProc4(src4, dst4, alpha);
});
return xfer_aa<Xfermode>(src4, dst4, alpha);
});
}
}
void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
if (nullptr == aa) {
Sk4px::MapDstSrc(n, dst, src, [&](const Sk4px& dst4, const Sk4px& src4) {
return fProc4(src4, dst4);
});
} else {
Sk4px::MapDstSrcAlpha(n, dst, src, aa,
[&](const Sk4px& dst4, const Sk4px& src4, const Sk4px& alpha) {
return fAAProc4(src4, dst4, alpha);
});
SkPMColor dst32[4];
while (n >= 4) {
dst32[0] = SkPixel16ToPixel32(dst[0]);
dst32[1] = SkPixel16ToPixel32(dst[1]);
dst32[2] = SkPixel16ToPixel32(dst[2]);
dst32[3] = SkPixel16ToPixel32(dst[3]);
this->xfer32(dst32, src, 4, aa);
dst[0] = SkPixel32ToPixel16(dst32[0]);
dst[1] = SkPixel32ToPixel16(dst32[1]);
dst[2] = SkPixel32ToPixel16(dst32[2]);
dst[3] = SkPixel32ToPixel16(dst32[3]);
dst += 4;
src += 4;
aa += aa ? 4 : 0;
n -= 4;
}
while (n) {
SkPMColor dst32 = SkPixel16ToPixel32(*dst);
this->xfer32(&dst32, src, 1, aa);
*dst = SkPixel32ToPixel16(dst32);
dst += 1;
src += 1;
aa += aa ? 1 : 0;
n -= 1;
}
}
private:
Proc4 fProc4;
AAProc4 fAAProc4;
typedef SkProcCoeffXfermode INHERITED;
};
template <typename Xfermode>
class Sk4fXfermode : public SkProcCoeffXfermode {
public:
typedef Sk4f (SK_VECTORCALL *ProcF)(Sk4f, Sk4f);
Sk4fXfermode(const ProcCoeff& rec, SkXfermode::Mode mode, ProcF procf)
: INHERITED(rec, mode)
, fProcF(procf) {}
Sk4fXfermode(const ProcCoeff& rec, SkXfermode::Mode mode)
: INHERITED(rec, mode) {}
void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
for (int i = 0; i < n; i++) {
dst[i] = aa ? this->xfer32(dst[i], src[i], aa[i])
: this->xfer32(dst[i], src[i]);
dst[i] = Xfer32_1(dst[i], src[i], aa ? aa+i : nullptr);
}
}
void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
for (int i = 0; i < n; i++) {
SkPMColor dst32 = SkPixel16ToPixel32(dst[i]);
dst32 = aa ? this->xfer32(dst32, src[i], aa[i])
: this->xfer32(dst32, src[i]);
dst32 = Xfer32_1(dst32, src[i], aa ? aa+i : nullptr);
dst[i] = SkPixel32ToPixel16(dst32);
}
}
private:
static SkPMColor Xfer32_1(SkPMColor dst, const SkPMColor src, const SkAlpha* aa) {
Sk4f d = Load(dst),
s = Load(src),
b = Xfermode()(d, s);
if (aa) {
Sk4f a = Sk4f(*aa) * Sk4f(1.0f/255);
b = b*a + d*(Sk4f(1)-a);
}
return Round(b);
}
static Sk4f Load(SkPMColor c) {
return SkNx_cast<float>(Sk4b::Load((uint8_t*)&c)) * Sk4f(1.0f/255);
}
static SkPMColor Round(const Sk4f& f) {
SkPMColor c;
SkNx_cast<uint8_t>(f * Sk4f(255) + Sk4f(0.5f)).store((uint8_t*)&c);
return c;
}
inline SkPMColor xfer32(SkPMColor dst, SkPMColor src) const {
return Round(fProcF(Load(dst), Load(src)));
}
inline SkPMColor xfer32(SkPMColor dst, SkPMColor src, SkAlpha aa) const {
Sk4f s(Load(src)),
d(Load(dst)),
b(fProcF(d,s));
// We do aa in full float precision before going back down to bytes, because we can!
Sk4f a = Sk4f(aa) * Sk4f(1.0f/255);
b = b*a + d*(Sk4f(1)-a);
return Round(b);
}
ProcF fProcF;
typedef SkProcCoeffXfermode INHERITED;
};
@ -296,8 +308,8 @@ namespace SK_OPTS_NS {
static SkXfermode* create_xfermode(const ProcCoeff& rec, SkXfermode::Mode mode) {
switch (mode) {
#define CASE(Mode) \
case SkXfermode::k##Mode##_Mode: return new Sk4pxXfermode(rec, mode, &Mode, &xfer_aa<Mode>)
#define CASE(Xfermode) \
case SkXfermode::k##Xfermode##_Mode: return new Sk4pxXfermode<Xfermode>(rec, mode)
CASE(Clear);
CASE(Src);
CASE(Dst);
@ -322,8 +334,8 @@ static SkXfermode* create_xfermode(const ProcCoeff& rec, SkXfermode::Mode mode)
CASE(Lighten);
#undef CASE
#define CASE(Mode) \
case SkXfermode::k##Mode##_Mode: return new Sk4fXfermode(rec, mode, &Mode)
#define CASE(Xfermode) \
case SkXfermode::k##Xfermode##_Mode: return new Sk4fXfermode<Xfermode>(rec, mode)
CASE(ColorDodge);
CASE(ColorBurn);
CASE(SoftLight);