Do elliptical clips in normalized space on devices with a "real" mediump
BUG=chromium:477684 Review URL: https://codereview.chromium.org/1517573002
This commit is contained in:
parent
f1ecd21bf6
commit
e87256c462
@ -133,19 +133,19 @@ void GLCircleEffect::emitCode(EmitArgs& args) {
|
||||
// mediump. It'd be nice to only to this on mediump devices but we currently don't have the
|
||||
// caps here.
|
||||
if (GrProcessorEdgeTypeIsInverseFill(ce.getEdgeType())) {
|
||||
fragBuilder->codeAppendf("\t\tfloat d = (length((%s.xy - %s.xy) * %s.w) - 1.0) * %s.z;\n",
|
||||
fragBuilder->codeAppendf("float d = (length((%s.xy - %s.xy) * %s.w) - 1.0) * %s.z;",
|
||||
circleName, fragmentPos, circleName, circleName);
|
||||
} else {
|
||||
fragBuilder->codeAppendf("\t\tfloat d = (1.0 - length((%s.xy - %s.xy) * %s.w)) * %s.z;\n",
|
||||
fragBuilder->codeAppendf("float d = (1.0 - length((%s.xy - %s.xy) * %s.w)) * %s.z;",
|
||||
circleName, fragmentPos, circleName, circleName);
|
||||
}
|
||||
if (GrProcessorEdgeTypeIsAA(ce.getEdgeType())) {
|
||||
fragBuilder->codeAppend("\t\td = clamp(d, 0.0, 1.0);\n");
|
||||
fragBuilder->codeAppend("d = clamp(d, 0.0, 1.0);");
|
||||
} else {
|
||||
fragBuilder->codeAppend("\t\td = d > 0.5 ? 1.0 : 0.0;\n");
|
||||
fragBuilder->codeAppend("d = d > 0.5 ? 1.0 : 0.0;");
|
||||
}
|
||||
|
||||
fragBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
|
||||
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor,
|
||||
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("d")).c_str());
|
||||
}
|
||||
|
||||
@ -276,6 +276,7 @@ protected:
|
||||
|
||||
private:
|
||||
GrGLSLProgramDataManager::UniformHandle fEllipseUniform;
|
||||
GrGLSLProgramDataManager::UniformHandle fScaleUniform;
|
||||
SkPoint fPrevCenter;
|
||||
SkVector fPrevRadii;
|
||||
|
||||
@ -295,39 +296,55 @@ void GLEllipseEffect::emitCode(EmitArgs& args) {
|
||||
kVec4f_GrSLType, kHigh_GrSLPrecision,
|
||||
"ellipse",
|
||||
&ellipseName);
|
||||
// If we're on a device with a "real" mediump then we'll do the distance computation in a space
|
||||
// that is normalized by the larger radius. The scale uniform will be scale, 1/scale. The
|
||||
// inverse squared radii uniform values are already in this normalized space. The center is
|
||||
// not.
|
||||
const char* scaleName = nullptr;
|
||||
if (args.fGLSLCaps->floatPrecisionVaries()) {
|
||||
fScaleUniform = args.fUniformHandler->addUniform(
|
||||
GrGLSLUniformHandler::kFragment_Visibility, kVec2f_GrSLType, kDefault_GrSLPrecision,
|
||||
"scale", &scaleName);
|
||||
}
|
||||
|
||||
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
|
||||
const char* fragmentPos = fragBuilder->fragmentPosition();
|
||||
|
||||
// d is the offset to the ellipse center
|
||||
fragBuilder->codeAppendf("\t\tvec2 d = %s.xy - %s.xy;\n", fragmentPos, ellipseName);
|
||||
fragBuilder->codeAppendf("\t\tvec2 Z = d * %s.zw;\n", ellipseName);
|
||||
fragBuilder->codeAppendf("vec2 d = %s.xy - %s.xy;", fragmentPos, ellipseName);
|
||||
if (scaleName) {
|
||||
fragBuilder->codeAppendf("d *= %s.y;", scaleName);
|
||||
}
|
||||
fragBuilder->codeAppendf("vec2 Z = d * %s.zw;", ellipseName);
|
||||
// implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1.
|
||||
fragBuilder->codeAppend("\t\tfloat implicit = dot(Z, d) - 1.0;\n");
|
||||
fragBuilder->codeAppend("float implicit = dot(Z, d) - 1.0;");
|
||||
// grad_dot is the squared length of the gradient of the implicit.
|
||||
fragBuilder->codeAppendf("\t\tfloat grad_dot = 4.0 * dot(Z, Z);\n");
|
||||
// avoid calling inversesqrt on zero.
|
||||
fragBuilder->codeAppend("\t\tgrad_dot = max(grad_dot, 1.0e-4);\n");
|
||||
fragBuilder->codeAppendf("\t\tfloat approx_dist = implicit * inversesqrt(grad_dot);\n");
|
||||
fragBuilder->codeAppendf("float grad_dot = 4.0 * dot(Z, Z);");
|
||||
// Avoid calling inversesqrt on zero.
|
||||
fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);");
|
||||
fragBuilder->codeAppendf("float approx_dist = implicit * inversesqrt(grad_dot);");
|
||||
if (scaleName) {
|
||||
fragBuilder->codeAppendf("approx_dist *= %s.x;", scaleName);
|
||||
}
|
||||
|
||||
switch (ee.getEdgeType()) {
|
||||
case kFillAA_GrProcessorEdgeType:
|
||||
fragBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 - approx_dist, 0.0, 1.0);\n");
|
||||
fragBuilder->codeAppend("float alpha = clamp(0.5 - approx_dist, 0.0, 1.0);");
|
||||
break;
|
||||
case kInverseFillAA_GrProcessorEdgeType:
|
||||
fragBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 + approx_dist, 0.0, 1.0);\n");
|
||||
fragBuilder->codeAppend("float alpha = clamp(0.5 + approx_dist, 0.0, 1.0);");
|
||||
break;
|
||||
case kFillBW_GrProcessorEdgeType:
|
||||
fragBuilder->codeAppend("\t\tfloat alpha = approx_dist > 0.0 ? 0.0 : 1.0;\n");
|
||||
fragBuilder->codeAppend("float alpha = approx_dist > 0.0 ? 0.0 : 1.0;");
|
||||
break;
|
||||
case kInverseFillBW_GrProcessorEdgeType:
|
||||
fragBuilder->codeAppend("\t\tfloat alpha = approx_dist > 0.0 ? 1.0 : 0.0;\n");
|
||||
fragBuilder->codeAppend("float alpha = approx_dist > 0.0 ? 1.0 : 0.0;");
|
||||
break;
|
||||
case kHairlineAA_GrProcessorEdgeType:
|
||||
SkFAIL("Hairline not expected here.");
|
||||
}
|
||||
|
||||
fragBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
|
||||
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor,
|
||||
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str());
|
||||
}
|
||||
|
||||
@ -341,8 +358,26 @@ void GLEllipseEffect::onSetData(const GrGLSLProgramDataManager& pdman,
|
||||
const GrProcessor& effect) {
|
||||
const EllipseEffect& ee = effect.cast<EllipseEffect>();
|
||||
if (ee.getRadii() != fPrevRadii || ee.getCenter() != fPrevCenter) {
|
||||
SkScalar invRXSqd = 1.f / (ee.getRadii().fX * ee.getRadii().fX);
|
||||
SkScalar invRYSqd = 1.f / (ee.getRadii().fY * ee.getRadii().fY);
|
||||
float invRXSqd;
|
||||
float invRYSqd;
|
||||
// If we're using a scale factor to work around precision issues, choose the larger radius
|
||||
// as the scale factor. The inv radii need to be pre-adjusted by the scale factor.
|
||||
if (fScaleUniform.isValid()) {
|
||||
if (ee.getRadii().fX > ee.getRadii().fY) {
|
||||
invRXSqd = 1.f;
|
||||
invRYSqd = (ee.getRadii().fX * ee.getRadii().fX) /
|
||||
(ee.getRadii().fY * ee.getRadii().fY);
|
||||
pdman.set2f(fScaleUniform, ee.getRadii().fX, 1.f / ee.getRadii().fX);
|
||||
} else {
|
||||
invRXSqd = (ee.getRadii().fY * ee.getRadii().fY) /
|
||||
(ee.getRadii().fX * ee.getRadii().fX);
|
||||
invRYSqd = 1.f;
|
||||
pdman.set2f(fScaleUniform, ee.getRadii().fY, 1.f / ee.getRadii().fY);
|
||||
}
|
||||
} else {
|
||||
invRXSqd = 1.f / (ee.getRadii().fX * ee.getRadii().fX);
|
||||
invRYSqd = 1.f / (ee.getRadii().fY * ee.getRadii().fY);
|
||||
}
|
||||
pdman.set4f(fEllipseUniform, ee.getCenter().fX, ee.getCenter().fY, invRXSqd, invRYSqd);
|
||||
fPrevCenter = ee.getCenter();
|
||||
fPrevRadii = ee.getRadii();
|
||||
|
@ -498,6 +498,7 @@ protected:
|
||||
private:
|
||||
GrGLSLProgramDataManager::UniformHandle fInnerRectUniform;
|
||||
GrGLSLProgramDataManager::UniformHandle fInvRadiiSqdUniform;
|
||||
GrGLSLProgramDataManager::UniformHandle fScaleUniform;
|
||||
SkRRect fPrevRRect;
|
||||
typedef GrGLSLFragmentProcessor INHERITED;
|
||||
};
|
||||
@ -530,55 +531,77 @@ void GLEllipticalRRectEffect::emitCode(EmitArgs& args) {
|
||||
// The code below is a simplified version of the above that performs maxs on the vector
|
||||
// components before computing distances and alpha values so that only one distance computation
|
||||
// need be computed to determine the min alpha.
|
||||
fragBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos);
|
||||
fragBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName);
|
||||
fragBuilder->codeAppendf("vec2 dxy0 = %s.xy - %s.xy;", rectName, fragmentPos);
|
||||
fragBuilder->codeAppendf("vec2 dxy1 = %s.xy - %s.zw;", fragmentPos, rectName);
|
||||
|
||||
// If we're on a device with a "real" mediump then we'll do the distance computation in a space
|
||||
// that is normalized by the largest radius. The scale uniform will be scale, 1/scale. The
|
||||
// radii uniform values are already in this normalized space.
|
||||
const char* scaleName = nullptr;
|
||||
if (args.fGLSLCaps->floatPrecisionVaries()) {
|
||||
fScaleUniform = uniformHandler->addUniform(GrGLSLUniformHandler::kFragment_Visibility,
|
||||
kVec2f_GrSLType, kDefault_GrSLPrecision,
|
||||
"scale", &scaleName);
|
||||
}
|
||||
|
||||
// The uniforms with the inv squared radii are highp to prevent underflow.
|
||||
switch (erre.getRRect().getType()) {
|
||||
case SkRRect::kSimple_Type: {
|
||||
const char *invRadiiXYSqdName;
|
||||
fInvRadiiSqdUniform = uniformHandler->addUniform(
|
||||
GrGLSLUniformHandler::kFragment_Visibility,
|
||||
kVec2f_GrSLType, kHigh_GrSLPrecision,
|
||||
kVec2f_GrSLType, kDefault_GrSLPrecision,
|
||||
"invRadiiXY",
|
||||
&invRadiiXYSqdName);
|
||||
fragBuilder->codeAppend("\t\tvec2 dxy = max(max(dxy0, dxy1), 0.0);\n");
|
||||
fragBuilder->codeAppend("vec2 dxy = max(max(dxy0, dxy1), 0.0);");
|
||||
if (scaleName) {
|
||||
fragBuilder->codeAppendf("dxy *= %s.y;", scaleName);
|
||||
}
|
||||
// Z is the x/y offsets divided by squared radii.
|
||||
fragBuilder->codeAppendf("\t\tvec2 Z = dxy * %s;\n", invRadiiXYSqdName);
|
||||
fragBuilder->codeAppendf("vec2 Z = dxy * %s.xy;", invRadiiXYSqdName);
|
||||
break;
|
||||
}
|
||||
case SkRRect::kNinePatch_Type: {
|
||||
const char *invRadiiLTRBSqdName;
|
||||
fInvRadiiSqdUniform = uniformHandler->addUniform(
|
||||
GrGLSLUniformHandler::kFragment_Visibility,
|
||||
kVec4f_GrSLType, kHigh_GrSLPrecision,
|
||||
kVec4f_GrSLType, kDefault_GrSLPrecision,
|
||||
"invRadiiLTRB",
|
||||
&invRadiiLTRBSqdName);
|
||||
fragBuilder->codeAppend("\t\tvec2 dxy = max(max(dxy0, dxy1), 0.0);\n");
|
||||
if (scaleName) {
|
||||
fragBuilder->codeAppendf("dxy0 *= %s.y;", scaleName);
|
||||
fragBuilder->codeAppendf("dxy1 *= %s.y;", scaleName);
|
||||
}
|
||||
fragBuilder->codeAppend("vec2 dxy = max(max(dxy0, dxy1), 0.0);");
|
||||
// Z is the x/y offsets divided by squared radii. We only care about the (at most) one
|
||||
// corner where both the x and y offsets are positive, hence the maxes. (The inverse
|
||||
// squared radii will always be positive.)
|
||||
fragBuilder->codeAppendf("\t\tvec2 Z = max(max(dxy0 * %s.xy, dxy1 * %s.zw), 0.0);\n",
|
||||
fragBuilder->codeAppendf("vec2 Z = max(max(dxy0 * %s.xy, dxy1 * %s.zw), 0.0);",
|
||||
invRadiiLTRBSqdName, invRadiiLTRBSqdName);
|
||||
|
||||
break;
|
||||
}
|
||||
default:
|
||||
SkFAIL("RRect should always be simple or nine-patch.");
|
||||
}
|
||||
// implicit is the evaluation of (x/a)^2 + (y/b)^2 - 1.
|
||||
fragBuilder->codeAppend("\t\tfloat implicit = dot(Z, dxy) - 1.0;\n");
|
||||
fragBuilder->codeAppend("float implicit = dot(Z, dxy) - 1.0;");
|
||||
// grad_dot is the squared length of the gradient of the implicit.
|
||||
fragBuilder->codeAppendf("\t\tfloat grad_dot = 4.0 * dot(Z, Z);\n");
|
||||
fragBuilder->codeAppend("float grad_dot = 4.0 * dot(Z, Z);");
|
||||
// avoid calling inversesqrt on zero.
|
||||
fragBuilder->codeAppend("\t\tgrad_dot = max(grad_dot, 1.0e-4);\n");
|
||||
fragBuilder->codeAppendf("\t\tfloat approx_dist = implicit * inversesqrt(grad_dot);\n");
|
||||
|
||||
if (kFillAA_GrProcessorEdgeType == erre.getEdgeType()) {
|
||||
fragBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 - approx_dist, 0.0, 1.0);\n");
|
||||
} else {
|
||||
fragBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 + approx_dist, 0.0, 1.0);\n");
|
||||
fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);");
|
||||
fragBuilder->codeAppend("float approx_dist = implicit * inversesqrt(grad_dot);");
|
||||
if (scaleName) {
|
||||
fragBuilder->codeAppendf("approx_dist *= %s.x;", scaleName);
|
||||
}
|
||||
|
||||
fragBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
|
||||
if (kFillAA_GrProcessorEdgeType == erre.getEdgeType()) {
|
||||
fragBuilder->codeAppend("float alpha = clamp(0.5 - approx_dist, 0.0, 1.0);");
|
||||
} else {
|
||||
fragBuilder->codeAppend("float alpha = clamp(0.5 + approx_dist, 0.0, 1.0);");
|
||||
}
|
||||
|
||||
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor,
|
||||
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str());
|
||||
}
|
||||
|
||||
@ -593,6 +616,8 @@ void GLEllipticalRRectEffect::onSetData(const GrGLSLProgramDataManager& pdman,
|
||||
const GrProcessor& effect) {
|
||||
const EllipticalRRectEffect& erre = effect.cast<EllipticalRRectEffect>();
|
||||
const SkRRect& rrect = erre.getRRect();
|
||||
// If we're using a scale factor to work around precision issues, choose the largest radius
|
||||
// as the scale factor. The inv radii need to be pre-adjusted by the scale factor.
|
||||
if (rrect != fPrevRRect) {
|
||||
SkRect rect = rrect.getBounds();
|
||||
const SkVector& r0 = rrect.radii(SkRRect::kUpperLeft_Corner);
|
||||
@ -601,8 +626,18 @@ void GLEllipticalRRectEffect::onSetData(const GrGLSLProgramDataManager& pdman,
|
||||
switch (erre.getRRect().getType()) {
|
||||
case SkRRect::kSimple_Type:
|
||||
rect.inset(r0.fX, r0.fY);
|
||||
if (fScaleUniform.isValid()) {
|
||||
if (r0.fX > r0.fY) {
|
||||
pdman.set2f(fInvRadiiSqdUniform, 1.f, (r0.fX * r0.fX) / (r0.fY * r0.fY));
|
||||
pdman.set2f(fScaleUniform, r0.fX, 1.f / r0.fX);
|
||||
} else {
|
||||
pdman.set2f(fInvRadiiSqdUniform, (r0.fY * r0.fY) / (r0.fX * r0.fX), 1.f);
|
||||
pdman.set2f(fScaleUniform, r0.fY, 1.f / r0.fY);
|
||||
}
|
||||
} else {
|
||||
pdman.set2f(fInvRadiiSqdUniform, 1.f / (r0.fX * r0.fX),
|
||||
1.f / (r0.fY * r0.fY));
|
||||
}
|
||||
break;
|
||||
case SkRRect::kNinePatch_Type: {
|
||||
const SkVector& r1 = rrect.radii(SkRRect::kLowerRight_Corner);
|
||||
@ -612,10 +647,20 @@ void GLEllipticalRRectEffect::onSetData(const GrGLSLProgramDataManager& pdman,
|
||||
rect.fTop += r0.fY;
|
||||
rect.fRight -= r1.fX;
|
||||
rect.fBottom -= r1.fY;
|
||||
if (fScaleUniform.isValid()) {
|
||||
float scale = SkTMax(SkTMax(r0.fX, r0.fY), SkTMax(r1.fX, r1.fY));
|
||||
float scaleSqd = scale * scale;
|
||||
pdman.set4f(fInvRadiiSqdUniform, scaleSqd / (r0.fX * r0.fX),
|
||||
scaleSqd / (r0.fY * r0.fY),
|
||||
scaleSqd / (r1.fX * r1.fX),
|
||||
scaleSqd / (r1.fY * r1.fY));
|
||||
pdman.set2f(fScaleUniform, scale, 1.f / scale);
|
||||
} else {
|
||||
pdman.set4f(fInvRadiiSqdUniform, 1.f / (r0.fX * r0.fX),
|
||||
1.f / (r0.fY * r0.fY),
|
||||
1.f / (r1.fX * r1.fX),
|
||||
1.f / (r1.fY * r1.fY));
|
||||
}
|
||||
break;
|
||||
}
|
||||
default:
|
||||
|
Loading…
Reference in New Issue
Block a user