Do elliptical clips in normalized space on devices with a "real" mediump

BUG=chromium:477684

Review URL: https://codereview.chromium.org/1517573002
This commit is contained in:
bsalomon 2015-12-09 17:14:40 -08:00 committed by Commit bot
parent f1ecd21bf6
commit e87256c462
2 changed files with 124 additions and 44 deletions

View File

@ -133,19 +133,19 @@ void GLCircleEffect::emitCode(EmitArgs& args) {
// mediump. It'd be nice to only to this on mediump devices but we currently don't have the
// caps here.
if (GrProcessorEdgeTypeIsInverseFill(ce.getEdgeType())) {
fragBuilder->codeAppendf("\t\tfloat d = (length((%s.xy - %s.xy) * %s.w) - 1.0) * %s.z;\n",
fragBuilder->codeAppendf("float d = (length((%s.xy - %s.xy) * %s.w) - 1.0) * %s.z;",
circleName, fragmentPos, circleName, circleName);
} else {
fragBuilder->codeAppendf("\t\tfloat d = (1.0 - length((%s.xy - %s.xy) * %s.w)) * %s.z;\n",
fragBuilder->codeAppendf("float d = (1.0 - length((%s.xy - %s.xy) * %s.w)) * %s.z;",
circleName, fragmentPos, circleName, circleName);
}
if (GrProcessorEdgeTypeIsAA(ce.getEdgeType())) {
fragBuilder->codeAppend("\t\td = clamp(d, 0.0, 1.0);\n");
fragBuilder->codeAppend("d = clamp(d, 0.0, 1.0);");
} else {
fragBuilder->codeAppend("\t\td = d > 0.5 ? 1.0 : 0.0;\n");
fragBuilder->codeAppend("d = d > 0.5 ? 1.0 : 0.0;");
}
fragBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("d")).c_str());
}
@ -276,6 +276,7 @@ protected:
private:
GrGLSLProgramDataManager::UniformHandle fEllipseUniform;
GrGLSLProgramDataManager::UniformHandle fScaleUniform;
SkPoint fPrevCenter;
SkVector fPrevRadii;
@ -295,39 +296,55 @@ void GLEllipseEffect::emitCode(EmitArgs& args) {
kVec4f_GrSLType, kHigh_GrSLPrecision,
"ellipse",
&ellipseName);
// If we're on a device with a "real" mediump then we'll do the distance computation in a space
// that is normalized by the larger radius. The scale uniform will be scale, 1/scale. The
// inverse squared radii uniform values are already in this normalized space. The center is
// not.
const char* scaleName = nullptr;
if (args.fGLSLCaps->floatPrecisionVaries()) {
fScaleUniform = args.fUniformHandler->addUniform(
GrGLSLUniformHandler::kFragment_Visibility, kVec2f_GrSLType, kDefault_GrSLPrecision,
"scale", &scaleName);
}
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
const char* fragmentPos = fragBuilder->fragmentPosition();
// d is the offset to the ellipse center
fragBuilder->codeAppendf("\t\tvec2 d = %s.xy - %s.xy;\n", fragmentPos, ellipseName);
fragBuilder->codeAppendf("\t\tvec2 Z = d * %s.zw;\n", ellipseName);
fragBuilder->codeAppendf("vec2 d = %s.xy - %s.xy;", fragmentPos, ellipseName);
if (scaleName) {
fragBuilder->codeAppendf("d *= %s.y;", scaleName);
}
fragBuilder->codeAppendf("vec2 Z = d * %s.zw;", ellipseName);
// implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1.
fragBuilder->codeAppend("\t\tfloat implicit = dot(Z, d) - 1.0;\n");
fragBuilder->codeAppend("float implicit = dot(Z, d) - 1.0;");
// grad_dot is the squared length of the gradient of the implicit.
fragBuilder->codeAppendf("\t\tfloat grad_dot = 4.0 * dot(Z, Z);\n");
// avoid calling inversesqrt on zero.
fragBuilder->codeAppend("\t\tgrad_dot = max(grad_dot, 1.0e-4);\n");
fragBuilder->codeAppendf("\t\tfloat approx_dist = implicit * inversesqrt(grad_dot);\n");
fragBuilder->codeAppendf("float grad_dot = 4.0 * dot(Z, Z);");
// Avoid calling inversesqrt on zero.
fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);");
fragBuilder->codeAppendf("float approx_dist = implicit * inversesqrt(grad_dot);");
if (scaleName) {
fragBuilder->codeAppendf("approx_dist *= %s.x;", scaleName);
}
switch (ee.getEdgeType()) {
case kFillAA_GrProcessorEdgeType:
fragBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 - approx_dist, 0.0, 1.0);\n");
fragBuilder->codeAppend("float alpha = clamp(0.5 - approx_dist, 0.0, 1.0);");
break;
case kInverseFillAA_GrProcessorEdgeType:
fragBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 + approx_dist, 0.0, 1.0);\n");
fragBuilder->codeAppend("float alpha = clamp(0.5 + approx_dist, 0.0, 1.0);");
break;
case kFillBW_GrProcessorEdgeType:
fragBuilder->codeAppend("\t\tfloat alpha = approx_dist > 0.0 ? 0.0 : 1.0;\n");
fragBuilder->codeAppend("float alpha = approx_dist > 0.0 ? 0.0 : 1.0;");
break;
case kInverseFillBW_GrProcessorEdgeType:
fragBuilder->codeAppend("\t\tfloat alpha = approx_dist > 0.0 ? 1.0 : 0.0;\n");
fragBuilder->codeAppend("float alpha = approx_dist > 0.0 ? 1.0 : 0.0;");
break;
case kHairlineAA_GrProcessorEdgeType:
SkFAIL("Hairline not expected here.");
}
fragBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str());
}
@ -341,8 +358,26 @@ void GLEllipseEffect::onSetData(const GrGLSLProgramDataManager& pdman,
const GrProcessor& effect) {
const EllipseEffect& ee = effect.cast<EllipseEffect>();
if (ee.getRadii() != fPrevRadii || ee.getCenter() != fPrevCenter) {
SkScalar invRXSqd = 1.f / (ee.getRadii().fX * ee.getRadii().fX);
SkScalar invRYSqd = 1.f / (ee.getRadii().fY * ee.getRadii().fY);
float invRXSqd;
float invRYSqd;
// If we're using a scale factor to work around precision issues, choose the larger radius
// as the scale factor. The inv radii need to be pre-adjusted by the scale factor.
if (fScaleUniform.isValid()) {
if (ee.getRadii().fX > ee.getRadii().fY) {
invRXSqd = 1.f;
invRYSqd = (ee.getRadii().fX * ee.getRadii().fX) /
(ee.getRadii().fY * ee.getRadii().fY);
pdman.set2f(fScaleUniform, ee.getRadii().fX, 1.f / ee.getRadii().fX);
} else {
invRXSqd = (ee.getRadii().fY * ee.getRadii().fY) /
(ee.getRadii().fX * ee.getRadii().fX);
invRYSqd = 1.f;
pdman.set2f(fScaleUniform, ee.getRadii().fY, 1.f / ee.getRadii().fY);
}
} else {
invRXSqd = 1.f / (ee.getRadii().fX * ee.getRadii().fX);
invRYSqd = 1.f / (ee.getRadii().fY * ee.getRadii().fY);
}
pdman.set4f(fEllipseUniform, ee.getCenter().fX, ee.getCenter().fY, invRXSqd, invRYSqd);
fPrevCenter = ee.getCenter();
fPrevRadii = ee.getRadii();

View File

@ -498,7 +498,8 @@ protected:
private:
GrGLSLProgramDataManager::UniformHandle fInnerRectUniform;
GrGLSLProgramDataManager::UniformHandle fInvRadiiSqdUniform;
SkRRect fPrevRRect;
GrGLSLProgramDataManager::UniformHandle fScaleUniform;
SkRRect fPrevRRect;
typedef GrGLSLFragmentProcessor INHERITED;
};
@ -530,55 +531,77 @@ void GLEllipticalRRectEffect::emitCode(EmitArgs& args) {
// The code below is a simplified version of the above that performs maxs on the vector
// components before computing distances and alpha values so that only one distance computation
// need be computed to determine the min alpha.
fragBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos);
fragBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName);
fragBuilder->codeAppendf("vec2 dxy0 = %s.xy - %s.xy;", rectName, fragmentPos);
fragBuilder->codeAppendf("vec2 dxy1 = %s.xy - %s.zw;", fragmentPos, rectName);
// If we're on a device with a "real" mediump then we'll do the distance computation in a space
// that is normalized by the largest radius. The scale uniform will be scale, 1/scale. The
// radii uniform values are already in this normalized space.
const char* scaleName = nullptr;
if (args.fGLSLCaps->floatPrecisionVaries()) {
fScaleUniform = uniformHandler->addUniform(GrGLSLUniformHandler::kFragment_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"scale", &scaleName);
}
// The uniforms with the inv squared radii are highp to prevent underflow.
switch (erre.getRRect().getType()) {
case SkRRect::kSimple_Type: {
const char *invRadiiXYSqdName;
fInvRadiiSqdUniform = uniformHandler->addUniform(
GrGLSLUniformHandler::kFragment_Visibility,
kVec2f_GrSLType, kHigh_GrSLPrecision,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"invRadiiXY",
&invRadiiXYSqdName);
fragBuilder->codeAppend("\t\tvec2 dxy = max(max(dxy0, dxy1), 0.0);\n");
fragBuilder->codeAppend("vec2 dxy = max(max(dxy0, dxy1), 0.0);");
if (scaleName) {
fragBuilder->codeAppendf("dxy *= %s.y;", scaleName);
}
// Z is the x/y offsets divided by squared radii.
fragBuilder->codeAppendf("\t\tvec2 Z = dxy * %s;\n", invRadiiXYSqdName);
fragBuilder->codeAppendf("vec2 Z = dxy * %s.xy;", invRadiiXYSqdName);
break;
}
case SkRRect::kNinePatch_Type: {
const char *invRadiiLTRBSqdName;
fInvRadiiSqdUniform = uniformHandler->addUniform(
GrGLSLUniformHandler::kFragment_Visibility,
kVec4f_GrSLType, kHigh_GrSLPrecision,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"invRadiiLTRB",
&invRadiiLTRBSqdName);
fragBuilder->codeAppend("\t\tvec2 dxy = max(max(dxy0, dxy1), 0.0);\n");
if (scaleName) {
fragBuilder->codeAppendf("dxy0 *= %s.y;", scaleName);
fragBuilder->codeAppendf("dxy1 *= %s.y;", scaleName);
}
fragBuilder->codeAppend("vec2 dxy = max(max(dxy0, dxy1), 0.0);");
// Z is the x/y offsets divided by squared radii. We only care about the (at most) one
// corner where both the x and y offsets are positive, hence the maxes. (The inverse
// squared radii will always be positive.)
fragBuilder->codeAppendf("\t\tvec2 Z = max(max(dxy0 * %s.xy, dxy1 * %s.zw), 0.0);\n",
fragBuilder->codeAppendf("vec2 Z = max(max(dxy0 * %s.xy, dxy1 * %s.zw), 0.0);",
invRadiiLTRBSqdName, invRadiiLTRBSqdName);
break;
}
default:
SkFAIL("RRect should always be simple or nine-patch.");
}
// implicit is the evaluation of (x/a)^2 + (y/b)^2 - 1.
fragBuilder->codeAppend("\t\tfloat implicit = dot(Z, dxy) - 1.0;\n");
fragBuilder->codeAppend("float implicit = dot(Z, dxy) - 1.0;");
// grad_dot is the squared length of the gradient of the implicit.
fragBuilder->codeAppendf("\t\tfloat grad_dot = 4.0 * dot(Z, Z);\n");
fragBuilder->codeAppend("float grad_dot = 4.0 * dot(Z, Z);");
// avoid calling inversesqrt on zero.
fragBuilder->codeAppend("\t\tgrad_dot = max(grad_dot, 1.0e-4);\n");
fragBuilder->codeAppendf("\t\tfloat approx_dist = implicit * inversesqrt(grad_dot);\n");
if (kFillAA_GrProcessorEdgeType == erre.getEdgeType()) {
fragBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 - approx_dist, 0.0, 1.0);\n");
} else {
fragBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 + approx_dist, 0.0, 1.0);\n");
fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);");
fragBuilder->codeAppend("float approx_dist = implicit * inversesqrt(grad_dot);");
if (scaleName) {
fragBuilder->codeAppendf("approx_dist *= %s.x;", scaleName);
}
fragBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
if (kFillAA_GrProcessorEdgeType == erre.getEdgeType()) {
fragBuilder->codeAppend("float alpha = clamp(0.5 - approx_dist, 0.0, 1.0);");
} else {
fragBuilder->codeAppend("float alpha = clamp(0.5 + approx_dist, 0.0, 1.0);");
}
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str());
}
@ -593,6 +616,8 @@ void GLEllipticalRRectEffect::onSetData(const GrGLSLProgramDataManager& pdman,
const GrProcessor& effect) {
const EllipticalRRectEffect& erre = effect.cast<EllipticalRRectEffect>();
const SkRRect& rrect = erre.getRRect();
// If we're using a scale factor to work around precision issues, choose the largest radius
// as the scale factor. The inv radii need to be pre-adjusted by the scale factor.
if (rrect != fPrevRRect) {
SkRect rect = rrect.getBounds();
const SkVector& r0 = rrect.radii(SkRRect::kUpperLeft_Corner);
@ -601,8 +626,18 @@ void GLEllipticalRRectEffect::onSetData(const GrGLSLProgramDataManager& pdman,
switch (erre.getRRect().getType()) {
case SkRRect::kSimple_Type:
rect.inset(r0.fX, r0.fY);
pdman.set2f(fInvRadiiSqdUniform, 1.f / (r0.fX * r0.fX),
1.f / (r0.fY * r0.fY));
if (fScaleUniform.isValid()) {
if (r0.fX > r0.fY) {
pdman.set2f(fInvRadiiSqdUniform, 1.f, (r0.fX * r0.fX) / (r0.fY * r0.fY));
pdman.set2f(fScaleUniform, r0.fX, 1.f / r0.fX);
} else {
pdman.set2f(fInvRadiiSqdUniform, (r0.fY * r0.fY) / (r0.fX * r0.fX), 1.f);
pdman.set2f(fScaleUniform, r0.fY, 1.f / r0.fY);
}
} else {
pdman.set2f(fInvRadiiSqdUniform, 1.f / (r0.fX * r0.fX),
1.f / (r0.fY * r0.fY));
}
break;
case SkRRect::kNinePatch_Type: {
const SkVector& r1 = rrect.radii(SkRRect::kLowerRight_Corner);
@ -612,10 +647,20 @@ void GLEllipticalRRectEffect::onSetData(const GrGLSLProgramDataManager& pdman,
rect.fTop += r0.fY;
rect.fRight -= r1.fX;
rect.fBottom -= r1.fY;
pdman.set4f(fInvRadiiSqdUniform, 1.f / (r0.fX * r0.fX),
1.f / (r0.fY * r0.fY),
1.f / (r1.fX * r1.fX),
1.f / (r1.fY * r1.fY));
if (fScaleUniform.isValid()) {
float scale = SkTMax(SkTMax(r0.fX, r0.fY), SkTMax(r1.fX, r1.fY));
float scaleSqd = scale * scale;
pdman.set4f(fInvRadiiSqdUniform, scaleSqd / (r0.fX * r0.fX),
scaleSqd / (r0.fY * r0.fY),
scaleSqd / (r1.fX * r1.fX),
scaleSqd / (r1.fY * r1.fY));
pdman.set2f(fScaleUniform, scale, 1.f / scale);
} else {
pdman.set4f(fInvRadiiSqdUniform, 1.f / (r0.fX * r0.fX),
1.f / (r0.fY * r0.fY),
1.f / (r1.fX * r1.fX),
1.f / (r1.fY * r1.fY));
}
break;
}
default: