Revert of SkScaledCodec class (patchset #32 id:620001 of https://codereview.chromium.org/1260673002/ )

Reason for revert:
Segfaulting:
http://build.chromium.org/p/client.skia/builders/Test-Ubuntu-GCC-GCE-CPU-AVX2-x86-Release/builds/1605/steps/dm/logs/stdio

Original issue's description:
> SkScaledCodec class
>
> This class does scaling by using a scanlineDecoder.
> getScanlines and skipScanlines are used for y sampling,
> the swizzler is used for x sampling
>
> this class is currently only working for png and jpeg images
> I will update other Codec types to work soon
>
> For SkJpegCodec to implement width wise swizzling it now
> uses a swizzler. I ran performance tests on this change.
> Here are the performance test results:
> https://docs.google.com/a/google.com/spreadsheets/d/1D7-Q_GXD_dI68LZO005NNvb8Wq2Ee0wEBEPG72671yw/edit?usp=sharing
>
> BUG=skia:
>
> Committed: https://skia.googlesource.com/skia/+/0944100ac89f797714eeae0cf2875e2335ff52ee

TBR=scroggo@google.com,msarett@google.com,djsollen@google.com,mtklein@google.com
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=skia:

Review URL: https://codereview.chromium.org/1294593002
This commit is contained in:
emmaleer 2015-08-13 11:44:05 -07:00 committed by Commit bot
parent 0944100ac8
commit e5aaa07c35
16 changed files with 207 additions and 756 deletions

View File

@ -212,12 +212,7 @@ static void push_codec_srcs(Path path) {
// TODO (msarett): Add more scaling tests as we implement more flexible scaling. // TODO (msarett): Add more scaling tests as we implement more flexible scaling.
// TODO (msarett): Implement scaling tests for SkImageDecoder in order to compare with these // TODO (msarett): Implement scaling tests for SkImageDecoder in order to compare with these
// tests. SkImageDecoder supports downscales by integer factors. // tests. SkImageDecoder supports downscales by integer factors.
// SkJpegCodec natively supports scaling to: 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875 const float scales[] = { 0.125f, 0.25f, 0.375f, 0.5f, 0.625f, 0.750f, 0.875f, 1.0f };
// 0.1, 0.16, 0.2 etc allow us to test SkScaledCodec with sampleSize 10, 6, 5, etc
// 0.4, 0.7 etc allow to test what happens when the client requests a scale that
// does not exactly match a sampleSize or native scaling capability
const float scales[] = { 0.1f, 0.125f, 0.166f, 0.2f, 0.25f, 0.333f, 0.375f, 0.4f, 0.5f, 0.6f,
0.625f, 0.750f, 0.8f, 0.875f, 1.0f };
for (float scale : scales) { for (float scale : scales) {
if (scale != 1.0f && (path.endsWith(".webp") || path.endsWith(".WEBP"))) { if (scale != 1.0f && (path.endsWith(".webp") || path.endsWith(".WEBP"))) {

View File

@ -27,7 +27,6 @@
#include "SkScanlineDecoder.h" #include "SkScanlineDecoder.h"
#include "SkStream.h" #include "SkStream.h"
#include "SkXMLWriter.h" #include "SkXMLWriter.h"
#include "SkScaledCodec.h"
DEFINE_bool(multiPage, false, "For document-type backends, render the source" DEFINE_bool(multiPage, false, "For document-type backends, render the source"
" into multiple pages"); " into multiple pages");
@ -85,13 +84,9 @@ Error CodecSrc::draw(SkCanvas* canvas) const {
if (!encoded) { if (!encoded) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str()); return SkStringPrintf("Couldn't read %s.", fPath.c_str());
} }
SkAutoTDelete<SkCodec> codec(SkScaledCodec::NewFromData(encoded)); SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded));
if (NULL == codec.get()) { if (NULL == codec.get()) {
// scaledCodec not supported, try normal codec return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str());
codec.reset(SkCodec::NewFromData(encoded));
if (NULL == codec.get()) {
return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str());
}
} }
// Choose the color type to decode to // Choose the color type to decode to
@ -451,16 +446,13 @@ Error CodecSrc::draw(SkCanvas* canvas) const {
SkISize CodecSrc::size() const { SkISize CodecSrc::size() const {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str())); SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
SkAutoTDelete<SkCodec> codec(SkScaledCodec::NewFromData(encoded)); SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded));
if (NULL == codec) { if (NULL != codec) {
// scaledCodec not supported, try regular codec SkISize size = codec->getScaledDimensions(fScale);
codec.reset(SkCodec::NewFromData(encoded)); return size;
if (NULL == codec) { } else {
return SkISize::Make(0, 0); return SkISize::Make(0, 0);
}
} }
SkISize size = codec->getScaledDimensions(fScale);
return size;
} }
Name CodecSrc::name() const { Name CodecSrc::name() const {

View File

@ -47,7 +47,6 @@
'../src/codec/SkJpegUtility_codec.cpp', '../src/codec/SkJpegUtility_codec.cpp',
'../src/codec/SkMaskSwizzler.cpp', '../src/codec/SkMaskSwizzler.cpp',
'../src/codec/SkMasks.cpp', '../src/codec/SkMasks.cpp',
'../src/codec/SkScaledCodec.cpp',
'../src/codec/SkScanlineDecoder.cpp', '../src/codec/SkScanlineDecoder.cpp',
'../src/codec/SkSwizzler.cpp', '../src/codec/SkSwizzler.cpp',
'../src/codec/SkWebpCodec.cpp', '../src/codec/SkWebpCodec.cpp',

View File

@ -51,8 +51,6 @@ public:
* Return a size that approximately supports the desired scale factor. * Return a size that approximately supports the desired scale factor.
* The codec may not be able to scale efficiently to the exact scale * The codec may not be able to scale efficiently to the exact scale
* factor requested, so return a size that approximates that scale. * factor requested, so return a size that approximates that scale.
* The returned value is the codec's suggestion for the closest valid
* scale that it can natively support
*/ */
SkISize getScaledDimensions(float desiredScale) const { SkISize getScaledDimensions(float desiredScale) const {
return this->onGetScaledDimensions(desiredScale); return this->onGetScaledDimensions(desiredScale);

View File

@ -1,70 +0,0 @@
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkScaledCodec_DEFINED
#define SkScaledCodec_DEFINED
#include "SkCodec.h"
#include "SkScanlineDecoder.h"
class SkScanlineDecoder;
class SkStream;
/**
* This class implements scaling, by sampling scanlines in the y direction.
* x-wise sampling is implemented in the swizzler, when getScanlines() is called.
*/
class SkScaledCodec : public SkCodec {
public:
static SkCodec* NewFromStream(SkStream*);
static SkCodec* NewFromData(SkData*);
virtual ~SkScaledCodec();
/**
* returns whether a destination's dimensions are supported for down sampling
*/
static bool DimensionsSupportedForSampling(const SkImageInfo& srcInfo,
const SkImageInfo& dstInfo) {
// heights must be equal as no native y sampling is supported
if (dstInfo.height() != srcInfo.height()) {
return false;
}
// only support down sampling, dstWidth cannot be larger that srcWidth
if(dstInfo.width() > srcInfo.width()) {
return false;
}
return true;
}
static void ComputeSampleSize(const SkImageInfo& dstInfo, const SkImageInfo& srcInfo,
int* sampleSizeX, int* sampleSizeY);
protected:
/**
* Recommend a set of destination dimensions given a requested scale
*/
SkISize onGetScaledDimensions(float desiredScale) const override;
Result onGetPixels(const SkImageInfo&, void*, size_t, const Options&, SkPMColor*, int*)
override;
SkEncodedFormat onGetEncodedFormat() const override {
return fScanlineDecoder->getEncodedFormat();
}
bool onReallyHasAlpha() const override {
return fScanlineDecoder->reallyHasAlpha();
}
private:
SkAutoTDelete<SkScanlineDecoder> fScanlineDecoder;
explicit SkScaledCodec(SkScanlineDecoder*);
typedef SkCodec INHERITED;
};
#endif // SkScaledCodec_DEFINED

View File

@ -45,18 +45,6 @@ public:
*/ */
virtual ~SkScanlineDecoder() {} virtual ~SkScanlineDecoder() {}
/**
* Return a size that approximately supports the desired scale factor.
* The codec may not be able to scale efficiently to the exact scale
* factor requested, so return a size that approximates that scale.
* The returned value is the codec's suggestion for the closest valid
* scale that it can natively support
* FIXME: share this with SkCodec
*/
SkISize getScaledDimensions(float desiredScale) {
return this->onGetScaledDimensions(desiredScale);
}
/** /**
* Returns the default info, corresponding to the encoded data. * Returns the default info, corresponding to the encoded data.
*/ */
@ -147,44 +135,14 @@ public:
return this->onReallyHasAlpha(); return this->onReallyHasAlpha();
} }
/**
* Format of the encoded data.
*/
SkEncodedFormat getEncodedFormat() const { return this->onGetEncodedFormat(); }
/**
* returns true if the image must be scaled, in the y direction, after reading, not during.
* To scale afterwards, we first decode every line and then sample the lines we want afterwards.
* An example is interlaced pngs, where calling getScanlines once (regardless of the count
* used) needs to read the entire image, therefore it is inefficient to call
* getScanlines more than once. Instead, it should only ever be called with all the
* rows needed.
*/
bool requiresPostYSampling() {
return this->onRequiresPostYSampling();
}
protected: protected:
SkScanlineDecoder(const SkImageInfo& srcInfo) SkScanlineDecoder(const SkImageInfo& srcInfo)
: fSrcInfo(srcInfo) : fSrcInfo(srcInfo)
, fDstInfo() , fDstInfo()
, fCurrScanline(0) {} , fCurrScanline(0) {}
virtual SkISize onGetScaledDimensions(float /* desiredScale */) {
// By default, scaling is not supported.
return this->getInfo().dimensions();
}
virtual SkEncodedFormat onGetEncodedFormat() const = 0;
virtual bool onReallyHasAlpha() const { return false; } virtual bool onReallyHasAlpha() const { return false; }
/**
* returns true if the image type is hard to sample and must be scaled after reading, not during
* An example is interlaced pngs, where the entire image must be read for each decode
*/
virtual bool onRequiresPostYSampling() { return false; }
const SkImageInfo& dstInfo() const { return fDstInfo; } const SkImageInfo& dstInfo() const { return fDstInfo; }
private: private:

View File

@ -237,7 +237,7 @@ bool SkBmpStandardCodec::initializeSwizzler(const SkImageInfo& dstInfo,
// Create swizzler // Create swizzler
fSwizzler.reset(SkSwizzler::CreateSwizzler(config, fSwizzler.reset(SkSwizzler::CreateSwizzler(config,
colorPtr, dstInfo, opts.fZeroInitialized, this->getInfo())); colorPtr, dstInfo, opts.fZeroInitialized));
if (NULL == fSwizzler.get()) { if (NULL == fSwizzler.get()) {
return false; return false;

View File

@ -444,12 +444,11 @@ SkCodec::Result SkGifCodec::onGetPixels(const SkImageInfo& dstInfo,
// Create the subset swizzler // Create the subset swizzler
swizzler.reset(SkSwizzler::CreateSwizzler( swizzler.reset(SkSwizzler::CreateSwizzler(
SkSwizzler::kIndex, colorTable, subsetDstInfo, SkSwizzler::kIndex, colorTable, subsetDstInfo,
zeroInit, this->getInfo())); zeroInit));
} else { } else {
// Create the fully dimensional swizzler // Create the fully dimensional swizzler
swizzler.reset(SkSwizzler::CreateSwizzler( swizzler.reset(SkSwizzler::CreateSwizzler(
SkSwizzler::kIndex, colorTable, dstInfo, SkSwizzler::kIndex, colorTable, dstInfo, zeroInit));
zeroInit, this->getInfo()));
} }
// Stores output from dgiflib and input to the swizzler // Stores output from dgiflib and input to the swizzler

View File

@ -11,7 +11,6 @@
#include "SkColorTable.h" #include "SkColorTable.h"
#include "SkBitmap.h" #include "SkBitmap.h"
#include "SkMath.h" #include "SkMath.h"
#include "SkScaledCodec.h"
#include "SkScanlineDecoder.h" #include "SkScanlineDecoder.h"
#include "SkSize.h" #include "SkSize.h"
#include "SkStream.h" #include "SkStream.h"
@ -463,7 +462,7 @@ SkCodec::Result SkPngCodec::initializeSwizzler(const SkImageInfo& requestedInfo,
// Create the swizzler. SkPngCodec retains ownership of the color table. // Create the swizzler. SkPngCodec retains ownership of the color table.
const SkPMColor* colors = get_color_ptr(fColorTable.get()); const SkPMColor* colors = get_color_ptr(fColorTable.get());
fSwizzler.reset(SkSwizzler::CreateSwizzler(fSrcConfig, colors, requestedInfo, fSwizzler.reset(SkSwizzler::CreateSwizzler(fSrcConfig, colors, requestedInfo,
options.fZeroInitialized, this->getInfo())); options.fZeroInitialized));
if (!fSwizzler) { if (!fSwizzler) {
// FIXME: CreateSwizzler could fail for another reason. // FIXME: CreateSwizzler could fail for another reason.
return kUnimplemented; return kUnimplemented;
@ -583,7 +582,8 @@ public:
SkCodec::Result onStart(const SkImageInfo& dstInfo, SkCodec::Result onStart(const SkImageInfo& dstInfo,
const SkCodec::Options& options, const SkCodec::Options& options,
SkPMColor ctable[], int* ctableCount) override { SkPMColor ctable[], int* ctableCount) override
{
if (!fCodec->rewindIfNeeded()) { if (!fCodec->rewindIfNeeded()) {
return SkCodec::kCouldNotRewind; return SkCodec::kCouldNotRewind;
} }
@ -594,9 +594,7 @@ public:
// Check to see if scaling was requested. // Check to see if scaling was requested.
if (dstInfo.dimensions() != this->getInfo().dimensions()) { if (dstInfo.dimensions() != this->getInfo().dimensions()) {
if (!SkScaledCodec::DimensionsSupportedForSampling(this->getInfo(), dstInfo)) { return SkCodec::kInvalidScale;
return SkCodec::kInvalidScale;
}
} }
const SkCodec::Result result = fCodec->initializeSwizzler(dstInfo, options, ctable, const SkCodec::Result result = fCodec->initializeSwizzler(dstInfo, options, ctable,
@ -606,7 +604,7 @@ public:
} }
fHasAlpha = false; fHasAlpha = false;
fStorage.reset(this->getInfo().width() * SkSwizzler::BytesPerPixel(fCodec->fSrcConfig)); fStorage.reset(dstInfo.width() * SkSwizzler::BytesPerPixel(fCodec->fSrcConfig));
fSrcRow = static_cast<uint8_t*>(fStorage.get()); fSrcRow = static_cast<uint8_t*>(fStorage.get());
return SkCodec::kSuccess; return SkCodec::kSuccess;
@ -645,11 +643,6 @@ public:
bool onReallyHasAlpha() const override { return fHasAlpha; } bool onReallyHasAlpha() const override { return fHasAlpha; }
SkEncodedFormat onGetEncodedFormat() const override {
return kPNG_SkEncodedFormat;
}
private: private:
SkAutoTDelete<SkPngCodec> fCodec; SkAutoTDelete<SkPngCodec> fCodec;
bool fHasAlpha; bool fHasAlpha;
@ -680,14 +673,12 @@ public:
} }
if (!conversion_possible(dstInfo, this->getInfo())) { if (!conversion_possible(dstInfo, this->getInfo())) {
return SkCodec::kInvalidConversion; return SkCodec::kInvalidConversion;
} }
// Check to see if scaling was requested. // Check to see if scaling was requested.
if (dstInfo.dimensions() != this->getInfo().dimensions()) { if (dstInfo.dimensions() != this->getInfo().dimensions()) {
if (!SkScaledCodec::DimensionsSupportedForSampling(this->getInfo(), dstInfo)) { return SkCodec::kInvalidScale;
return SkCodec::kInvalidScale;
}
} }
const SkCodec::Result result = fCodec->initializeSwizzler(dstInfo, options, ctable, const SkCodec::Result result = fCodec->initializeSwizzler(dstInfo, options, ctable,
@ -699,7 +690,7 @@ public:
fHasAlpha = false; fHasAlpha = false;
fCurrentRow = 0; fCurrentRow = 0;
fHeight = dstInfo.height(); fHeight = dstInfo.height();
fSrcRowBytes = this->getInfo().width() * SkSwizzler::BytesPerPixel(fCodec->fSrcConfig); fSrcRowBytes = dstInfo.width() * SkSwizzler::BytesPerPixel(fCodec->fSrcConfig);
fGarbageRow.reset(fSrcRowBytes); fGarbageRow.reset(fSrcRowBytes);
fGarbageRowPtr = static_cast<uint8_t*>(fGarbageRow.get()); fGarbageRowPtr = static_cast<uint8_t*>(fGarbageRow.get());
fCanSkipRewind = true; fCanSkipRewind = true;
@ -762,14 +753,6 @@ public:
bool onReallyHasAlpha() const override { return fHasAlpha; } bool onReallyHasAlpha() const override { return fHasAlpha; }
bool onRequiresPostYSampling() override {
return true;
}
SkEncodedFormat onGetEncodedFormat() const override {
return kPNG_SkEncodedFormat;
}
private: private:
SkAutoTDelete<SkPngCodec> fCodec; SkAutoTDelete<SkPngCodec> fCodec;
bool fHasAlpha; bool fHasAlpha;

View File

@ -37,7 +37,6 @@ protected:
SkEncodedFormat onGetEncodedFormat() const override { return kPNG_SkEncodedFormat; } SkEncodedFormat onGetEncodedFormat() const override { return kPNG_SkEncodedFormat; }
bool onRewind() override; bool onRewind() override;
bool onReallyHasAlpha() const override { return fReallyHasAlpha; } bool onReallyHasAlpha() const override { return fReallyHasAlpha; }
private: private:
png_structp fPng_ptr; png_structp fPng_ptr;
png_infop fInfo_ptr; png_infop fInfo_ptr;
@ -53,6 +52,7 @@ private:
SkPngCodec(const SkImageInfo&, SkStream*, png_structp, png_infop, int); SkPngCodec(const SkImageInfo&, SkStream*, png_structp, png_infop, int);
// Helper to set up swizzler and color table. Also calls png_read_update_info. // Helper to set up swizzler and color table. Also calls png_read_update_info.
Result initializeSwizzler(const SkImageInfo& requestedInfo, const Options&, Result initializeSwizzler(const SkImageInfo& requestedInfo, const Options&,
SkPMColor*, int* ctableCount); SkPMColor*, int* ctableCount);

View File

@ -9,7 +9,6 @@
#include "SkCodecPriv.h" #include "SkCodecPriv.h"
#include "SkColorPriv.h" #include "SkColorPriv.h"
#include "SkColorTable.h" #include "SkColorTable.h"
#include "SkScaledCodec.h"
#include "SkStream.h" #include "SkStream.h"
#include "SkCodec_wbmp.h" #include "SkCodec_wbmp.h"
@ -81,8 +80,8 @@ SkSwizzler* SkWbmpCodec::initializeSwizzler(const SkImageInfo& info,
case kIndex_8_SkColorType: case kIndex_8_SkColorType:
case kN32_SkColorType: case kN32_SkColorType:
case kGray_8_SkColorType: case kGray_8_SkColorType:
return SkSwizzler::CreateSwizzler(SkSwizzler::kBit, ctable, info, opts.fZeroInitialized, return SkSwizzler::CreateSwizzler(
this->getInfo()); SkSwizzler::kBit, ctable, info, opts.fZeroInitialized);
default: default:
return NULL; return NULL;
} }
@ -202,9 +201,7 @@ public:
return SkCodec::kUnimplemented; return SkCodec::kUnimplemented;
} }
if (dstInfo.dimensions() != this->getInfo().dimensions()) { if (dstInfo.dimensions() != this->getInfo().dimensions()) {
if (!SkScaledCodec::DimensionsSupportedForSampling(this->getInfo(), dstInfo)) { return SkCodec::kInvalidScale;
return SkCodec::kInvalidScale;
}
} }
if (!valid_alpha(dstInfo.alphaType(), this->getInfo().alphaType())) { if (!valid_alpha(dstInfo.alphaType(), this->getInfo().alphaType())) {
@ -223,16 +220,12 @@ public:
fSwizzler.reset(fCodec->initializeSwizzler(dstInfo, fSwizzler.reset(fCodec->initializeSwizzler(dstInfo,
get_color_ptr(fColorTable.get()), options)); get_color_ptr(fColorTable.get()), options));
if (NULL == fSwizzler.get()) { if (NULL == fSwizzler.get()) {
return SkCodec::kInvalidConversion; return SkCodec::kInvalidInput;
} }
return SkCodec::kSuccess; return SkCodec::kSuccess;
} }
SkEncodedFormat onGetEncodedFormat() const {
return kWBMP_SkEncodedFormat;
}
private: private:
SkAutoTDelete<SkWbmpCodec> fCodec; SkAutoTDelete<SkWbmpCodec> fCodec;
SkAutoTUnref<SkColorTable> fColorTable; SkAutoTUnref<SkColorTable> fColorTable;

View File

@ -11,7 +11,6 @@
#include "SkJpegUtility_codec.h" #include "SkJpegUtility_codec.h"
#include "SkCodecPriv.h" #include "SkCodecPriv.h"
#include "SkColorPriv.h" #include "SkColorPriv.h"
#include "SkScaledCodec.h"
#include "SkScanlineDecoder.h" #include "SkScanlineDecoder.h"
#include "SkStream.h" #include "SkStream.h"
#include "SkTemplates.h" #include "SkTemplates.h"
@ -149,14 +148,6 @@ SkJpegCodec::SkJpegCodec(const SkImageInfo& srcInfo, SkStream* stream,
, fDecoderMgr(decoderMgr) , fDecoderMgr(decoderMgr)
{} {}
/*
* Return the row bytes of a particular image type and width
*/
static int get_row_bytes(const j_decompress_ptr dinfo) {
int colorBytes = (dinfo->out_color_space == JCS_RGB565) ? 2 : dinfo->out_color_components;
return dinfo->output_width * colorBytes;
}
/* /*
* Return a valid set of output dimensions for this decoder, given an input scale * Return a valid set of output dimensions for this decoder, given an input scale
*/ */
@ -267,10 +258,10 @@ bool SkJpegCodec::setOutputColorSpace(const SkImageInfo& dst) {
} }
/* /*
* Checks if we can natively scale to the requested dimensions and natively scales the * Checks if we can scale to the requested dimensions and scales the dimensions
* dimensions if possible * if possible
*/ */
bool SkJpegCodec::nativelyScaleToDimensions(uint32_t dstWidth, uint32_t dstHeight) { bool SkJpegCodec::scaleToDimensions(uint32_t dstWidth, uint32_t dstHeight) {
// libjpeg-turbo can scale to 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, and 1/1 // libjpeg-turbo can scale to 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, and 1/1
fDecoderMgr->dinfo()->scale_denom = 8; fDecoderMgr->dinfo()->scale_denom = 8;
fDecoderMgr->dinfo()->scale_num = 8; fDecoderMgr->dinfo()->scale_num = 8;
@ -282,10 +273,7 @@ bool SkJpegCodec::nativelyScaleToDimensions(uint32_t dstWidth, uint32_t dstHeigh
if (1 == fDecoderMgr->dinfo()->scale_num || if (1 == fDecoderMgr->dinfo()->scale_num ||
dstWidth > fDecoderMgr->dinfo()->output_width || dstWidth > fDecoderMgr->dinfo()->output_width ||
dstHeight > fDecoderMgr->dinfo()->output_height) { dstHeight > fDecoderMgr->dinfo()->output_height) {
// reset native scale settings on failure because this may be supported by the swizzler return fDecoderMgr->returnFalse("could not scale to requested dimensions");
this->fDecoderMgr->dinfo()->scale_num = 8;
chromium_jpeg_calc_output_dimensions(this->fDecoderMgr->dinfo());
return false;
} }
// Try the next scale // Try the next scale
@ -325,7 +313,7 @@ SkCodec::Result SkJpegCodec::onGetPixels(const SkImageInfo& dstInfo,
} }
// Perform the necessary scaling // Perform the necessary scaling
if (!this->nativelyScaleToDimensions(dstInfo.width(), dstInfo.height())) { if (!this->scaleToDimensions(dstInfo.width(), dstInfo.height())) {
return fDecoderMgr->returnFailure("cannot scale to requested dims", kInvalidScale); return fDecoderMgr->returnFailure("cannot scale to requested dims", kInvalidScale);
} }
@ -393,47 +381,6 @@ public:
, fOpts() , fOpts()
{} {}
/*
* Return a valid set of output dimensions for this decoder, given an input scale
*/
SkISize onGetScaledDimensions(float desiredScale) override {
return fCodec->onGetScaledDimensions(desiredScale);
}
/*
* Create the swizzler based on the encoded format.
* The swizzler is only used for sampling in the x direction.
*/
SkCodec::Result initializeSwizzler(const SkImageInfo& info, const SkCodec::Options& options) {
SkSwizzler::SrcConfig srcConfig;
switch (info.colorType()) {
case kGray_8_SkColorType:
srcConfig = SkSwizzler::kGray;
break;
case kRGBA_8888_SkColorType:
srcConfig = SkSwizzler::kRGBX;
break;
case kBGRA_8888_SkColorType:
srcConfig = SkSwizzler::kBGRX;
break;
case kRGB_565_SkColorType:
srcConfig = SkSwizzler::kRGB_565;
break;
default:
//would have exited before now if the colorType was supported by jpeg
SkASSERT(false);
}
fSwizzler.reset(SkSwizzler::CreateSwizzler(srcConfig, NULL, info, options.fZeroInitialized,
this->getInfo()));
if (!fSwizzler) {
// FIXME: CreateSwizzler could fail for another reason.
return SkCodec::kUnimplemented;
}
return SkCodec::kSuccess;
}
SkCodec::Result onStart(const SkImageInfo& dstInfo, const SkCodec::Options& options, SkCodec::Result onStart(const SkImageInfo& dstInfo, const SkCodec::Options& options,
SkPMColor ctable[], int* ctableCount) override { SkPMColor ctable[], int* ctableCount) override {
@ -454,23 +401,8 @@ public:
} }
// Perform the necessary scaling // Perform the necessary scaling
if (!fCodec->nativelyScaleToDimensions(dstInfo.width(), dstInfo.height())) { if (!fCodec->scaleToDimensions(dstInfo.width(), dstInfo.height())) {
// full native scaling to dstInfo dimensions not supported return SkCodec::kInvalidScale;
if (!SkScaledCodec::DimensionsSupportedForSampling(this->getInfo(), dstInfo)) {
return SkCodec::kInvalidScale;
}
// create swizzler for sampling
SkCodec::Result result = this->initializeSwizzler(dstInfo, options);
if (SkCodec::kSuccess != result) {
SkCodecPrintf("failed to initialize the swizzler.\n");
return result;
}
fStorage.reset(get_row_bytes(fCodec->fDecoderMgr->dinfo()));
fSrcRow = static_cast<uint8_t*>(fStorage.get());
} else {
fSrcRow = NULL;
fSwizzler.reset(NULL);
} }
// Now, given valid output dimensions, we can start the decompress // Now, given valid output dimensions, we can start the decompress
@ -501,16 +433,9 @@ public:
if (setjmp(fCodec->fDecoderMgr->getJmpBuf())) { if (setjmp(fCodec->fDecoderMgr->getJmpBuf())) {
return fCodec->fDecoderMgr->returnFailure("setjmp", SkCodec::kInvalidInput); return fCodec->fDecoderMgr->returnFailure("setjmp", SkCodec::kInvalidInput);
} }
// Read rows one at a time
JSAMPLE* dstRow;
if (fSwizzler) {
// write data to storage row, then sample using swizzler
dstRow = fSrcRow;
} else {
// write data directly to dst
dstRow = (JSAMPLE*) dst;
}
// Read rows one at a time
JSAMPLE* dstRow = (JSAMPLE*) dst;
for (int y = 0; y < count; y++) { for (int y = 0; y < count; y++) {
// Read row of the image // Read row of the image
uint32_t rowsDecoded = uint32_t rowsDecoded =
@ -527,17 +452,13 @@ public:
// Convert to RGBA if necessary // Convert to RGBA if necessary
if (JCS_CMYK == fCodec->fDecoderMgr->dinfo()->out_color_space) { if (JCS_CMYK == fCodec->fDecoderMgr->dinfo()->out_color_space) {
convert_CMYK_to_RGBA(dstRow, fCodec->fDecoderMgr->dinfo()->output_width); convert_CMYK_to_RGBA(dstRow, this->dstInfo().width());
} }
if(fSwizzler) { // Move to the next row
// use swizzler to sample row dstRow = SkTAddOffset<JSAMPLE>(dstRow, rowBytes);
fSwizzler->swizzle(dst, dstRow);
dst = SkTAddOffset<JSAMPLE>(dst, rowBytes);
} else {
dstRow = SkTAddOffset<JSAMPLE>(dstRow, rowBytes);
}
} }
return SkCodec::kSuccess; return SkCodec::kSuccess;
} }
@ -545,7 +466,7 @@ public:
// TODO (msarett): Make this a member function and avoid reallocating the // TODO (msarett): Make this a member function and avoid reallocating the
// memory buffer on each call to skip. // memory buffer on each call to skip.
#define chromium_jpeg_skip_scanlines(dinfo, count) \ #define chromium_jpeg_skip_scanlines(dinfo, count) \
SkAutoMalloc storage(get_row_bytes(dinfo)); \ SkAutoMalloc storage(dinfo->output_width * dinfo->out_color_components); \
uint8_t* storagePtr = static_cast<uint8_t*>(storage.get()); \ uint8_t* storagePtr = static_cast<uint8_t*>(storage.get()); \
for (int y = 0; y < count; y++) { \ for (int y = 0; y < count; y++) { \
chromium_jpeg_read_scanlines(dinfo, &storagePtr, 1); \ chromium_jpeg_read_scanlines(dinfo, &storagePtr, 1); \
@ -563,16 +484,13 @@ public:
return SkCodec::kSuccess; return SkCodec::kSuccess;
} }
SkEncodedFormat onGetEncodedFormat() const override { #ifndef TURBO_HAS_SKIP
return kJPEG_SkEncodedFormat; #undef chromium_jpeg_skip_scanlines
} #endif
private: private:
SkAutoTDelete<SkJpegCodec> fCodec; SkAutoTDelete<SkJpegCodec> fCodec;
SkAutoMalloc fStorage; // Only used if sampling is needed
uint8_t* fSrcRow; // Only used if sampling is needed
SkCodec::Options fOpts; SkCodec::Options fOpts;
SkAutoTDelete<SkSwizzler> fSwizzler;
typedef SkScanlineDecoder INHERITED; typedef SkScanlineDecoder INHERITED;
}; };
@ -584,7 +502,6 @@ SkScanlineDecoder* SkJpegCodec::NewSDFromStream(SkStream* stream) {
} }
const SkImageInfo& srcInfo = codec->getInfo(); const SkImageInfo& srcInfo = codec->getInfo();
// Return the new scanline decoder // Return the new scanline decoder
return SkNEW_ARGS(SkJpegScanlineDecoder, (srcInfo, codec.detach())); return SkNEW_ARGS(SkJpegScanlineDecoder, (srcInfo, codec.detach()));
} }

View File

@ -110,13 +110,19 @@ private:
bool setOutputColorSpace(const SkImageInfo& dst); bool setOutputColorSpace(const SkImageInfo& dst);
/* /*
* Checks if we can natively scale to the requested dimensions and natively scales the * Checks if we can scale to the requested dimensions and scales the dimensions
* dimensions if possible * if possible
*/ */
bool nativelyScaleToDimensions(uint32_t width, uint32_t height); bool scaleToDimensions(uint32_t width, uint32_t height);
/*
* Create the swizzler based on the encoded format
*/
void initializeSwizzler(const SkImageInfo& dstInfo, void* dst, size_t dstRowBytes,
const Options& options);
SkAutoTDelete<JpegDecoderMgr> fDecoderMgr; SkAutoTDelete<JpegDecoderMgr> fDecoderMgr;
friend class SkJpegScanlineDecoder; friend class SkJpegScanlineDecoder;
typedef SkCodec INHERITED; typedef SkCodec INHERITED;

View File

@ -1,261 +0,0 @@
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCodecPriv.h"
#include "SkScaledCodec.h"
#include "SkStream.h"
#include "SkWebpCodec.h"
SkCodec* SkScaledCodec::NewFromStream(SkStream* stream) {
bool isWebp = SkWebpCodec::IsWebp(stream);
if (!stream->rewind()) {
return NULL;
}
if (isWebp) {
// Webp codec supports scaling and subsetting natively
return SkWebpCodec::NewFromStream(stream);
}
SkAutoTDelete<SkScanlineDecoder> scanlineDecoder(SkScanlineDecoder::NewFromStream(stream));
if (NULL == scanlineDecoder) {
return NULL;
}
// wrap in new SkScaledCodec
return SkNEW_ARGS(SkScaledCodec, (scanlineDecoder.detach()));
}
SkCodec* SkScaledCodec::NewFromData(SkData* data) {
if (!data) {
return NULL;
}
return NewFromStream(SkNEW_ARGS(SkMemoryStream, (data)));
}
SkScaledCodec::SkScaledCodec(SkScanlineDecoder* scanlineDecoder)
: INHERITED(scanlineDecoder->getInfo(), NULL)
, fScanlineDecoder(scanlineDecoder)
{}
SkScaledCodec::~SkScaledCodec() {}
// returns a scaled dimension based on the original dimension and the sampleSize
// NOTE: we round down here for scaled dimension to match the behavior of SkImageDecoder
static int get_scaled_dimension(int srcDimension, int sampleSize) {
if (sampleSize > srcDimension) {
return 1;
}
return srcDimension / sampleSize;
}
static SkISize best_scaled_dimensions(const SkISize& origDims, const SkISize& nativeDims,
const SkISize& scaledCodecDims, float desiredScale) {
if (nativeDims == scaledCodecDims) {
// does not matter which to return if equal. Return here to skip below calculations
return nativeDims;
}
float idealWidth = origDims.width() * desiredScale;
float idealHeight = origDims.height() * desiredScale;
// calculate difference between native dimensions and ideal dimensions
float nativeWDiff = SkTAbs(idealWidth - nativeDims.width());
float nativeHDiff = SkTAbs(idealHeight - nativeDims.height());
float nativeDiff = (nativeWDiff + nativeHDiff) / 2;
// calculate difference between scaledCodec dimensions and ideal dimensions
float scaledCodecWDiff = SkTAbs(idealWidth - scaledCodecDims.width());
float scaledCodecHDiff = SkTAbs(idealHeight - scaledCodecDims.height());
float scaledCodecDiff = (scaledCodecWDiff + scaledCodecHDiff) / 2;
// return dimensions closest to ideal dimensions.
// If the differences are equal, return nativeDims, as native scaling is more efficient.
return nativeDiff > scaledCodecDiff ? scaledCodecDims : nativeDims;
}
/*
* Return a valid set of output dimensions for this decoder, given an input scale
*/
SkISize SkScaledCodec::onGetScaledDimensions(float desiredScale) const {
SkISize nativeDimensions = fScanlineDecoder->getScaledDimensions(desiredScale);
// support scaling down by integer numbers. Ex: 1/2, 1/3, 1/4 ...
SkISize scaledCodecDimensions;
if (desiredScale > 0.5f) {
// sampleSize = 1
scaledCodecDimensions = fScanlineDecoder->getInfo().dimensions();
}
// sampleSize determines the step size between samples
// Ex: sampleSize = 2, sample every second pixel in x and y directions
int sampleSize = int(1 / desiredScale);
int scaledWidth = get_scaled_dimension(this->getInfo().width(), sampleSize);
int scaledHeight = get_scaled_dimension(this->getInfo().height(), sampleSize);
// Return the calculated output dimensions for the given scale
scaledCodecDimensions = SkISize::Make(scaledWidth, scaledHeight);
return best_scaled_dimensions(this->getInfo().dimensions(), nativeDimensions,
scaledCodecDimensions, desiredScale);
}
// check if scaling to dstInfo size from srcInfo size using sampleSize is possible
static bool scaling_supported(const SkImageInfo& dstInfo, const SkImageInfo& srcInfo,
int* sampleX, int* sampleY) {
SkScaledCodec::ComputeSampleSize(dstInfo, srcInfo, sampleX, sampleY);
const int dstWidth = dstInfo.width();
const int dstHeight = dstInfo.height();
const int srcWidth = srcInfo.width();
const int srcHeight = srcInfo.height();
// only support down sampling, not up sampling
if (dstWidth > srcWidth || dstHeight > srcHeight) {
return false;
}
// check that srcWidth is scaled down by an integer value
if (get_scaled_dimension(srcWidth, *sampleX) != dstWidth) {
return false;
}
// check that src height is scaled down by an integer value
if (get_scaled_dimension(srcHeight, *sampleY) != dstHeight) {
return false;
}
// sampleX and sampleY should be equal unless the original sampleSize requested was larger
// than srcWidth or srcHeight. If so, the result of this is dstWidth or dstHeight = 1.
// This functionality allows for tall thin images to still be scaled down by scaling factors.
if (*sampleX != *sampleY){
if (1 != dstWidth && 1 != dstHeight) {
return false;
}
}
return true;
}
// calculates sampleSize in x and y direction
void SkScaledCodec::ComputeSampleSize(const SkImageInfo& dstInfo, const SkImageInfo& srcInfo,
int* sampleXPtr, int* sampleYPtr) {
int srcWidth = srcInfo.width();
int dstWidth = dstInfo.width();
int srcHeight = srcInfo.height();
int dstHeight = dstInfo.height();
int sampleX = srcWidth / dstWidth;
int sampleY = srcHeight / dstHeight;
// only support down sampling, not up sampling
SkASSERT(dstWidth <= srcWidth);
SkASSERT(dstHeight <= srcHeight);
// sampleX and sampleY should be equal unless the original sampleSize requested was
// larger than srcWidth or srcHeight.
// If so, the result of this is dstWidth or dstHeight = 1. This functionality
// allows for tall thin images to still be scaled down by scaling factors.
if (sampleX != sampleY){
if (1 != dstWidth && 1 != dstHeight) {
// rounding during onGetScaledDimensions can cause different sampleSizes
// Ex: srcWidth = 79, srcHeight = 20, sampleSize = 10
// dstWidth = 7, dstHeight = 2, sampleX = 79/7 = 11, sampleY = 20/2 = 10
// correct for this rounding by comparing width to sampleY and height to sampleX
if (get_scaled_dimension(srcWidth, sampleY) == dstWidth) {
sampleX = sampleY;
} else if (get_scaled_dimension(srcHeight, sampleX) == dstHeight) {
sampleY = sampleX;
}
}
}
if (sampleXPtr) {
*sampleXPtr = sampleX;
}
if (sampleYPtr) {
*sampleYPtr = sampleY;
}
}
// TODO: Implement subsetting in onGetPixels which works when and when not sampling
SkCodec::Result SkScaledCodec::onGetPixels(const SkImageInfo& requestedInfo, void* dst,
size_t rowBytes, const Options& options,
SkPMColor ctable[], int* ctableCount) {
if (options.fSubset) {
// Subsets are not supported.
return kUnimplemented;
}
Result result = fScanlineDecoder->start(requestedInfo, &options, ctable, ctableCount);
if (kSuccess == result) {
// native decode supported
return fScanlineDecoder->getScanlines(dst, requestedInfo.height(), rowBytes);
}
if (kInvalidScale != result) {
// no scaling requested
return result;
}
// scaling requested
int sampleX;
int sampleY;
if (!scaling_supported(requestedInfo, fScanlineDecoder->getInfo(), &sampleX, &sampleY)) {
return kInvalidScale;
}
// set first sample pixel in y direction
int Y0 = sampleY >> 1;
int dstHeight = requestedInfo.height();
int srcHeight = fScanlineDecoder->getInfo().height();
SkImageInfo info = requestedInfo;
// use original height as scanlineDecoder does not support y sampling natively
info = info.makeWH(requestedInfo.width(), srcHeight);
// update scanlineDecoder with new info
result = fScanlineDecoder->start(info, &options, ctable, ctableCount);
if (kSuccess != result) {
return result;
}
const bool requiresPostYSampling = fScanlineDecoder->requiresPostYSampling();
if (requiresPostYSampling) {
SkAutoMalloc storage(srcHeight * rowBytes);
uint8_t* storagePtr = static_cast<uint8_t*>(storage.get());
result = fScanlineDecoder->getScanlines(storagePtr, srcHeight, rowBytes);
if (kSuccess != result) {
return result;
}
storagePtr += Y0 * rowBytes;
for (int y = 0; y < dstHeight; y++) {
memcpy(dst, storagePtr, rowBytes);
storagePtr += sampleY * rowBytes;
dst = SkTAddOffset<void>(dst, rowBytes);
}
} else {
// does not require post y sampling
result = fScanlineDecoder->skipScanlines(Y0);
if (kSuccess != result) {
return result;
}
for (int y = 0; y < dstHeight; y++) {
result = fScanlineDecoder->getScanlines(dst, 1, rowBytes);
if (kSuccess != result) {
return result;
}
if (y < dstHeight - 1) {
result = fScanlineDecoder->skipScanlines(sampleY - 1);
if (kSuccess != result) {
return result;
}
}
dst = SkTAddOffset<void>(dst, rowBytes);
}
}
return kSuccess;
}

View File

@ -7,7 +7,6 @@
#include "SkCodecPriv.h" #include "SkCodecPriv.h"
#include "SkColorPriv.h" #include "SkColorPriv.h"
#include "SkScaledCodec.h"
#include "SkSwizzler.h" #include "SkSwizzler.h"
#include "SkTemplates.h" #include "SkTemplates.h"
#include "SkUtils.h" #include "SkUtils.h"
@ -20,107 +19,114 @@ SkSwizzler::ResultAlpha SkSwizzler::GetResult(uint8_t zeroAlpha,
return (((uint16_t) maxAlpha) << 8) | zeroAlpha; return (((uint16_t) maxAlpha) << 8) | zeroAlpha;
} }
// samples the row. Does not do anything else but sampling
static SkSwizzler::ResultAlpha sample565(void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src,
int width, int deltaSrc, int offset, const SkPMColor ctable[]){
src += offset;
uint16_t* SK_RESTRICT dst = (uint16_t*) dstRow;
for (int x = 0; x < width; x++) {
dst[x] = src[1] << 8 | src[0];
src += deltaSrc;
}
// 565 is always opaque
return SkSwizzler::kOpaque_ResultAlpha;
}
// kBit // kBit
// These routines exclusively choose between white and black // These routines exclusively choose between white and black
#define GRAYSCALE_BLACK 0 #define GRAYSCALE_BLACK 0
#define GRAYSCALE_WHITE 0xFF #define GRAYSCALE_WHITE 0xFF
// same as swizzle_bit_to_index and swizzle_bit_to_n32 except for value assigned to dst[x]
static SkSwizzler::ResultAlpha swizzle_bit_to_grayscale( static SkSwizzler::ResultAlpha swizzle_bit_to_grayscale(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int deltaSrc, int offset, const SkPMColor* /*ctable*/) { int /*bitsPerPixel*/, const SkPMColor* /*ctable*/) {
uint8_t* SK_RESTRICT dst = (uint8_t*) dstRow; uint8_t* SK_RESTRICT dst = (uint8_t*) dstRow;
// increment src by byte offset and bitIndex by bit offset // Determine how many full bytes are in the row
src += offset / 8; int bytesInRow = width >> 3;
int bitIndex = offset % 8; int i;
uint8_t currByte = *src; for (i = 0; i < bytesInRow; i++) {
for (int x = 0; x < dstWidth; x++) { U8CPU currByte = src[i];
dst[x] = ((currByte >> (7-bitIndex)) & 1) ? GRAYSCALE_WHITE : GRAYSCALE_BLACK; for (int j = 0; j < 8; j++) {
int bitOffset = bitIndex + deltaSrc; dst[j] = ((currByte >> (7 - j)) & 1) ? GRAYSCALE_WHITE : GRAYSCALE_BLACK;
bitIndex = bitOffset % 8; }
currByte = *(src += bitOffset / 8); dst += 8;
} }
// Finish the remaining bits
width &= 7;
if (width > 0) {
U8CPU currByte = src[i];
for (int j = 0; j < width; j++) {
dst[j] = ((currByte >> 7) & 1) ? GRAYSCALE_WHITE : GRAYSCALE_BLACK;
currByte <<= 1;
}
}
return SkSwizzler::kOpaque_ResultAlpha; return SkSwizzler::kOpaque_ResultAlpha;
} }
#undef GRAYSCALE_BLACK #undef GRAYSCALE_BLACK
#undef GRAYSCALE_WHITE #undef GRAYSCALE_WHITE
// same as swizzle_bit_to_grayscale and swizzle_bit_to_n32 except for value assigned to dst[x]
static SkSwizzler::ResultAlpha swizzle_bit_to_index( static SkSwizzler::ResultAlpha swizzle_bit_to_index(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int deltaSrc, int offset, const SkPMColor* /*ctable*/) { int /*bitsPerPixel*/, const SkPMColor* /*ctable*/) {
uint8_t* SK_RESTRICT dst = (uint8_t*) dstRow; uint8_t* SK_RESTRICT dst = (uint8_t*) dstRow;
// increment src by byte offset and bitIndex by bit offset // Determine how many full bytes are in the row
src += offset / 8; int bytesInRow = width >> 3;
int bitIndex = offset % 8; int i;
uint8_t currByte = *src; for (i = 0; i < bytesInRow; i++) {
for (int x = 0; x < dstWidth; x++) { U8CPU currByte = src[i];
dst[x] = ((currByte >> (7-bitIndex)) & 1); for (int j = 0; j < 8; j++) {
int bitOffset = bitIndex + deltaSrc; dst[j] = (currByte >> (7 - j)) & 1;
bitIndex = bitOffset % 8; }
currByte = *(src += bitOffset / 8); dst += 8;
} }
// Finish the remaining bits
width &= 7;
if (width > 0) {
U8CPU currByte = src[i];
for (int j = 0; j < width; j++) {
dst[j] = ((currByte >> 7) & 1);
currByte <<= 1;
}
}
return SkSwizzler::kOpaque_ResultAlpha; return SkSwizzler::kOpaque_ResultAlpha;
} }
// same as swizzle_bit_to_grayscale and swizzle_bit_to_index except for value assigned to dst[x]
static SkSwizzler::ResultAlpha swizzle_bit_to_n32( static SkSwizzler::ResultAlpha swizzle_bit_to_n32(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int deltaSrc, int offset, const SkPMColor* /*ctable*/) { int /*bitsPerPixel*/, const SkPMColor* /*ctable*/) {
SkPMColor* SK_RESTRICT dst = (SkPMColor*) dstRow; SkPMColor* SK_RESTRICT dst = (SkPMColor*) dstRow;
// increment src by byte offset and bitIndex by bit offset // Determine how many full bytes are in the row
src += offset / 8; int bytesInRow = width >> 3;
int bitIndex = offset % 8; int i;
uint8_t currByte = *src; for (i = 0; i < bytesInRow; i++) {
for (int x = 0; x < dstWidth; x++) { U8CPU currByte = src[i];
dst[x] = ((currByte >> (7 - bitIndex)) & 1) ? SK_ColorWHITE : SK_ColorBLACK; for (int j = 0; j < 8; j++) {
int bitOffset = bitIndex + deltaSrc; dst[j] = ((currByte >> (7 - j)) & 1) ? SK_ColorWHITE : SK_ColorBLACK;
bitIndex = bitOffset % 8; }
currByte = *(src += bitOffset / 8); dst += 8;
} }
// Finish the remaining bits
width &= 7;
if (width > 0) {
U8CPU currByte = src[i];
for (int j = 0; j < width; j++) {
dst[j] = ((currByte >> 7) & 1) ? SK_ColorWHITE : SK_ColorBLACK;
currByte <<= 1;
}
}
return SkSwizzler::kOpaque_ResultAlpha; return SkSwizzler::kOpaque_ResultAlpha;
} }
// kIndex1, kIndex2, kIndex4 // kIndex1, kIndex2, kIndex4
static SkSwizzler::ResultAlpha swizzle_small_index_to_index( static SkSwizzler::ResultAlpha swizzle_small_index_to_index(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int bitsPerPixel, int offset, const SkPMColor ctable[]) { int bitsPerPixel, const SkPMColor ctable[]) {
src += offset;
uint8_t* SK_RESTRICT dst = (uint8_t*) dstRow; uint8_t* SK_RESTRICT dst = (uint8_t*) dstRow;
INIT_RESULT_ALPHA; INIT_RESULT_ALPHA;
const uint32_t pixelsPerByte = 8 / bitsPerPixel; const uint32_t pixelsPerByte = 8 / bitsPerPixel;
const size_t rowBytes = compute_row_bytes_ppb(dstWidth, pixelsPerByte); const size_t rowBytes = compute_row_bytes_ppb(width, pixelsPerByte);
const uint8_t mask = (1 << bitsPerPixel) - 1; const uint8_t mask = (1 << bitsPerPixel) - 1;
int x = 0; int x = 0;
for (uint32_t byte = 0; byte < rowBytes; byte++) { for (uint32_t byte = 0; byte < rowBytes; byte++) {
uint8_t pixelData = src[byte]; uint8_t pixelData = src[byte];
for (uint32_t p = 0; p < pixelsPerByte && x < dstWidth; p++) { for (uint32_t p = 0; p < pixelsPerByte && x < width; p++) {
uint8_t index = (pixelData >> (8 - bitsPerPixel)) & mask; uint8_t index = (pixelData >> (8 - bitsPerPixel)) & mask;
UPDATE_RESULT_ALPHA(ctable[index] >> SK_A32_SHIFT); UPDATE_RESULT_ALPHA(ctable[index] >> SK_A32_SHIFT);
dst[x] = index; dst[x] = index;
@ -132,19 +138,18 @@ static SkSwizzler::ResultAlpha swizzle_small_index_to_index(
} }
static SkSwizzler::ResultAlpha swizzle_small_index_to_n32( static SkSwizzler::ResultAlpha swizzle_small_index_to_n32(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int bitsPerPixel, int offset, const SkPMColor ctable[]) { int bitsPerPixel, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*) dstRow; SkPMColor* SK_RESTRICT dst = (SkPMColor*) dstRow;
INIT_RESULT_ALPHA; INIT_RESULT_ALPHA;
const uint32_t pixelsPerByte = 8 / bitsPerPixel; const uint32_t pixelsPerByte = 8 / bitsPerPixel;
const size_t rowBytes = compute_row_bytes_ppb(dstWidth, pixelsPerByte); const size_t rowBytes = compute_row_bytes_ppb(width, pixelsPerByte);
const uint8_t mask = (1 << bitsPerPixel) - 1; const uint8_t mask = (1 << bitsPerPixel) - 1;
int x = 0; int x = 0;
for (uint32_t byte = 0; byte < rowBytes; byte++) { for (uint32_t byte = 0; byte < rowBytes; byte++) {
uint8_t pixelData = src[byte]; uint8_t pixelData = src[byte];
for (uint32_t p = 0; p < pixelsPerByte && x < dstWidth; p++) { for (uint32_t p = 0; p < pixelsPerByte && x < width; p++) {
uint8_t index = (pixelData >> (8 - bitsPerPixel)) & mask; uint8_t index = (pixelData >> (8 - bitsPerPixel)) & mask;
SkPMColor c = ctable[index]; SkPMColor c = ctable[index];
UPDATE_RESULT_ALPHA(c >> SK_A32_SHIFT); UPDATE_RESULT_ALPHA(c >> SK_A32_SHIFT);
@ -159,71 +164,58 @@ static SkSwizzler::ResultAlpha swizzle_small_index_to_n32(
// kIndex // kIndex
static SkSwizzler::ResultAlpha swizzle_index_to_index( static SkSwizzler::ResultAlpha swizzle_index_to_index(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int deltaSrc, int offset, const SkPMColor ctable[]) { int bytesPerPixel, const SkPMColor ctable[]) {
src += offset;
uint8_t* SK_RESTRICT dst = (uint8_t*) dstRow; uint8_t* SK_RESTRICT dst = (uint8_t*) dstRow;
if (1 == deltaSrc) { memcpy(dst, src, width);
memcpy(dst, src, dstWidth);
} else {
for (int x = 0; x < dstWidth; x++) {
dst[x] = src[0];
src += deltaSrc;
}
}
// TODO (msarett): Should we skip the loop here and guess that the row is opaque/not opaque? // TODO (msarett): Should we skip the loop here and guess that the row is opaque/not opaque?
// SkScaledBitmap sampler just guesses that it is opaque. This is dangerous // SkScaledBitmap sampler just guesses that it is opaque. This is dangerous
// and probably wrong since gif and bmp (rarely) may have alpha. // and probably wrong since gif and bmp (rarely) may have alpha.
INIT_RESULT_ALPHA; INIT_RESULT_ALPHA;
for (int x = 0; x < dstWidth; x++) { for (int x = 0; x < width; x++) {
UPDATE_RESULT_ALPHA(ctable[src[x]] >> SK_A32_SHIFT); UPDATE_RESULT_ALPHA(ctable[src[x]] >> SK_A32_SHIFT);
} }
return COMPUTE_RESULT_ALPHA; return COMPUTE_RESULT_ALPHA;
} }
static SkSwizzler::ResultAlpha swizzle_index_to_n32( static SkSwizzler::ResultAlpha swizzle_index_to_n32(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int deltaSrc, int offset, const SkPMColor ctable[]) { int bytesPerPixel, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
INIT_RESULT_ALPHA; INIT_RESULT_ALPHA;
for (int x = 0; x < dstWidth; x++) { for (int x = 0; x < width; x++) {
SkPMColor c = ctable[*src]; SkPMColor c = ctable[src[x]];
UPDATE_RESULT_ALPHA(c >> SK_A32_SHIFT); UPDATE_RESULT_ALPHA(c >> SK_A32_SHIFT);
dst[x] = c; dst[x] = c;
src += deltaSrc;
} }
return COMPUTE_RESULT_ALPHA; return COMPUTE_RESULT_ALPHA;
} }
static SkSwizzler::ResultAlpha swizzle_index_to_n32_skipZ( static SkSwizzler::ResultAlpha swizzle_index_to_n32_skipZ(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int deltaSrc, int offset, const SkPMColor ctable[]) { int bytesPerPixel, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
INIT_RESULT_ALPHA; INIT_RESULT_ALPHA;
for (int x = 0; x < dstWidth; x++) { for (int x = 0; x < width; x++) {
SkPMColor c = ctable[*src]; SkPMColor c = ctable[src[x]];
UPDATE_RESULT_ALPHA(c >> SK_A32_SHIFT); UPDATE_RESULT_ALPHA(c >> SK_A32_SHIFT);
if (c != 0) { if (c != 0) {
dst[x] = c; dst[x] = c;
} }
src += deltaSrc;
} }
return COMPUTE_RESULT_ALPHA; return COMPUTE_RESULT_ALPHA;
} }
static SkSwizzler::ResultAlpha swizzle_index_to_565( static SkSwizzler::ResultAlpha swizzle_index_to_565(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int bytesPerPixel, int offset, const SkPMColor ctable[]) { int bytesPerPixel, const SkPMColor ctable[]) {
// FIXME: Support dithering? Requires knowing y, which I think is a bigger // FIXME: Support dithering? Requires knowing y, which I think is a bigger
// change. // change.
src += offset;
uint16_t* SK_RESTRICT dst = (uint16_t*)dstRow; uint16_t* SK_RESTRICT dst = (uint16_t*)dstRow;
for (int x = 0; x < dstWidth; x++) { for (int x = 0; x < width; x++) {
dst[x] = SkPixel32ToPixel16(ctable[*src]); dst[x] = SkPixel32ToPixel16(ctable[*src]);
src += bytesPerPixel; src += bytesPerPixel;
} }
@ -236,42 +228,29 @@ static SkSwizzler::ResultAlpha swizzle_index_to_565(
// kGray // kGray
static SkSwizzler::ResultAlpha swizzle_gray_to_n32( static SkSwizzler::ResultAlpha swizzle_gray_to_n32(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int deltaSrc, int offset, const SkPMColor ctable[]) { int bytesPerPixel, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
for (int x = 0; x < dstWidth; x++) { for (int x = 0; x < width; x++) {
dst[x] = SkPackARGB32NoCheck(0xFF, *src, *src, *src); dst[x] = SkPackARGB32NoCheck(0xFF, src[x], src[x], src[x]);
src += deltaSrc;
} }
return SkSwizzler::kOpaque_ResultAlpha; return SkSwizzler::kOpaque_ResultAlpha;
} }
static SkSwizzler::ResultAlpha swizzle_gray_to_gray( static SkSwizzler::ResultAlpha swizzle_gray_to_gray(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int deltaSrc, int offset, const SkPMColor ctable[]) { int bytesPerPixel, const SkPMColor ctable[]) {
memcpy(dstRow, src, width);
src += offset;
uint8_t* SK_RESTRICT dst = (uint8_t*) dstRow;
if (1 == deltaSrc) {
memcpy(dstRow, src, dstWidth);
} else {
for (int x = 0; x < dstWidth; x++) {
dst[x] = src[0];
src += deltaSrc;
}
}
return SkSwizzler::kOpaque_ResultAlpha; return SkSwizzler::kOpaque_ResultAlpha;
} }
static SkSwizzler::ResultAlpha swizzle_gray_to_565( static SkSwizzler::ResultAlpha swizzle_gray_to_565(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int bytesPerPixel, int offset, const SkPMColor ctable[]) { int bytesPerPixel, const SkPMColor ctable[]) {
// FIXME: Support dithering? // FIXME: Support dithering?
src += offset;
uint16_t* SK_RESTRICT dst = (uint16_t*)dstRow; uint16_t* SK_RESTRICT dst = (uint16_t*)dstRow;
for (int x = 0; x < dstWidth; x++) { for (int x = 0; x < width; x++) {
dst[x] = SkPack888ToRGB16(src[0], src[0], src[0]); dst[x] = SkPack888ToRGB16(src[0], src[0], src[0]);
src += bytesPerPixel; src += bytesPerPixel;
} }
@ -281,14 +260,13 @@ static SkSwizzler::ResultAlpha swizzle_gray_to_565(
// kBGRX // kBGRX
static SkSwizzler::ResultAlpha swizzle_bgrx_to_n32( static SkSwizzler::ResultAlpha swizzle_bgrx_to_n32(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int deltaSrc, int offset, const SkPMColor ctable[]) { int bytesPerPixel, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
for (int x = 0; x < dstWidth; x++) { for (int x = 0; x < width; x++) {
dst[x] = SkPackARGB32NoCheck(0xFF, src[2], src[1], src[0]); dst[x] = SkPackARGB32NoCheck(0xFF, src[2], src[1], src[0]);
src += deltaSrc; src += bytesPerPixel;
} }
return SkSwizzler::kOpaque_ResultAlpha; return SkSwizzler::kOpaque_ResultAlpha;
} }
@ -296,58 +274,54 @@ static SkSwizzler::ResultAlpha swizzle_bgrx_to_n32(
// kBGRA // kBGRA
static SkSwizzler::ResultAlpha swizzle_bgra_to_n32_unpremul( static SkSwizzler::ResultAlpha swizzle_bgra_to_n32_unpremul(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int deltaSrc, int offset, const SkPMColor ctable[]) { int bytesPerPixel, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
INIT_RESULT_ALPHA; INIT_RESULT_ALPHA;
for (int x = 0; x < dstWidth; x++) { for (int x = 0; x < width; x++) {
uint8_t alpha = src[3]; uint8_t alpha = src[3];
UPDATE_RESULT_ALPHA(alpha); UPDATE_RESULT_ALPHA(alpha);
dst[x] = SkPackARGB32NoCheck(alpha, src[2], src[1], src[0]); dst[x] = SkPackARGB32NoCheck(alpha, src[2], src[1], src[0]);
src += deltaSrc; src += bytesPerPixel;
} }
return COMPUTE_RESULT_ALPHA; return COMPUTE_RESULT_ALPHA;
} }
static SkSwizzler::ResultAlpha swizzle_bgra_to_n32_premul( static SkSwizzler::ResultAlpha swizzle_bgra_to_n32_premul(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int deltaSrc, int offset, const SkPMColor ctable[]) { int bytesPerPixel, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
INIT_RESULT_ALPHA; INIT_RESULT_ALPHA;
for (int x = 0; x < dstWidth; x++) { for (int x = 0; x < width; x++) {
uint8_t alpha = src[3]; uint8_t alpha = src[3];
UPDATE_RESULT_ALPHA(alpha); UPDATE_RESULT_ALPHA(alpha);
dst[x] = SkPreMultiplyARGB(alpha, src[2], src[1], src[0]); dst[x] = SkPreMultiplyARGB(alpha, src[2], src[1], src[0]);
src += deltaSrc; src += bytesPerPixel;
} }
return COMPUTE_RESULT_ALPHA; return COMPUTE_RESULT_ALPHA;
} }
// kRGBX // kRGBX
static SkSwizzler::ResultAlpha swizzle_rgbx_to_n32( static SkSwizzler::ResultAlpha swizzle_rgbx_to_n32(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int deltaSrc, int offset, const SkPMColor ctable[]) { int bytesPerPixel, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
for (int x = 0; x < dstWidth; x++) { for (int x = 0; x < width; x++) {
dst[x] = SkPackARGB32(0xFF, src[0], src[1], src[2]); dst[x] = SkPackARGB32(0xFF, src[0], src[1], src[2]);
src += deltaSrc; src += bytesPerPixel;
} }
return SkSwizzler::kOpaque_ResultAlpha; return SkSwizzler::kOpaque_ResultAlpha;
} }
static SkSwizzler::ResultAlpha swizzle_rgbx_to_565( static SkSwizzler::ResultAlpha swizzle_rgbx_to_565(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int bytesPerPixel, int offset, const SkPMColor ctable[]) { int bytesPerPixel, const SkPMColor ctable[]) {
// FIXME: Support dithering? // FIXME: Support dithering?
src += offset;
uint16_t* SK_RESTRICT dst = (uint16_t*)dstRow; uint16_t* SK_RESTRICT dst = (uint16_t*)dstRow;
for (int x = 0; x < dstWidth; x++) { for (int x = 0; x < width; x++) {
dst[x] = SkPack888ToRGB16(src[0], src[1], src[2]); dst[x] = SkPack888ToRGB16(src[0], src[1], src[2]);
src += bytesPerPixel; src += bytesPerPixel;
} }
@ -357,51 +331,48 @@ static SkSwizzler::ResultAlpha swizzle_rgbx_to_565(
// kRGBA // kRGBA
static SkSwizzler::ResultAlpha swizzle_rgba_to_n32_premul( static SkSwizzler::ResultAlpha swizzle_rgba_to_n32_premul(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int deltaSrc, int offset, const SkPMColor ctable[]) { int bytesPerPixel, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
INIT_RESULT_ALPHA; INIT_RESULT_ALPHA;
for (int x = 0; x < dstWidth; x++) { for (int x = 0; x < width; x++) {
unsigned alpha = src[3]; unsigned alpha = src[3];
UPDATE_RESULT_ALPHA(alpha); UPDATE_RESULT_ALPHA(alpha);
dst[x] = SkPreMultiplyARGB(alpha, src[0], src[1], src[2]); dst[x] = SkPreMultiplyARGB(alpha, src[0], src[1], src[2]);
src += deltaSrc; src += bytesPerPixel;
} }
return COMPUTE_RESULT_ALPHA; return COMPUTE_RESULT_ALPHA;
} }
static SkSwizzler::ResultAlpha swizzle_rgba_to_n32_unpremul( static SkSwizzler::ResultAlpha swizzle_rgba_to_n32_unpremul(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int deltaSrc, int offset, const SkPMColor ctable[]) { int bytesPerPixel, const SkPMColor ctable[]) {
src += offset;
uint32_t* SK_RESTRICT dst = reinterpret_cast<uint32_t*>(dstRow); uint32_t* SK_RESTRICT dst = reinterpret_cast<uint32_t*>(dstRow);
INIT_RESULT_ALPHA; INIT_RESULT_ALPHA;
for (int x = 0; x < dstWidth; x++) { for (int x = 0; x < width; x++) {
unsigned alpha = src[3]; unsigned alpha = src[3];
UPDATE_RESULT_ALPHA(alpha); UPDATE_RESULT_ALPHA(alpha);
dst[x] = SkPackARGB32NoCheck(alpha, src[0], src[1], src[2]); dst[x] = SkPackARGB32NoCheck(alpha, src[0], src[1], src[2]);
src += deltaSrc; src += bytesPerPixel;
} }
return COMPUTE_RESULT_ALPHA; return COMPUTE_RESULT_ALPHA;
} }
static SkSwizzler::ResultAlpha swizzle_rgba_to_n32_premul_skipZ( static SkSwizzler::ResultAlpha swizzle_rgba_to_n32_premul_skipZ(
void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int dstWidth, void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width,
int deltaSrc, int offset, const SkPMColor ctable[]) { int bytesPerPixel, const SkPMColor ctable[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
INIT_RESULT_ALPHA; INIT_RESULT_ALPHA;
for (int x = 0; x < dstWidth; x++) { for (int x = 0; x < width; x++) {
unsigned alpha = src[3]; unsigned alpha = src[3];
UPDATE_RESULT_ALPHA(alpha); UPDATE_RESULT_ALPHA(alpha);
if (0 != alpha) { if (0 != alpha) {
dst[x] = SkPreMultiplyARGB(alpha, src[0], src[1], src[2]); dst[x] = SkPreMultiplyARGB(alpha, src[0], src[1], src[2]);
} }
src += deltaSrc; src += bytesPerPixel;
} }
return COMPUTE_RESULT_ALPHA; return COMPUTE_RESULT_ALPHA;
} }
@ -414,12 +385,11 @@ static SkSwizzler::ResultAlpha swizzle_rgba_to_n32_premul_skipZ(
decide whether to switch to unpremul default. decide whether to switch to unpremul default.
static bool swizzle_rgba_to_n32_unpremul_skipZ(void* SK_RESTRICT dstRow, static bool swizzle_rgba_to_n32_unpremul_skipZ(void* SK_RESTRICT dstRow,
const uint8_t* SK_RESTRICT src, const uint8_t* SK_RESTRICT src,
int dstWidth, int bitsPerPixel, int offset, int width, int bitsPerPixel,
const SkPMColor[]) { const SkPMColor[]) {
src += offset;
SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow;
unsigned alphaMask = 0xFF; unsigned alphaMask = 0xFF;
for (int x = 0; x < dstWidth; x++) { for (int x = 0; x < width; x++) {
unsigned alpha = src[3]; unsigned alpha = src[3];
// NOTE: We cheat here. The caller requested unpremul and skip zeroes. It's possible // NOTE: We cheat here. The caller requested unpremul and skip zeroes. It's possible
// the color components are not zero, but we skip them anyway, meaning they'll remain // the color components are not zero, but we skip them anyway, meaning they'll remain
@ -436,10 +406,9 @@ static bool swizzle_rgba_to_n32_unpremul_skipZ(void* SK_RESTRICT dstRow,
SkSwizzler* SkSwizzler::CreateSwizzler(SkSwizzler::SrcConfig sc, SkSwizzler* SkSwizzler::CreateSwizzler(SkSwizzler::SrcConfig sc,
const SkPMColor* ctable, const SkPMColor* ctable,
const SkImageInfo& dstInfo, const SkImageInfo& info,
SkCodec::ZeroInitialized zeroInit, SkCodec::ZeroInitialized zeroInit) {
const SkImageInfo& srcInfo) { if (info.colorType() == kUnknown_SkColorType || kUnknown == sc) {
if (dstInfo.colorType() == kUnknown_SkColorType || kUnknown == sc) {
return NULL; return NULL;
} }
if ((kIndex == sc || kIndex4 == sc || kIndex2 == sc || kIndex1 == sc) if ((kIndex == sc || kIndex4 == sc || kIndex2 == sc || kIndex1 == sc)
@ -447,10 +416,9 @@ SkSwizzler* SkSwizzler::CreateSwizzler(SkSwizzler::SrcConfig sc,
return NULL; return NULL;
} }
RowProc proc = NULL; RowProc proc = NULL;
switch (sc) { switch (sc) {
case kBit: case kBit:
switch (dstInfo.colorType()) { switch (info.colorType()) {
case kN32_SkColorType: case kN32_SkColorType:
proc = &swizzle_bit_to_n32; proc = &swizzle_bit_to_n32;
break; break;
@ -467,7 +435,7 @@ SkSwizzler* SkSwizzler::CreateSwizzler(SkSwizzler::SrcConfig sc,
case kIndex1: case kIndex1:
case kIndex2: case kIndex2:
case kIndex4: case kIndex4:
switch (dstInfo.colorType()) { switch (info.colorType()) {
case kN32_SkColorType: case kN32_SkColorType:
proc = &swizzle_small_index_to_n32; proc = &swizzle_small_index_to_n32;
break; break;
@ -479,7 +447,7 @@ SkSwizzler* SkSwizzler::CreateSwizzler(SkSwizzler::SrcConfig sc,
} }
break; break;
case kIndex: case kIndex:
switch (dstInfo.colorType()) { switch (info.colorType()) {
case kN32_SkColorType: case kN32_SkColorType:
// We assume the color premultiplied ctable (or not) as desired. // We assume the color premultiplied ctable (or not) as desired.
if (SkCodec::kYes_ZeroInitialized == zeroInit) { if (SkCodec::kYes_ZeroInitialized == zeroInit) {
@ -501,7 +469,7 @@ SkSwizzler* SkSwizzler::CreateSwizzler(SkSwizzler::SrcConfig sc,
} }
break; break;
case kGray: case kGray:
switch (dstInfo.colorType()) { switch (info.colorType()) {
case kN32_SkColorType: case kN32_SkColorType:
proc = &swizzle_gray_to_n32; proc = &swizzle_gray_to_n32;
break; break;
@ -517,7 +485,7 @@ SkSwizzler* SkSwizzler::CreateSwizzler(SkSwizzler::SrcConfig sc,
break; break;
case kBGR: case kBGR:
case kBGRX: case kBGRX:
switch (dstInfo.colorType()) { switch (info.colorType()) {
case kN32_SkColorType: case kN32_SkColorType:
proc = &swizzle_bgrx_to_n32; proc = &swizzle_bgrx_to_n32;
break; break;
@ -526,9 +494,9 @@ SkSwizzler* SkSwizzler::CreateSwizzler(SkSwizzler::SrcConfig sc,
} }
break; break;
case kBGRA: case kBGRA:
switch (dstInfo.colorType()) { switch (info.colorType()) {
case kN32_SkColorType: case kN32_SkColorType:
switch (dstInfo.alphaType()) { switch (info.alphaType()) {
case kUnpremul_SkAlphaType: case kUnpremul_SkAlphaType:
proc = &swizzle_bgra_to_n32_unpremul; proc = &swizzle_bgra_to_n32_unpremul;
break; break;
@ -545,7 +513,7 @@ SkSwizzler* SkSwizzler::CreateSwizzler(SkSwizzler::SrcConfig sc,
break; break;
case kRGBX: case kRGBX:
// TODO: Support other swizzles. // TODO: Support other swizzles.
switch (dstInfo.colorType()) { switch (info.colorType()) {
case kN32_SkColorType: case kN32_SkColorType:
proc = &swizzle_rgbx_to_n32; proc = &swizzle_rgbx_to_n32;
break; break;
@ -556,9 +524,9 @@ SkSwizzler* SkSwizzler::CreateSwizzler(SkSwizzler::SrcConfig sc,
} }
break; break;
case kRGBA: case kRGBA:
switch (dstInfo.colorType()) { switch (info.colorType()) {
case kN32_SkColorType: case kN32_SkColorType:
if (dstInfo.alphaType() == kUnpremul_SkAlphaType) { if (info.alphaType() == kUnpremul_SkAlphaType) {
// Respect zeroInit? // Respect zeroInit?
proc = &swizzle_rgba_to_n32_unpremul; proc = &swizzle_rgba_to_n32_unpremul;
} else { } else {
@ -574,7 +542,7 @@ SkSwizzler* SkSwizzler::CreateSwizzler(SkSwizzler::SrcConfig sc,
} }
break; break;
case kRGB: case kRGB:
switch (dstInfo.colorType()) { switch (info.colorType()) {
case kN32_SkColorType: case kN32_SkColorType:
proc = &swizzle_rgbx_to_n32; proc = &swizzle_rgbx_to_n32;
break; break;
@ -582,14 +550,6 @@ SkSwizzler* SkSwizzler::CreateSwizzler(SkSwizzler::SrcConfig sc,
break; break;
} }
break; break;
case kRGB_565:
switch (dstInfo.colorType()) {
case kRGB_565_SkColorType:
proc = &sample565;
break;
default:
break;
}
default: default:
break; break;
} }
@ -598,31 +558,22 @@ SkSwizzler* SkSwizzler::CreateSwizzler(SkSwizzler::SrcConfig sc,
} }
// Store deltaSrc in bytes if it is an even multiple, otherwise use bits // Store deltaSrc in bytes if it is an even multiple, otherwise use bits
int deltaSrc = SkIsAlign8(BitsPerPixel(sc)) ? BytesPerPixel(sc) : BitsPerPixel(sc); int deltaSrc = SkIsAlign8(BitsPerPixel(sc)) ? BytesPerPixel(sc) :
BitsPerPixel(sc);
// get sampleX based on srcInfo and dstInfo dimensions return SkNEW_ARGS(SkSwizzler, (proc, ctable, deltaSrc, info));
int sampleX;
SkScaledCodec::ComputeSampleSize(dstInfo, srcInfo, &sampleX, NULL);
return SkNEW_ARGS(SkSwizzler, (proc, ctable, deltaSrc, dstInfo, sampleX));
} }
SkSwizzler::SkSwizzler(RowProc proc, const SkPMColor* ctable, SkSwizzler::SkSwizzler(RowProc proc, const SkPMColor* ctable,
int deltaSrc, const SkImageInfo& info, int sampleX) int deltaSrc, const SkImageInfo& info)
: fRowProc(proc) : fRowProc(proc)
, fColorTable(ctable) , fColorTable(ctable)
, fDeltaSrc(deltaSrc) , fDeltaSrc(deltaSrc)
, fDstInfo(info) , fDstInfo(info)
, fSampleX(sampleX) {}
, fX0(sampleX == 1 ? 0 : sampleX >> 1)
{
// check that fX0 is less than original width
SkASSERT(fX0 >= 0 && fX0 < fDstInfo.width() * fSampleX);
}
SkSwizzler::ResultAlpha SkSwizzler::swizzle(void* dst, const uint8_t* SK_RESTRICT src) { SkSwizzler::ResultAlpha SkSwizzler::swizzle(void* dst, const uint8_t* SK_RESTRICT src) {
SkASSERT(NULL != dst && NULL != src); SkASSERT(NULL != dst && NULL != src);
return fRowProc(dst, src, fDstInfo.width(), fSampleX * fDeltaSrc, fX0 * fDeltaSrc, fColorTable); return fRowProc(dst, src, fDstInfo.width(), fDeltaSrc, fColorTable);
} }
void SkSwizzler::Fill(void* dstStartRow, const SkImageInfo& dstInfo, size_t dstRowBytes, void SkSwizzler::Fill(void* dstStartRow, const SkImageInfo& dstInfo, size_t dstRowBytes,

View File

@ -117,22 +117,16 @@ public:
/** /**
* Create a new SkSwizzler. * Create a new SkSwizzler.
* @param SrcConfig Description of the format of the source. * @param SrcConfig Description of the format of the source.
* @param dstInfo describes the destination. * @param SkImageInfo dimensions() describe both the src and the dst.
* Other fields describe the dst.
* @param ZeroInitialized Whether dst is zero-initialized. The * @param ZeroInitialized Whether dst is zero-initialized. The
implementation may choose to skip writing zeroes implementation may choose to skip writing zeroes
* if set to kYes_ZeroInitialized. * if set to kYes_ZeroInitialized.
* @param srcInfo is the info of the source. Used to calculate the width samplesize.
* Width sampling is supported by the swizzler, by skipping pixels when
swizzling the row. Height sampling is not supported by the swizzler,
but is implemented in SkScaledCodec.
Sampling in Y can be done by a client with a scanline decoder,
but sampling in X allows the swizzler to skip swizzling pixels and
reading from and writing to memory.
* @return A new SkSwizzler or NULL on failure. * @return A new SkSwizzler or NULL on failure.
*/ */
static SkSwizzler* CreateSwizzler(SrcConfig, const SkPMColor* ctable, static SkSwizzler* CreateSwizzler(SrcConfig, const SkPMColor* ctable,
const SkImageInfo& dstInfo, SkCodec::ZeroInitialized, const SkImageInfo&, SkCodec::ZeroInitialized);
const SkImageInfo& srcInfo);
/** /**
* Fill the remainder of the destination with a single color * Fill the remainder of the destination with a single color
* *
@ -187,16 +181,14 @@ private:
* Method for converting raw data to Skia pixels. * Method for converting raw data to Skia pixels.
* @param dstRow Row in which to write the resulting pixels. * @param dstRow Row in which to write the resulting pixels.
* @param src Row of src data, in format specified by SrcConfig * @param src Row of src data, in format specified by SrcConfig
* @param dstWidth Width in pixels of the destination * @param width Width in pixels
* @param deltaSrc if bitsPerPixel % 8 == 0, deltaSrc is bytesPerPixel * @param deltaSrc if bitsPerPixel % 8 == 0, deltaSrc is bytesPerPixel
* else, deltaSrc is bitsPerPixel * else, deltaSrc is bitsPerPixel
* @param ctable Colors (used for kIndex source). * @param ctable Colors (used for kIndex source).
* @param offset The offset before the first pixel to sample.
Is in bytes or bits based on what deltaSrc is in.
*/ */
typedef ResultAlpha (*RowProc)(void* SK_RESTRICT dstRow, typedef ResultAlpha (*RowProc)(void* SK_RESTRICT dstRow,
const uint8_t* SK_RESTRICT src, const uint8_t* SK_RESTRICT src,
int dstWidth, int deltaSrc, int offset, int width, int deltaSrc,
const SkPMColor ctable[]); const SkPMColor ctable[]);
const RowProc fRowProc; const RowProc fRowProc;
@ -207,10 +199,9 @@ private:
// deltaSrc is bitsPerPixel // deltaSrc is bitsPerPixel
const SkImageInfo fDstInfo; const SkImageInfo fDstInfo;
int fCurrY; int fCurrY;
const int fX0; // first X coord to sample
const int fSampleX; // step between X samples
SkSwizzler(RowProc proc, const SkPMColor* ctable, int deltaSrc, const SkImageInfo& info, SkSwizzler(RowProc proc, const SkPMColor* ctable, int deltaSrc,
int sampleX); const SkImageInfo& info);
}; };
#endif // SkSwizzler_DEFINED #endif // SkSwizzler_DEFINED