Restore bench_util.py

BUG=skia:2819

Review URL: https://codereview.chromium.org/450253003
This commit is contained in:
Mike Klein 2014-08-08 17:28:53 -04:00
parent 3b1c3d2c61
commit e530eb370c

356
bench/bench_util.py Normal file
View File

@ -0,0 +1,356 @@
'''
Created on May 19, 2011
@author: bungeman
'''
import os
import re
import math
# bench representation algorithm constant names
ALGORITHM_AVERAGE = 'avg'
ALGORITHM_MEDIAN = 'med'
ALGORITHM_MINIMUM = 'min'
ALGORITHM_25TH_PERCENTILE = '25th'
# Regular expressions used throughout.
PER_SETTING_RE = '([^\s=]+)(?:=(\S+))?'
SETTINGS_RE = 'skia bench:((?:\s+' + PER_SETTING_RE + ')*)'
BENCH_RE = 'running bench (?:\[\d+ \d+\] )?\s*(\S+)'
TIME_RE = '(?:(\w*)msecs = )?\s*((?:\d+\.\d+)(?:,\s*\d+\.\d+)*)'
# non-per-tile benches have configs that don't end with ']' or '>'
CONFIG_RE = '(\S+[^\]>]):\s+((?:' + TIME_RE + '\s+)+)'
# per-tile bench lines are in the following format. Note that there are
# non-averaged bench numbers in separate lines, which we ignore now due to
# their inaccuracy.
TILE_RE = (' tile_(\S+): tile \[\d+,\d+\] out of \[\d+,\d+\] <averaged>:'
' ((?:' + TIME_RE + '\s+)+)')
# for extracting tile layout
TILE_LAYOUT_RE = ' out of \[(\d+),(\d+)\] <averaged>: '
PER_SETTING_RE_COMPILED = re.compile(PER_SETTING_RE)
SETTINGS_RE_COMPILED = re.compile(SETTINGS_RE)
BENCH_RE_COMPILED = re.compile(BENCH_RE)
TIME_RE_COMPILED = re.compile(TIME_RE)
CONFIG_RE_COMPILED = re.compile(CONFIG_RE)
TILE_RE_COMPILED = re.compile(TILE_RE)
TILE_LAYOUT_RE_COMPILED = re.compile(TILE_LAYOUT_RE)
class BenchDataPoint:
"""A single data point produced by bench.
"""
def __init__(self, bench, config, time_type, time, settings,
tile_layout='', per_tile_values=[], per_iter_time=[]):
# string name of the benchmark to measure
self.bench = bench
# string name of the configurations to run
self.config = config
# type of the timer in string: '' (walltime), 'c' (cpu) or 'g' (gpu)
self.time_type = time_type
# float number of the bench time value
self.time = time
# dictionary of the run settings
self.settings = settings
# how tiles cover the whole picture: '5x3' means 5 columns and 3 rows
self.tile_layout = tile_layout
# list of float for per_tile bench values, if applicable
self.per_tile_values = per_tile_values
# list of float for per-iteration bench time, if applicable
self.per_iter_time = per_iter_time
def __repr__(self):
return "BenchDataPoint(%s, %s, %s, %s, %s)" % (
str(self.bench),
str(self.config),
str(self.time_type),
str(self.time),
str(self.settings),
)
class _ExtremeType(object):
"""Instances of this class compare greater or less than other objects."""
def __init__(self, cmpr, rep):
object.__init__(self)
self._cmpr = cmpr
self._rep = rep
def __cmp__(self, other):
if isinstance(other, self.__class__) and other._cmpr == self._cmpr:
return 0
return self._cmpr
def __repr__(self):
return self._rep
Max = _ExtremeType(1, "Max")
Min = _ExtremeType(-1, "Min")
class _ListAlgorithm(object):
"""Algorithm for selecting the representation value from a given list.
representation is one of the ALGORITHM_XXX representation types."""
def __init__(self, data, representation=None):
if not representation:
representation = ALGORITHM_AVERAGE # default algorithm
self._data = data
self._len = len(data)
if representation == ALGORITHM_AVERAGE:
self._rep = sum(self._data) / self._len
else:
self._data.sort()
if representation == ALGORITHM_MINIMUM:
self._rep = self._data[0]
else:
# for percentiles, we use the value below which x% of values are
# found, which allows for better detection of quantum behaviors.
if representation == ALGORITHM_MEDIAN:
x = int(round(0.5 * self._len + 0.5))
elif representation == ALGORITHM_25TH_PERCENTILE:
x = int(round(0.25 * self._len + 0.5))
else:
raise Exception("invalid representation algorithm %s!" %
representation)
self._rep = self._data[x - 1]
def compute(self):
return self._rep
def _ParseAndStoreTimes(config_re_compiled, is_per_tile, line, bench,
value_dic, layout_dic):
"""Parses given bench time line with regex and adds data to value_dic.
config_re_compiled: precompiled regular expression for parsing the config
line.
is_per_tile: boolean indicating whether this is a per-tile bench.
If so, we add tile layout into layout_dic as well.
line: input string line to parse.
bench: name of bench for the time values.
value_dic: dictionary to store bench values. See bench_dic in parse() below.
layout_dic: dictionary to store tile layouts. See parse() for descriptions.
"""
for config in config_re_compiled.finditer(line):
current_config = config.group(1)
tile_layout = ''
if is_per_tile: # per-tile bench, add name prefix
current_config = 'tile_' + current_config
layouts = TILE_LAYOUT_RE_COMPILED.search(line)
if layouts and len(layouts.groups()) == 2:
tile_layout = '%sx%s' % layouts.groups()
times = config.group(2)
for new_time in TIME_RE_COMPILED.finditer(times):
current_time_type = new_time.group(1)
iters = [float(i) for i in
new_time.group(2).strip().split(',')]
value_dic.setdefault(bench, {}).setdefault(
current_config, {}).setdefault(current_time_type, []).append(
iters)
layout_dic.setdefault(bench, {}).setdefault(
current_config, {}).setdefault(current_time_type, tile_layout)
def parse_skp_bench_data(directory, revision, rep, default_settings=None):
"""Parses all the skp bench data in the given directory.
Args:
directory: string of path to input data directory.
revision: git hash revision that matches the data to process.
rep: bench representation algorithm, see bench_util.py.
default_settings: dictionary of other run settings. See writer.option() in
bench/benchmain.cpp.
Returns:
A list of BenchDataPoint objects.
"""
revision_data_points = []
file_list = os.listdir(directory)
file_list.sort()
for bench_file in file_list:
scalar_type = None
# Scalar type, if any, is in the bench filename after 'scalar_'.
if (bench_file.startswith('bench_' + revision + '_data_')):
if bench_file.find('scalar_') > 0:
components = bench_file.split('_')
scalar_type = components[components.index('scalar') + 1]
else: # Skips non skp bench files.
continue
with open('/'.join([directory, bench_file]), 'r') as file_handle:
settings = dict(default_settings or {})
settings['scalar'] = scalar_type
revision_data_points.extend(parse(settings, file_handle, rep))
return revision_data_points
# TODO(bensong): switch to reading JSON output when available. This way we don't
# need the RE complexities.
def parse(settings, lines, representation=None):
"""Parses bench output into a useful data structure.
({str:str}, __iter__ -> str) -> [BenchDataPoint]
representation is one of the ALGORITHM_XXX types."""
benches = []
current_bench = None
# [bench][config][time_type] -> [[per-iter values]] where per-tile config
# has per-iter value list for each tile [[<tile1_iter1>,<tile1_iter2>,...],
# [<tile2_iter1>,<tile2_iter2>,...],...], while non-per-tile config only
# contains one list of iterations [[iter1, iter2, ...]].
bench_dic = {}
# [bench][config][time_type] -> tile_layout
layout_dic = {}
for line in lines:
# see if this line is a settings line
settingsMatch = SETTINGS_RE_COMPILED.search(line)
if (settingsMatch):
settings = dict(settings)
for settingMatch in PER_SETTING_RE_COMPILED.finditer(settingsMatch.group(1)):
if (settingMatch.group(2)):
settings[settingMatch.group(1)] = settingMatch.group(2)
else:
settings[settingMatch.group(1)] = True
# see if this line starts a new bench
new_bench = BENCH_RE_COMPILED.search(line)
if new_bench:
current_bench = new_bench.group(1)
# add configs on this line to the bench_dic
if current_bench:
if line.startswith(' tile_') :
_ParseAndStoreTimes(TILE_RE_COMPILED, True, line, current_bench,
bench_dic, layout_dic)
else:
_ParseAndStoreTimes(CONFIG_RE_COMPILED, False, line,
current_bench, bench_dic, layout_dic)
# append benches to list
for bench in bench_dic:
for config in bench_dic[bench]:
for time_type in bench_dic[bench][config]:
tile_layout = ''
per_tile_values = [] # empty for non-per-tile configs
per_iter_time = [] # empty for per-tile configs
bench_summary = None # a single final bench value
if len(bench_dic[bench][config][time_type]) > 1:
# per-tile config; compute representation for each tile
per_tile_values = [
_ListAlgorithm(iters, representation).compute()
for iters in bench_dic[bench][config][time_type]]
# use sum of each tile representation for total bench value
bench_summary = sum(per_tile_values)
# extract tile layout
tile_layout = layout_dic[bench][config][time_type]
else:
# get the list of per-iteration values
per_iter_time = bench_dic[bench][config][time_type][0]
bench_summary = _ListAlgorithm(
per_iter_time, representation).compute()
benches.append(BenchDataPoint(
bench,
config,
time_type,
bench_summary,
settings,
tile_layout,
per_tile_values,
per_iter_time))
return benches
class LinearRegression:
"""Linear regression data based on a set of data points.
([(Number,Number)])
There must be at least two points for this to make sense."""
def __init__(self, points):
n = len(points)
max_x = Min
min_x = Max
Sx = 0.0
Sy = 0.0
Sxx = 0.0
Sxy = 0.0
Syy = 0.0
for point in points:
x = point[0]
y = point[1]
max_x = max(max_x, x)
min_x = min(min_x, x)
Sx += x
Sy += y
Sxx += x*x
Sxy += x*y
Syy += y*y
denom = n*Sxx - Sx*Sx
if (denom != 0.0):
B = (n*Sxy - Sx*Sy) / denom
else:
B = 0.0
a = (1.0/n)*(Sy - B*Sx)
se2 = 0
sB2 = 0
sa2 = 0
if (n >= 3 and denom != 0.0):
se2 = (1.0/(n*(n-2)) * (n*Syy - Sy*Sy - B*B*denom))
sB2 = (n*se2) / denom
sa2 = sB2 * (1.0/n) * Sxx
self.slope = B
self.intercept = a
self.serror = math.sqrt(max(0, se2))
self.serror_slope = math.sqrt(max(0, sB2))
self.serror_intercept = math.sqrt(max(0, sa2))
self.max_x = max_x
self.min_x = min_x
def __repr__(self):
return "LinearRegression(%s, %s, %s, %s, %s)" % (
str(self.slope),
str(self.intercept),
str(self.serror),
str(self.serror_slope),
str(self.serror_intercept),
)
def find_min_slope(self):
"""Finds the minimal slope given one standard deviation."""
slope = self.slope
intercept = self.intercept
error = self.serror
regr_start = self.min_x
regr_end = self.max_x
regr_width = regr_end - regr_start
if slope < 0:
lower_left_y = slope*regr_start + intercept - error
upper_right_y = slope*regr_end + intercept + error
return min(0, (upper_right_y - lower_left_y) / regr_width)
elif slope > 0:
upper_left_y = slope*regr_start + intercept + error
lower_right_y = slope*regr_end + intercept - error
return max(0, (lower_right_y - upper_left_y) / regr_width)
return 0
def CreateRevisionLink(revision_number):
"""Returns HTML displaying the given revision number and linking to
that revision's change page at code.google.com, e.g.
http://code.google.com/p/skia/source/detail?r=2056
"""
return '<a href="http://code.google.com/p/skia/source/detail?r=%s">%s</a>'%(
revision_number, revision_number)
def main():
foo = [[0.0, 0.0], [0.0, 1.0], [0.0, 2.0], [0.0, 3.0]]
LinearRegression(foo)
if __name__ == "__main__":
main()