Roll skia/third_party/skcms 5cbdc0a..011b614 (1 commits)

https://skia.googlesource.com/skcms.git/+log/5cbdc0a..011b614

2018-04-24 mtklein@chromium.org gut TF13


The AutoRoll server is located here: https://skcms-skia-roll.skia.org

Documentation for the AutoRoller is here:
https://skia.googlesource.com/buildbot/+/master/autoroll/README.md

If the roll is causing failures, please contact the current sheriff, who should
be CC'd on the roll, and stop the roller if necessary.



TBR=stani@google.com

Change-Id: I87e281fc5ac75f11acdcf7d4621d6635836b7a67
Reviewed-on: https://skia-review.googlesource.com/123393
Reviewed-by: skcms-skia-autoroll <skcms-skia-autoroll@skia-buildbots.google.com.iam.gserviceaccount.com>
Commit-Queue: skcms-skia-autoroll <skcms-skia-autoroll@skia-buildbots.google.com.iam.gserviceaccount.com>
This commit is contained in:
skcms-skia-autoroll@skia-buildbots.google.com.iam.gserviceaccount.com 2018-04-24 15:20:32 +00:00 committed by Skia Commit-Bot
parent 738a25645d
commit eb43fdaaf8
8 changed files with 3 additions and 130 deletions

View File

@ -11,6 +11,5 @@
#include "src/ICCProfile.c"
#include "src/LinearAlgebra.c"
#include "src/PortableMath.c"
#include "src/TF13.c"
#include "src/TransferFunction.c"
#include "src/Transform.c"

View File

@ -73,12 +73,6 @@ typedef struct skcms_A2B {
skcms_Curve output_curves[3];
} skcms_A2B;
// A specialized approximation for transfer functions with gamma between 1 and 3.
// f(x) = sign(x) * (A|x|^3 + B|x|^2 + (1-A-B)|x|)
typedef struct skcms_TF13 {
float A,B;
} skcms_TF13;
typedef struct skcms_ICCProfile {
const uint8_t* buffer;
@ -103,10 +97,6 @@ typedef struct skcms_ICCProfile {
// and has_A2B to true.
bool has_A2B;
skcms_A2B A2B;
// If has_trc, we may be able to approximate the curves more efficiently.
bool has_tf13[3];
skcms_TF13 tf13[3];
} skcms_ICCProfile;
// The sRGB color profile is so commonly used that we offer a canonical skcms_ICCProfile for it.
@ -131,8 +121,6 @@ void skcms_OptimizeForSpeed(skcms_ICCProfile*);
bool skcms_ApproximateCurve(const skcms_Curve* curve, skcms_TransferFunction* approx,
float* max_error);
bool skcms_ApproximateCurve13(const skcms_Curve* curve, skcms_TF13* approx, float* max_error);
// What is the best single transfer function to use for the given profile? Note that there is
// no real upper bound on the error of this transfer function.
skcms_TransferFunction skcms_BestSingleCurve(const skcms_ICCProfile*);

View File

@ -782,11 +782,8 @@ bool skcms_Parse(const void* buf, size_t len, skcms_ICCProfile* profile) {
}
void skcms_OptimizeForSpeed(skcms_ICCProfile* profile) {
// If we can approximate any of the TRC curves with a skcms_TF13, do so.
for (int i = 0; profile->has_trc && i < 3; i++) {
float err;
profile->has_tf13[i] = skcms_ApproximateCurve13(&profile->trc[i], &profile->tf13[i], &err);
}
(void)profile;
// TODO
}
const skcms_ICCProfile skcms_sRGB_profile = {

View File

@ -1,88 +0,0 @@
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "../skcms.h"
#include "GaussNewton.h"
#include "PortableMath.h"
#include <assert.h>
#include <limits.h>
#include <stdlib.h>
// Evaluating skcms_TF13{A,B} at x:
// f(x) = Ax^3 + Bx^2 + (1-A-B)x
//
// ∂f/∂A = x^3 - x
// ∂f/∂B = x^2 - x
static float eval_13(float x, const void* ctx, const float P[4]) {
(void)ctx;
return x*(x*(x*P[0] + P[1]) + (1 - P[0] - P[1]));
}
static void grad_13(float x, const void* ctx, const float P[4], float dfdP[4]) {
(void)ctx;
(void)P;
dfdP[0] = x*(x*x - 1);
dfdP[1] = x*(x - 1);
}
bool skcms_ApproximateCurve13(const skcms_Curve* curve, skcms_TF13* approx, float* max_error) {
// Start a guess at skcms_TF13{0,1}, i.e. f(x) = x^2, i.e. gamma = 2.
// TODO: guess better somehow, like we do in skcms_ApproximateCurve()?
float P[4] = { 0,1, 0,0 };
if (curve->table_entries > (uint32_t)INT_MAX) {
// That's just crazy.
return false;
}
const int N = curve->table_entries == 0 ? 257 /*TODO: tune?*/
: (int)curve->table_entries;
for (int i = 0; i < 3/*TODO: Tune???*/; i++) {
if (!skcms_gauss_newton_step(skcms_eval_curve, curve,
eval_13, NULL,
grad_13, NULL,
P,
0,1,N)) {
return false;
}
}
*max_error = 0;
for (int i = 0; i < N; i++) {
float x = i * (1.0f / (N-1));
const float got = eval_13(x,NULL,P),
want = skcms_eval_curve(x, curve);
const float err = fabsf_(got - want);
if (err > *max_error) {
*max_error = err;
}
assert( isfinitef_(want) );
if (!isfinitef_(got)) {
return false;
}
// Compare what bytes we'd choose for these floats, rounded, and scaled by 255,
// but intentionally not clamped... if this goes negative, we want it to hurt.
const int gbyte = (int)(255.0f * got + 0.5f),
wbyte = (int)(255.0f * want + 0.5f);
// Allow no more than 1/256 error, and no error at all at the beginning or end.
const int tol = (i == 0 || i == N-1) ? 0
: 1;
if (abs(gbyte - wbyte) > tol) {
return false;
}
}
approx->A = P[0];
approx->B = P[1];
return true;
}

View File

@ -320,11 +320,6 @@ typedef struct {
const void* arg;
} OpAndArg;
static OpAndArg select_tf13_op(const skcms_TF13* tf, int channel) {
static const Op ops[] = { Op_tf13_r, Op_tf13_g, Op_tf13_b };
return (OpAndArg){ ops[channel], tf };
}
static OpAndArg select_curve_op(const skcms_Curve* curve, int channel) {
static const struct { Op parametric, table_8, table_16; } ops[] = {
{ Op_tf_r, Op_table_8_r, Op_table_16_r },
@ -524,13 +519,8 @@ bool skcms_Transform(const void* src,
} else if (srcProfile->has_trc && srcProfile->has_toXYZD50) {
for (int i = 0; i < 3; i++) {
// Favor Op_noop (identity curve) over anything else,
// and select_tf_op() over over select_curve_op() when possible.
OpAndArg oa = select_curve_op(&srcProfile->trc[i], i);
if (oa.op != Op_noop) {
if (srcProfile->has_tf13[i]) {
oa = select_tf13_op(&srcProfile->tf13[i], i);
}
*ops++ = oa.op;
*args++ = oa.arg;
}

View File

@ -34,9 +34,6 @@
M(tf_g) \
M(tf_b) \
M(tf_a) \
M(tf13_r) \
M(tf13_g) \
M(tf13_b) \
M(table_8_r) \
M(table_8_g) \
M(table_8_b) \

View File

@ -246,12 +246,6 @@ SI ATTR F NS(apply_transfer_function_)(const skcms_TransferFunction* tf, F x) {
}
#define apply_transfer_function NS(apply_transfer_function_)
SI ATTR F NS(apply_tf13_)(const skcms_TF13* tf, F x) {
F sign = (F)if_then_else(x < 0, -F1, F1);
return x*(x*(x*tf->A + sign*tf->B) + (1 - tf->A - tf->B) );
}
#define apply_tf13 NS(apply_tf13_)
// Strided loads and stores of N values, starting from p.
#if N == 1
#define LOAD_3(T, p) (T)(p)[0]
@ -853,10 +847,6 @@ static void NS(exec_ops)(const Op* ops, const void** args,
case Op_tf_b:{ b = apply_transfer_function(*args++, b); } break;
case Op_tf_a:{ a = apply_transfer_function(*args++, a); } break;
case Op_tf13_r:{ r = apply_tf13(*args++, r); } break;
case Op_tf13_g:{ g = apply_tf13(*args++, g); } break;
case Op_tf13_b:{ b = apply_tf13(*args++, b); } break;
case Op_table_8_r: { r = NS(table_8_ )(*args++, r); } break;
case Op_table_8_g: { g = NS(table_8_ )(*args++, g); } break;
case Op_table_8_b: { b = NS(table_8_ )(*args++, b); } break;

View File

@ -1 +1 @@
5cbdc0acf72bc4031f409516fbeb50e254ba638b
011b61429dcc624f7e9a2d6fd39a3dbfb92c40a9