move SFDot6 inverse table into SkAnalyticEdge

The 8K table in SkFDot6Constants.cpp is only used by SkAnalyticEdge and
its unit test, so to help LTO trim this when SkAnalyticEdge isn't used,
move it to SkAnalyticEdge.cpp and delete the unit test.  (I suspect the
table is never going to change.)

I've also moved setLine() out-of-line into SkAnalyticEdge.cpp to make
this work, and done a little bit of refactoring and renaming.

Change-Id: If1d234f387d100dd58d8860dccac000e5493a2c1
Reviewed-on: https://skia-review.googlesource.com/c/164182
Reviewed-by: Mike Reed <reed@google.com>
Commit-Queue: Mike Klein <mtklein@google.com>
This commit is contained in:
Mike Klein 2018-10-22 10:22:13 -04:00 committed by Skia Commit-Bot
parent 9f56c2d576
commit f2526331b4
8 changed files with 273 additions and 344 deletions

View File

@ -117,8 +117,6 @@ skia_core_sources = [
"$_src/core/SkEndian.h", "$_src/core/SkEndian.h",
"$_src/core/SkExecutor.cpp", "$_src/core/SkExecutor.cpp",
"$_src/core/SkAnalyticEdge.cpp", "$_src/core/SkAnalyticEdge.cpp",
"$_src/core/SkFDot6Constants.h",
"$_src/core/SkFDot6Constants.cpp",
"$_src/core/SkEdge.cpp", "$_src/core/SkEdge.cpp",
"$_src/core/SkEdge.h", "$_src/core/SkEdge.h",
"$_src/core/SkFDot6.h", "$_src/core/SkFDot6.h",

View File

@ -6,13 +6,277 @@
*/ */
#include "SkAnalyticEdge.h" #include "SkAnalyticEdge.h"
#include "SkFDot6.h" #include "SkFDot6.h"
#include "SkMathPriv.h" #include "SkMathPriv.h"
#include "SkTo.h" #include "SkTo.h"
#include <utility> #include <utility>
static const int kInverseTableSize = 1024; // SK_FDot6One * 16
static inline SkFixed quick_inverse(SkFDot6 x) {
SkASSERT(SkAbs32(x) < kInverseTableSize);
static const int32_t table[kInverseTableSize * 2] = {
-4096, -4100, -4104, -4108, -4112, -4116, -4120, -4124, -4128, -4132, -4136,
-4140, -4144, -4148, -4152, -4156, -4161, -4165, -4169, -4173, -4177, -4181,
-4185, -4190, -4194, -4198, -4202, -4206, -4211, -4215, -4219, -4223, -4228,
-4232, -4236, -4240, -4245, -4249, -4253, -4258, -4262, -4266, -4271, -4275,
-4279, -4284, -4288, -4293, -4297, -4301, -4306, -4310, -4315, -4319, -4324,
-4328, -4332, -4337, -4341, -4346, -4350, -4355, -4359, -4364, -4369, -4373,
-4378, -4382, -4387, -4391, -4396, -4401, -4405, -4410, -4415, -4419, -4424,
-4429, -4433, -4438, -4443, -4447, -4452, -4457, -4462, -4466, -4471, -4476,
-4481, -4485, -4490, -4495, -4500, -4505, -4510, -4514, -4519, -4524, -4529,
-4534, -4539, -4544, -4549, -4554, -4559, -4563, -4568, -4573, -4578, -4583,
-4588, -4593, -4599, -4604, -4609, -4614, -4619, -4624, -4629, -4634, -4639,
-4644, -4650, -4655, -4660, -4665, -4670, -4675, -4681, -4686, -4691, -4696,
-4702, -4707, -4712, -4718, -4723, -4728, -4733, -4739, -4744, -4750, -4755,
-4760, -4766, -4771, -4777, -4782, -4788, -4793, -4798, -4804, -4809, -4815,
-4821, -4826, -4832, -4837, -4843, -4848, -4854, -4860, -4865, -4871, -4877,
-4882, -4888, -4894, -4899, -4905, -4911, -4917, -4922, -4928, -4934, -4940,
-4946, -4951, -4957, -4963, -4969, -4975, -4981, -4987, -4993, -4999, -5005,
-5011, -5017, -5023, -5029, -5035, -5041, -5047, -5053, -5059, -5065, -5071,
-5077, -5084, -5090, -5096, -5102, -5108, -5115, -5121, -5127, -5133, -5140,
-5146, -5152, -5159, -5165, -5171, -5178, -5184, -5190, -5197, -5203, -5210,
-5216, -5223, -5229, -5236, -5242, -5249, -5256, -5262, -5269, -5275, -5282,
-5289, -5295, -5302, -5309, -5315, -5322, -5329, -5336, -5343, -5349, -5356,
-5363, -5370, -5377, -5384, -5391, -5398, -5405, -5412, -5418, -5426, -5433,
-5440, -5447, -5454, -5461, -5468, -5475, -5482, -5489, -5497, -5504, -5511,
-5518, -5526, -5533, -5540, -5548, -5555, -5562, -5570, -5577, -5584, -5592,
-5599, -5607, -5614, -5622, -5629, -5637, -5645, -5652, -5660, -5667, -5675,
-5683, -5691, -5698, -5706, -5714, -5722, -5729, -5737, -5745, -5753, -5761,
-5769, -5777, -5785, -5793, -5801, -5809, -5817, -5825, -5833, -5841, -5849,
-5857, -5866, -5874, -5882, -5890, -5899, -5907, -5915, -5924, -5932, -5940,
-5949, -5957, -5966, -5974, -5983, -5991, -6000, -6009, -6017, -6026, -6034,
-6043, -6052, -6061, -6069, -6078, -6087, -6096, -6105, -6114, -6123, -6132,
-6141, -6150, -6159, -6168, -6177, -6186, -6195, -6204, -6213, -6223, -6232,
-6241, -6250, -6260, -6269, -6278, -6288, -6297, -6307, -6316, -6326, -6335,
-6345, -6355, -6364, -6374, -6384, -6393, -6403, -6413, -6423, -6432, -6442,
-6452, -6462, -6472, -6482, -6492, -6502, -6512, -6523, -6533, -6543, -6553,
-6563, -6574, -6584, -6594, -6605, -6615, -6626, -6636, -6647, -6657, -6668,
-6678, -6689, -6700, -6710, -6721, -6732, -6743, -6754, -6765, -6775, -6786,
-6797, -6808, -6820, -6831, -6842, -6853, -6864, -6875, -6887, -6898, -6909,
-6921, -6932, -6944, -6955, -6967, -6978, -6990, -7002, -7013, -7025, -7037,
-7049, -7061, -7073, -7084, -7096, -7108, -7121, -7133, -7145, -7157, -7169,
-7182, -7194, -7206, -7219, -7231, -7244, -7256, -7269, -7281, -7294, -7307,
-7319, -7332, -7345, -7358, -7371, -7384, -7397, -7410, -7423, -7436, -7449,
-7463, -7476, -7489, -7503, -7516, -7530, -7543, -7557, -7570, -7584, -7598,
-7612, -7626, -7639, -7653, -7667, -7681, -7695, -7710, -7724, -7738, -7752,
-7767, -7781, -7796, -7810, -7825, -7839, -7854, -7869, -7884, -7898, -7913,
-7928, -7943, -7958, -7973, -7989, -8004, -8019, -8035, -8050, -8065, -8081,
-8097, -8112, -8128, -8144, -8160, -8176, -8192, -8208, -8224, -8240, -8256,
-8272, -8289, -8305, -8322, -8338, -8355, -8371, -8388, -8405, -8422, -8439,
-8456, -8473, -8490, -8507, -8525, -8542, -8559, -8577, -8594, -8612, -8630,
-8648, -8665, -8683, -8701, -8719, -8738, -8756, -8774, -8793, -8811, -8830,
-8848, -8867, -8886, -8905, -8924, -8943, -8962, -8981, -9000, -9020, -9039,
-9058, -9078, -9098, -9118, -9137, -9157, -9177, -9198, -9218, -9238, -9258,
-9279, -9300, -9320, -9341, -9362, -9383, -9404, -9425, -9446, -9467, -9489,
-9510, -9532, -9554, -9576, -9597, -9619, -9642, -9664, -9686, -9709, -9731,
-9754, -9776, -9799, -9822, -9845, -9868, -9892, -9915, -9939, -9962, -9986,
-10010, -10034, -10058, -10082, -10106, -10131, -10155, -10180, -10205, -10230,
-10255, -10280, -10305, -10330, -10356, -10381, -10407, -10433, -10459, -10485,
-10512, -10538, -10564, -10591, -10618, -10645, -10672, -10699, -10727, -10754,
-10782, -10810, -10837, -10866, -10894, -10922, -10951, -10979, -11008, -11037,
-11066, -11096, -11125, -11155, -11184, -11214, -11244, -11275, -11305, -11335,
-11366, -11397, -11428, -11459, -11491, -11522, -11554, -11586, -11618, -11650,
-11683, -11715, -11748, -11781, -11814, -11848, -11881, -11915, -11949, -11983,
-12018, -12052, -12087, -12122, -12157, -12192, -12228, -12264, -12300, -12336,
-12372, -12409, -12446, -12483, -12520, -12557, -12595, -12633, -12671, -12710,
-12748, -12787, -12826, -12865, -12905, -12945, -12985, -13025, -13066, -13107,
-13148, -13189, -13231, -13273, -13315, -13357, -13400, -13443, -13486, -13530,
-13573, -13617, -13662, -13706, -13751, -13797, -13842, -13888, -13934, -13981,
-14027, -14074, -14122, -14169, -14217, -14266, -14315, -14364, -14413, -14463,
-14513, -14563, -14614, -14665, -14716, -14768, -14820, -14873, -14926, -14979,
-15033, -15087, -15141, -15196, -15252, -15307, -15363, -15420, -15477, -15534,
-15592, -15650, -15709, -15768, -15827, -15887, -15947, -16008, -16070, -16131,
-16194, -16256, -16320, -16384, -16448, -16513, -16578, -16644, -16710, -16777,
-16844, -16912, -16980, -17050, -17119, -17189, -17260, -17331, -17403, -17476,
-17549, -17623, -17697, -17772, -17848, -17924, -18001, -18078, -18157, -18236,
-18315, -18396, -18477, -18558, -18641, -18724, -18808, -18893, -18978, -19065,
-19152, -19239, -19328, -19418, -19508, -19599, -19691, -19784, -19878, -19972,
-20068, -20164, -20262, -20360, -20460, -20560, -20661, -20763, -20867, -20971,
-21076, -21183, -21290, -21399, -21509, -21620, -21732, -21845, -21959, -22075,
-22192, -22310, -22429, -22550, -22671, -22795, -22919, -23045, -23172, -23301,
-23431, -23563, -23696, -23831, -23967, -24105, -24244, -24385, -24528, -24672,
-24818, -24966, -25115, -25266, -25420, -25575, -25731, -25890, -26051, -26214,
-26379, -26546, -26715, -26886, -27060, -27235, -27413, -27594, -27776, -27962,
-28149, -28339, -28532, -28728, -28926, -29127, -29330, -29537, -29746, -29959,
-30174, -30393, -30615, -30840, -31068, -31300, -31536, -31775, -32017, -32263,
-32513, -32768, -33026, -33288, -33554, -33825, -34100, -34379, -34663, -34952,
-35246, -35544, -35848, -36157, -36472, -36792, -37117, -37449, -37786, -38130,
-38479, -38836, -39199, -39568, -39945, -40329, -40721, -41120, -41527, -41943,
-42366, -42799, -43240, -43690, -44150, -44620, -45100, -45590, -46091, -46603,
-47127, -47662, -48210, -48770, -49344, -49932, -50533, -51150, -51781, -52428,
-53092, -53773, -54471, -55188, -55924, -56679, -57456, -58254, -59074, -59918,
-60787, -61680, -62601, -63550, -64527, -65536, -66576, -67650, -68759, -69905,
-71089, -72315, -73584, -74898, -76260, -77672, -79137, -80659, -82241, -83886,
-85598, -87381, -89240, -91180, -93206, -95325, -97541, -99864, -102300,
-104857, -107546, -110376, -113359, -116508, -119837, -123361, -127100, -131072,
-135300, -139810, -144631, -149796, -155344, -161319, -167772, -174762, -182361,
-190650, -199728, -209715, -220752, -233016, -246723, -262144, -279620, -299593,
-322638, -349525, -381300, -419430, -466033, -524288, -599186, -699050, -838860,
-1048576, -1398101, -2097152, -4194304, 0, 4194304, 2097152, 1398101, 1048576,
838860, 699050, 599186, 524288, 466033, 419430, 381300, 349525, 322638, 299593,
279620, 262144, 246723, 233016, 220752, 209715, 199728, 190650, 182361, 174762,
167772, 161319, 155344, 149796, 144631, 139810, 135300, 131072, 127100, 123361,
119837, 116508, 113359, 110376, 107546, 104857, 102300, 99864, 97541, 95325,
93206, 91180, 89240, 87381, 85598, 83886, 82241, 80659, 79137, 77672, 76260,
74898, 73584, 72315, 71089, 69905, 68759, 67650, 66576, 65536, 64527, 63550,
62601, 61680, 60787, 59918, 59074, 58254, 57456, 56679, 55924, 55188, 54471,
53773, 53092, 52428, 51781, 51150, 50533, 49932, 49344, 48770, 48210, 47662,
47127, 46603, 46091, 45590, 45100, 44620, 44150, 43690, 43240, 42799, 42366,
41943, 41527, 41120, 40721, 40329, 39945, 39568, 39199, 38836, 38479, 38130,
37786, 37449, 37117, 36792, 36472, 36157, 35848, 35544, 35246, 34952, 34663,
34379, 34100, 33825, 33554, 33288, 33026, 32768, 32513, 32263, 32017, 31775,
31536, 31300, 31068, 30840, 30615, 30393, 30174, 29959, 29746, 29537, 29330,
29127, 28926, 28728, 28532, 28339, 28149, 27962, 27776, 27594, 27413, 27235,
27060, 26886, 26715, 26546, 26379, 26214, 26051, 25890, 25731, 25575, 25420,
25266, 25115, 24966, 24818, 24672, 24528, 24385, 24244, 24105, 23967, 23831,
23696, 23563, 23431, 23301, 23172, 23045, 22919, 22795, 22671, 22550, 22429,
22310, 22192, 22075, 21959, 21845, 21732, 21620, 21509, 21399, 21290, 21183,
21076, 20971, 20867, 20763, 20661, 20560, 20460, 20360, 20262, 20164, 20068,
19972, 19878, 19784, 19691, 19599, 19508, 19418, 19328, 19239, 19152, 19065,
18978, 18893, 18808, 18724, 18641, 18558, 18477, 18396, 18315, 18236, 18157,
18078, 18001, 17924, 17848, 17772, 17697, 17623, 17549, 17476, 17403, 17331,
17260, 17189, 17119, 17050, 16980, 16912, 16844, 16777, 16710, 16644, 16578,
16513, 16448, 16384, 16320, 16256, 16194, 16131, 16070, 16008, 15947, 15887,
15827, 15768, 15709, 15650, 15592, 15534, 15477, 15420, 15363, 15307, 15252,
15196, 15141, 15087, 15033, 14979, 14926, 14873, 14820, 14768, 14716, 14665,
14614, 14563, 14513, 14463, 14413, 14364, 14315, 14266, 14217, 14169, 14122,
14074, 14027, 13981, 13934, 13888, 13842, 13797, 13751, 13706, 13662, 13617,
13573, 13530, 13486, 13443, 13400, 13357, 13315, 13273, 13231, 13189, 13148,
13107, 13066, 13025, 12985, 12945, 12905, 12865, 12826, 12787, 12748, 12710,
12671, 12633, 12595, 12557, 12520, 12483, 12446, 12409, 12372, 12336, 12300,
12264, 12228, 12192, 12157, 12122, 12087, 12052, 12018, 11983, 11949, 11915,
11881, 11848, 11814, 11781, 11748, 11715, 11683, 11650, 11618, 11586, 11554,
11522, 11491, 11459, 11428, 11397, 11366, 11335, 11305, 11275, 11244, 11214,
11184, 11155, 11125, 11096, 11066, 11037, 11008, 10979, 10951, 10922, 10894,
10866, 10837, 10810, 10782, 10754, 10727, 10699, 10672, 10645, 10618, 10591,
10564, 10538, 10512, 10485, 10459, 10433, 10407, 10381, 10356, 10330, 10305,
10280, 10255, 10230, 10205, 10180, 10155, 10131, 10106, 10082, 10058, 10034,
10010, 9986, 9962, 9939, 9915, 9892, 9868, 9845, 9822, 9799, 9776, 9754, 9731,
9709, 9686, 9664, 9642, 9619, 9597, 9576, 9554, 9532, 9510, 9489, 9467, 9446,
9425, 9404, 9383, 9362, 9341, 9320, 9300, 9279, 9258, 9238, 9218, 9198, 9177,
9157, 9137, 9118, 9098, 9078, 9058, 9039, 9020, 9000, 8981, 8962, 8943, 8924,
8905, 8886, 8867, 8848, 8830, 8811, 8793, 8774, 8756, 8738, 8719, 8701, 8683,
8665, 8648, 8630, 8612, 8594, 8577, 8559, 8542, 8525, 8507, 8490, 8473, 8456,
8439, 8422, 8405, 8388, 8371, 8355, 8338, 8322, 8305, 8289, 8272, 8256, 8240,
8224, 8208, 8192, 8176, 8160, 8144, 8128, 8112, 8097, 8081, 8065, 8050, 8035,
8019, 8004, 7989, 7973, 7958, 7943, 7928, 7913, 7898, 7884, 7869, 7854, 7839,
7825, 7810, 7796, 7781, 7767, 7752, 7738, 7724, 7710, 7695, 7681, 7667, 7653,
7639, 7626, 7612, 7598, 7584, 7570, 7557, 7543, 7530, 7516, 7503, 7489, 7476,
7463, 7449, 7436, 7423, 7410, 7397, 7384, 7371, 7358, 7345, 7332, 7319, 7307,
7294, 7281, 7269, 7256, 7244, 7231, 7219, 7206, 7194, 7182, 7169, 7157, 7145,
7133, 7121, 7108, 7096, 7084, 7073, 7061, 7049, 7037, 7025, 7013, 7002, 6990,
6978, 6967, 6955, 6944, 6932, 6921, 6909, 6898, 6887, 6875, 6864, 6853, 6842,
6831, 6820, 6808, 6797, 6786, 6775, 6765, 6754, 6743, 6732, 6721, 6710, 6700,
6689, 6678, 6668, 6657, 6647, 6636, 6626, 6615, 6605, 6594, 6584, 6574, 6563,
6553, 6543, 6533, 6523, 6512, 6502, 6492, 6482, 6472, 6462, 6452, 6442, 6432,
6423, 6413, 6403, 6393, 6384, 6374, 6364, 6355, 6345, 6335, 6326, 6316, 6307,
6297, 6288, 6278, 6269, 6260, 6250, 6241, 6232, 6223, 6213, 6204, 6195, 6186,
6177, 6168, 6159, 6150, 6141, 6132, 6123, 6114, 6105, 6096, 6087, 6078, 6069,
6061, 6052, 6043, 6034, 6026, 6017, 6009, 6000, 5991, 5983, 5974, 5966, 5957,
5949, 5940, 5932, 5924, 5915, 5907, 5899, 5890, 5882, 5874, 5866, 5857, 5849,
5841, 5833, 5825, 5817, 5809, 5801, 5793, 5785, 5777, 5769, 5761, 5753, 5745,
5737, 5729, 5722, 5714, 5706, 5698, 5691, 5683, 5675, 5667, 5660, 5652, 5645,
5637, 5629, 5622, 5614, 5607, 5599, 5592, 5584, 5577, 5570, 5562, 5555, 5548,
5540, 5533, 5526, 5518, 5511, 5504, 5497, 5489, 5482, 5475, 5468, 5461, 5454,
5447, 5440, 5433, 5426, 5418, 5412, 5405, 5398, 5391, 5384, 5377, 5370, 5363,
5356, 5349, 5343, 5336, 5329, 5322, 5315, 5309, 5302, 5295, 5289, 5282, 5275,
5269, 5262, 5256, 5249, 5242, 5236, 5229, 5223, 5216, 5210, 5203, 5197, 5190,
5184, 5178, 5171, 5165, 5159, 5152, 5146, 5140, 5133, 5127, 5121, 5115, 5108,
5102, 5096, 5090, 5084, 5077, 5071, 5065, 5059, 5053, 5047, 5041, 5035, 5029,
5023, 5017, 5011, 5005, 4999, 4993, 4987, 4981, 4975, 4969, 4963, 4957, 4951,
4946, 4940, 4934, 4928, 4922, 4917, 4911, 4905, 4899, 4894, 4888, 4882, 4877,
4871, 4865, 4860, 4854, 4848, 4843, 4837, 4832, 4826, 4821, 4815, 4809, 4804,
4798, 4793, 4788, 4782, 4777, 4771, 4766, 4760, 4755, 4750, 4744, 4739, 4733,
4728, 4723, 4718, 4712, 4707, 4702, 4696, 4691, 4686, 4681, 4675, 4670, 4665,
4660, 4655, 4650, 4644, 4639, 4634, 4629, 4624, 4619, 4614, 4609, 4604, 4599,
4593, 4588, 4583, 4578, 4573, 4568, 4563, 4559, 4554, 4549, 4544, 4539, 4534,
4529, 4524, 4519, 4514, 4510, 4505, 4500, 4495, 4490, 4485, 4481, 4476, 4471,
4466, 4462, 4457, 4452, 4447, 4443, 4438, 4433, 4429, 4424, 4419, 4415, 4410,
4405, 4401, 4396, 4391, 4387, 4382, 4378, 4373, 4369, 4364, 4359, 4355, 4350,
4346, 4341, 4337, 4332, 4328, 4324, 4319, 4315, 4310, 4306, 4301, 4297, 4293,
4288, 4284, 4279, 4275, 4271, 4266, 4262, 4258, 4253, 4249, 4245, 4240, 4236,
4232, 4228, 4223, 4219, 4215, 4211, 4206, 4202, 4198, 4194, 4190, 4185, 4181,
4177, 4173, 4169, 4165, 4161, 4156, 4152, 4148, 4144, 4140, 4136, 4132, 4128,
4124, 4120, 4116, 4112, 4108, 4104, 4100
};
return table[kInverseTableSize + x];
}
static inline SkFixed quick_div(SkFDot6 a, SkFDot6 b) {
const int kMinBits = 3; // abs(b) should be at least (1 << kMinBits) for quick division
const int kMaxBits = 31; // Number of bits available in signed int
// Given abs(b) <= (1 << kMinBits), the inverse of abs(b) is at most 1 << (22 - kMinBits) in
// SkFixed format. Hence abs(a) should be less than kMaxAbsA
const int kMaxAbsA = 1 << (kMaxBits - (22 - kMinBits));
SkFDot6 abs_a = SkAbs32(a);
SkFDot6 abs_b = SkAbs32(b);
if (abs_b >= (1 << kMinBits) && abs_b < kInverseTableSize && abs_a < kMaxAbsA) {
SkASSERT((int64_t)a * quick_inverse(b) <= SK_MaxS32
&& (int64_t)a * quick_inverse(b) >= SK_MinS32);
SkFixed ourAnswer = (a * quick_inverse(b)) >> 6;
SkASSERT(
(SkFDot6Div(a,b) == 0 && ourAnswer == 0) ||
SkFixedDiv(SkAbs32(SkFDot6Div(a,b) - ourAnswer), SkAbs32(SkFDot6Div(a,b))) <= 1 << 10
);
return ourAnswer;
}
return SkFDot6Div(a, b);
}
bool SkAnalyticEdge::setLine(const SkPoint& p0, const SkPoint& p1) {
fRiteE = nullptr;
// We must set X/Y using the same way (e.g., times 4, to FDot6, then to Fixed) as Quads/Cubics.
// Otherwise the order of the edge might be wrong due to precision limit.
const int accuracy = kDefaultAccuracy;
#ifdef SK_RASTERIZE_EVEN_ROUNDING
SkFixed x0 = SkFDot6ToFixed(SkScalarRoundToFDot6(p0.fX, accuracy)) >> accuracy;
SkFixed y0 = SnapY(SkFDot6ToFixed(SkScalarRoundToFDot6(p0.fY, accuracy)) >> accuracy);
SkFixed x1 = SkFDot6ToFixed(SkScalarRoundToFDot6(p1.fX, accuracy)) >> accuracy;
SkFixed y1 = SnapY(SkFDot6ToFixed(SkScalarRoundToFDot6(p1.fY, accuracy)) >> accuracy);
#else
const int multiplier = (1 << kDefaultAccuracy);
SkFixed x0 = SkFDot6ToFixed(SkScalarToFDot6(p0.fX * multiplier)) >> accuracy;
SkFixed y0 = SnapY(SkFDot6ToFixed(SkScalarToFDot6(p0.fY * multiplier)) >> accuracy);
SkFixed x1 = SkFDot6ToFixed(SkScalarToFDot6(p1.fX * multiplier)) >> accuracy;
SkFixed y1 = SnapY(SkFDot6ToFixed(SkScalarToFDot6(p1.fY * multiplier)) >> accuracy);
#endif
int winding = 1;
if (y0 > y1) {
using std::swap;
swap(x0, x1);
swap(y0, y1);
winding = -1;
}
// are we a zero-height line?
SkFDot6 dy = SkFixedToFDot6(y1 - y0);
if (dy == 0) {
return false;
}
SkFDot6 dx = SkFixedToFDot6(x1 - x0);
SkFixed slope = quick_div(dx, dy);
SkFixed absSlope = SkAbs32(slope);
fX = x0;
fDX = slope;
fUpperX = x0;
fY = y0;
fUpperY = y0;
fLowerY = y1;
fDY = dx == 0 || slope == 0 ? SK_MaxS32 : absSlope < kInverseTableSize
? quick_inverse(absSlope)
: SkAbs32(quick_div(dy, dx));
fCurveCount = 0;
fWinding = SkToS8(winding);
fCurveShift = 0;
return true;
}
// This will become a bottleneck for small ovals rendering if we call SkFixedDiv twice here. // This will become a bottleneck for small ovals rendering if we call SkFixedDiv twice here.
// Therefore, we'll let the outter function compute the slope once and send in the value. // Therefore, we'll let the outter function compute the slope once and send in the value.
// Moreover, we'll compute fDY by quickly lookup the inverse table (if possible). // Moreover, we'll compute fDY by quickly lookup the inverse table (if possible).
@ -54,8 +318,8 @@ bool SkAnalyticEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1,
fDY = (dx == 0 || slope == 0) fDY = (dx == 0 || slope == 0)
? SK_MaxS32 ? SK_MaxS32
: absSlope < kInverseTableSize : absSlope < kInverseTableSize
? QuickFDot6Inverse::Lookup(absSlope) ? quick_inverse(absSlope)
: SkAbs32(QuickSkFDot6Div(dy, dx)); : SkAbs32(quick_div(dy, dx));
return true; return true;
} }
@ -117,7 +381,7 @@ bool SkAnalyticQuadraticEdge::updateQuadratic() {
newy = oldy + (dy >> shift); newy = oldy + (dy >> shift);
if (SkAbs32(dy >> shift) >= SK_Fixed1 * 2) { // only snap when dy is large enough if (SkAbs32(dy >> shift) >= SK_Fixed1 * 2) { // only snap when dy is large enough
SkFDot6 diffY = SkFixedToFDot6(newy - fSnappedY); SkFDot6 diffY = SkFixedToFDot6(newy - fSnappedY);
slope = diffY ? QuickSkFDot6Div(SkFixedToFDot6(newx - fSnappedX), diffY) slope = diffY ? quick_div(SkFixedToFDot6(newx - fSnappedX), diffY)
: SK_MaxS32; : SK_MaxS32;
newSnappedY = SkTMin<SkFixed>(fQEdge.fQLastY, SkFixedRoundToFixed(newy)); newSnappedY = SkTMin<SkFixed>(fQEdge.fQLastY, SkFixedRoundToFixed(newy));
newSnappedX = newx - SkFixedMul(slope, newy - newSnappedY); newSnappedX = newx - SkFixedMul(slope, newy - newSnappedY);
@ -125,7 +389,7 @@ bool SkAnalyticQuadraticEdge::updateQuadratic() {
newSnappedY = SkTMin(fQEdge.fQLastY, SnapY(newy)); newSnappedY = SkTMin(fQEdge.fQLastY, SnapY(newy));
newSnappedX = newx; newSnappedX = newx;
SkFDot6 diffY = SkFixedToFDot6(newSnappedY - fSnappedY); SkFDot6 diffY = SkFixedToFDot6(newSnappedY - fSnappedY);
slope = diffY ? QuickSkFDot6Div(SkFixedToFDot6(newx - fSnappedX), diffY) slope = diffY ? quick_div(SkFixedToFDot6(newx - fSnappedX), diffY)
: SK_MaxS32; : SK_MaxS32;
} }
dx += fQEdge.fQDDx; dx += fQEdge.fQDDx;
@ -138,7 +402,7 @@ bool SkAnalyticQuadraticEdge::updateQuadratic() {
newSnappedY = newy; newSnappedY = newy;
newSnappedX = newx; newSnappedX = newx;
SkFDot6 diffY = (newy - fSnappedY) >> 10; SkFDot6 diffY = (newy - fSnappedY) >> 10;
slope = diffY ? QuickSkFDot6Div((newx - fSnappedX) >> 10, diffY) : SK_MaxS32; slope = diffY ? quick_div((newx - fSnappedX) >> 10, diffY) : SK_MaxS32;
} }
if (slope < SK_MaxS32) { if (slope < SK_MaxS32) {
success = this->updateLine(fSnappedX, fSnappedY, newSnappedX, newSnappedY, slope); success = this->updateLine(fSnappedX, fSnappedY, newSnappedX, newSnappedY, slope);

View File

@ -80,8 +80,8 @@ struct SkAnalyticEdge {
fSavedDY = dY; fSavedDY = dY;
} }
inline bool setLine(const SkPoint& p0, const SkPoint& p1); bool setLine(const SkPoint& p0, const SkPoint& p1);
inline bool updateLine(SkFixed ax, SkFixed ay, SkFixed bx, SkFixed by, SkFixed slope); bool updateLine(SkFixed ax, SkFixed ay, SkFixed bx, SkFixed by, SkFixed slope);
// return true if we're NOT done with this edge // return true if we're NOT done with this edge
bool update(SkFixed last_y, bool sortY = true); bool update(SkFixed last_y, bool sortY = true);
@ -136,59 +136,6 @@ struct SkAnalyticCubicEdge : public SkAnalyticEdge {
} }
}; };
bool SkAnalyticEdge::setLine(const SkPoint& p0, const SkPoint& p1) {
fRiteE = nullptr;
// We must set X/Y using the same way (e.g., times 4, to FDot6, then to Fixed) as Quads/Cubics.
// Otherwise the order of the edge might be wrong due to precision limit.
const int accuracy = kDefaultAccuracy;
#ifdef SK_RASTERIZE_EVEN_ROUNDING
SkFixed x0 = SkFDot6ToFixed(SkScalarRoundToFDot6(p0.fX, accuracy)) >> accuracy;
SkFixed y0 = SnapY(SkFDot6ToFixed(SkScalarRoundToFDot6(p0.fY, accuracy)) >> accuracy);
SkFixed x1 = SkFDot6ToFixed(SkScalarRoundToFDot6(p1.fX, accuracy)) >> accuracy;
SkFixed y1 = SnapY(SkFDot6ToFixed(SkScalarRoundToFDot6(p1.fY, accuracy)) >> accuracy);
#else
const int multiplier = (1 << kDefaultAccuracy);
SkFixed x0 = SkFDot6ToFixed(SkScalarToFDot6(p0.fX * multiplier)) >> accuracy;
SkFixed y0 = SnapY(SkFDot6ToFixed(SkScalarToFDot6(p0.fY * multiplier)) >> accuracy);
SkFixed x1 = SkFDot6ToFixed(SkScalarToFDot6(p1.fX * multiplier)) >> accuracy;
SkFixed y1 = SnapY(SkFDot6ToFixed(SkScalarToFDot6(p1.fY * multiplier)) >> accuracy);
#endif
int winding = 1;
if (y0 > y1) {
using std::swap;
swap(x0, x1);
swap(y0, y1);
winding = -1;
}
// are we a zero-height line?
SkFDot6 dy = SkFixedToFDot6(y1 - y0);
if (dy == 0) {
return false;
}
SkFDot6 dx = SkFixedToFDot6(x1 - x0);
SkFixed slope = QuickSkFDot6Div(dx, dy);
SkFixed absSlope = SkAbs32(slope);
fX = x0;
fDX = slope;
fUpperX = x0;
fY = y0;
fUpperY = y0;
fLowerY = y1;
fDY = dx == 0 || slope == 0 ? SK_MaxS32 : absSlope < kInverseTableSize
? QuickFDot6Inverse::Lookup(absSlope)
: SkAbs32(QuickSkFDot6Div(dy, dx));
fCurveCount = 0;
fWinding = SkToS8(winding);
fCurveShift = 0;
return true;
}
struct SkBezier { struct SkBezier {
int fCount; // 2 line, 3 quad, 4 cubic int fCount; // 2 line, 3 quad, 4 cubic
SkPoint fP0; SkPoint fP0;

View File

@ -75,39 +75,4 @@ inline SkFixed SkFDot6Div(SkFDot6 a, SkFDot6 b) {
} }
} }
#include "SkFDot6Constants.h"
class QuickFDot6Inverse {
public:
inline static SkFixed Lookup(SkFDot6 x) {
SkASSERT(SkAbs32(x) < kInverseTableSize);
return gFDot6INVERSE[kInverseTableSize + x];
}
};
static inline SkFixed QuickSkFDot6Div(SkFDot6 a, SkFDot6 b) {
const int kMinBits = 3; // abs(b) should be at least (1 << kMinBits) for quick division
const int kMaxBits = 31; // Number of bits available in signed int
// Given abs(b) <= (1 << kMinBits), the inverse of abs(b) is at most 1 << (22 - kMinBits) in
// SkFixed format. Hence abs(a) should be less than kMaxAbsA
const int kMaxAbsA = 1 << (kMaxBits - (22 - kMinBits));
SkFDot6 abs_a = SkAbs32(a);
SkFDot6 abs_b = SkAbs32(b);
if (abs_b >= (1 << kMinBits) && abs_b < kInverseTableSize && abs_a < kMaxAbsA) {
SkASSERT((int64_t)a * QuickFDot6Inverse::Lookup(b) <= SK_MaxS32
&& (int64_t)a * QuickFDot6Inverse::Lookup(b) >= SK_MinS32);
SkFixed ourAnswer = (a * QuickFDot6Inverse::Lookup(b)) >> 6;
#ifdef SK_DEBUG
SkFixed directAnswer = SkFDot6Div(a, b);
SkASSERT(
(directAnswer == 0 && ourAnswer == 0) ||
SkFixedDiv(SkAbs32(directAnswer - ourAnswer), SkAbs32(directAnswer)) <= 1 << 10
);
#endif
return ourAnswer;
} else {
return SkFDot6Div(a, b);
}
}
#endif #endif

View File

@ -1,194 +0,0 @@
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkFDot6Constants.h"
const int32_t gFDot6INVERSE[kInverseTableSize * 2] = {
-4096, -4100, -4104, -4108, -4112, -4116, -4120, -4124, -4128, -4132, -4136,
-4140, -4144, -4148, -4152, -4156, -4161, -4165, -4169, -4173, -4177, -4181,
-4185, -4190, -4194, -4198, -4202, -4206, -4211, -4215, -4219, -4223, -4228,
-4232, -4236, -4240, -4245, -4249, -4253, -4258, -4262, -4266, -4271, -4275,
-4279, -4284, -4288, -4293, -4297, -4301, -4306, -4310, -4315, -4319, -4324,
-4328, -4332, -4337, -4341, -4346, -4350, -4355, -4359, -4364, -4369, -4373,
-4378, -4382, -4387, -4391, -4396, -4401, -4405, -4410, -4415, -4419, -4424,
-4429, -4433, -4438, -4443, -4447, -4452, -4457, -4462, -4466, -4471, -4476,
-4481, -4485, -4490, -4495, -4500, -4505, -4510, -4514, -4519, -4524, -4529,
-4534, -4539, -4544, -4549, -4554, -4559, -4563, -4568, -4573, -4578, -4583,
-4588, -4593, -4599, -4604, -4609, -4614, -4619, -4624, -4629, -4634, -4639,
-4644, -4650, -4655, -4660, -4665, -4670, -4675, -4681, -4686, -4691, -4696,
-4702, -4707, -4712, -4718, -4723, -4728, -4733, -4739, -4744, -4750, -4755,
-4760, -4766, -4771, -4777, -4782, -4788, -4793, -4798, -4804, -4809, -4815,
-4821, -4826, -4832, -4837, -4843, -4848, -4854, -4860, -4865, -4871, -4877,
-4882, -4888, -4894, -4899, -4905, -4911, -4917, -4922, -4928, -4934, -4940,
-4946, -4951, -4957, -4963, -4969, -4975, -4981, -4987, -4993, -4999, -5005,
-5011, -5017, -5023, -5029, -5035, -5041, -5047, -5053, -5059, -5065, -5071,
-5077, -5084, -5090, -5096, -5102, -5108, -5115, -5121, -5127, -5133, -5140,
-5146, -5152, -5159, -5165, -5171, -5178, -5184, -5190, -5197, -5203, -5210,
-5216, -5223, -5229, -5236, -5242, -5249, -5256, -5262, -5269, -5275, -5282,
-5289, -5295, -5302, -5309, -5315, -5322, -5329, -5336, -5343, -5349, -5356,
-5363, -5370, -5377, -5384, -5391, -5398, -5405, -5412, -5418, -5426, -5433,
-5440, -5447, -5454, -5461, -5468, -5475, -5482, -5489, -5497, -5504, -5511,
-5518, -5526, -5533, -5540, -5548, -5555, -5562, -5570, -5577, -5584, -5592,
-5599, -5607, -5614, -5622, -5629, -5637, -5645, -5652, -5660, -5667, -5675,
-5683, -5691, -5698, -5706, -5714, -5722, -5729, -5737, -5745, -5753, -5761,
-5769, -5777, -5785, -5793, -5801, -5809, -5817, -5825, -5833, -5841, -5849,
-5857, -5866, -5874, -5882, -5890, -5899, -5907, -5915, -5924, -5932, -5940,
-5949, -5957, -5966, -5974, -5983, -5991, -6000, -6009, -6017, -6026, -6034,
-6043, -6052, -6061, -6069, -6078, -6087, -6096, -6105, -6114, -6123, -6132,
-6141, -6150, -6159, -6168, -6177, -6186, -6195, -6204, -6213, -6223, -6232,
-6241, -6250, -6260, -6269, -6278, -6288, -6297, -6307, -6316, -6326, -6335,
-6345, -6355, -6364, -6374, -6384, -6393, -6403, -6413, -6423, -6432, -6442,
-6452, -6462, -6472, -6482, -6492, -6502, -6512, -6523, -6533, -6543, -6553,
-6563, -6574, -6584, -6594, -6605, -6615, -6626, -6636, -6647, -6657, -6668,
-6678, -6689, -6700, -6710, -6721, -6732, -6743, -6754, -6765, -6775, -6786,
-6797, -6808, -6820, -6831, -6842, -6853, -6864, -6875, -6887, -6898, -6909,
-6921, -6932, -6944, -6955, -6967, -6978, -6990, -7002, -7013, -7025, -7037,
-7049, -7061, -7073, -7084, -7096, -7108, -7121, -7133, -7145, -7157, -7169,
-7182, -7194, -7206, -7219, -7231, -7244, -7256, -7269, -7281, -7294, -7307,
-7319, -7332, -7345, -7358, -7371, -7384, -7397, -7410, -7423, -7436, -7449,
-7463, -7476, -7489, -7503, -7516, -7530, -7543, -7557, -7570, -7584, -7598,
-7612, -7626, -7639, -7653, -7667, -7681, -7695, -7710, -7724, -7738, -7752,
-7767, -7781, -7796, -7810, -7825, -7839, -7854, -7869, -7884, -7898, -7913,
-7928, -7943, -7958, -7973, -7989, -8004, -8019, -8035, -8050, -8065, -8081,
-8097, -8112, -8128, -8144, -8160, -8176, -8192, -8208, -8224, -8240, -8256,
-8272, -8289, -8305, -8322, -8338, -8355, -8371, -8388, -8405, -8422, -8439,
-8456, -8473, -8490, -8507, -8525, -8542, -8559, -8577, -8594, -8612, -8630,
-8648, -8665, -8683, -8701, -8719, -8738, -8756, -8774, -8793, -8811, -8830,
-8848, -8867, -8886, -8905, -8924, -8943, -8962, -8981, -9000, -9020, -9039,
-9058, -9078, -9098, -9118, -9137, -9157, -9177, -9198, -9218, -9238, -9258,
-9279, -9300, -9320, -9341, -9362, -9383, -9404, -9425, -9446, -9467, -9489,
-9510, -9532, -9554, -9576, -9597, -9619, -9642, -9664, -9686, -9709, -9731,
-9754, -9776, -9799, -9822, -9845, -9868, -9892, -9915, -9939, -9962, -9986,
-10010, -10034, -10058, -10082, -10106, -10131, -10155, -10180, -10205, -10230,
-10255, -10280, -10305, -10330, -10356, -10381, -10407, -10433, -10459, -10485,
-10512, -10538, -10564, -10591, -10618, -10645, -10672, -10699, -10727, -10754,
-10782, -10810, -10837, -10866, -10894, -10922, -10951, -10979, -11008, -11037,
-11066, -11096, -11125, -11155, -11184, -11214, -11244, -11275, -11305, -11335,
-11366, -11397, -11428, -11459, -11491, -11522, -11554, -11586, -11618, -11650,
-11683, -11715, -11748, -11781, -11814, -11848, -11881, -11915, -11949, -11983,
-12018, -12052, -12087, -12122, -12157, -12192, -12228, -12264, -12300, -12336,
-12372, -12409, -12446, -12483, -12520, -12557, -12595, -12633, -12671, -12710,
-12748, -12787, -12826, -12865, -12905, -12945, -12985, -13025, -13066, -13107,
-13148, -13189, -13231, -13273, -13315, -13357, -13400, -13443, -13486, -13530,
-13573, -13617, -13662, -13706, -13751, -13797, -13842, -13888, -13934, -13981,
-14027, -14074, -14122, -14169, -14217, -14266, -14315, -14364, -14413, -14463,
-14513, -14563, -14614, -14665, -14716, -14768, -14820, -14873, -14926, -14979,
-15033, -15087, -15141, -15196, -15252, -15307, -15363, -15420, -15477, -15534,
-15592, -15650, -15709, -15768, -15827, -15887, -15947, -16008, -16070, -16131,
-16194, -16256, -16320, -16384, -16448, -16513, -16578, -16644, -16710, -16777,
-16844, -16912, -16980, -17050, -17119, -17189, -17260, -17331, -17403, -17476,
-17549, -17623, -17697, -17772, -17848, -17924, -18001, -18078, -18157, -18236,
-18315, -18396, -18477, -18558, -18641, -18724, -18808, -18893, -18978, -19065,
-19152, -19239, -19328, -19418, -19508, -19599, -19691, -19784, -19878, -19972,
-20068, -20164, -20262, -20360, -20460, -20560, -20661, -20763, -20867, -20971,
-21076, -21183, -21290, -21399, -21509, -21620, -21732, -21845, -21959, -22075,
-22192, -22310, -22429, -22550, -22671, -22795, -22919, -23045, -23172, -23301,
-23431, -23563, -23696, -23831, -23967, -24105, -24244, -24385, -24528, -24672,
-24818, -24966, -25115, -25266, -25420, -25575, -25731, -25890, -26051, -26214,
-26379, -26546, -26715, -26886, -27060, -27235, -27413, -27594, -27776, -27962,
-28149, -28339, -28532, -28728, -28926, -29127, -29330, -29537, -29746, -29959,
-30174, -30393, -30615, -30840, -31068, -31300, -31536, -31775, -32017, -32263,
-32513, -32768, -33026, -33288, -33554, -33825, -34100, -34379, -34663, -34952,
-35246, -35544, -35848, -36157, -36472, -36792, -37117, -37449, -37786, -38130,
-38479, -38836, -39199, -39568, -39945, -40329, -40721, -41120, -41527, -41943,
-42366, -42799, -43240, -43690, -44150, -44620, -45100, -45590, -46091, -46603,
-47127, -47662, -48210, -48770, -49344, -49932, -50533, -51150, -51781, -52428,
-53092, -53773, -54471, -55188, -55924, -56679, -57456, -58254, -59074, -59918,
-60787, -61680, -62601, -63550, -64527, -65536, -66576, -67650, -68759, -69905,
-71089, -72315, -73584, -74898, -76260, -77672, -79137, -80659, -82241, -83886,
-85598, -87381, -89240, -91180, -93206, -95325, -97541, -99864, -102300,
-104857, -107546, -110376, -113359, -116508, -119837, -123361, -127100, -131072,
-135300, -139810, -144631, -149796, -155344, -161319, -167772, -174762, -182361,
-190650, -199728, -209715, -220752, -233016, -246723, -262144, -279620, -299593,
-322638, -349525, -381300, -419430, -466033, -524288, -599186, -699050, -838860,
-1048576, -1398101, -2097152, -4194304, 0, 4194304, 2097152, 1398101, 1048576,
838860, 699050, 599186, 524288, 466033, 419430, 381300, 349525, 322638, 299593,
279620, 262144, 246723, 233016, 220752, 209715, 199728, 190650, 182361, 174762,
167772, 161319, 155344, 149796, 144631, 139810, 135300, 131072, 127100, 123361,
119837, 116508, 113359, 110376, 107546, 104857, 102300, 99864, 97541, 95325,
93206, 91180, 89240, 87381, 85598, 83886, 82241, 80659, 79137, 77672, 76260,
74898, 73584, 72315, 71089, 69905, 68759, 67650, 66576, 65536, 64527, 63550,
62601, 61680, 60787, 59918, 59074, 58254, 57456, 56679, 55924, 55188, 54471,
53773, 53092, 52428, 51781, 51150, 50533, 49932, 49344, 48770, 48210, 47662,
47127, 46603, 46091, 45590, 45100, 44620, 44150, 43690, 43240, 42799, 42366,
41943, 41527, 41120, 40721, 40329, 39945, 39568, 39199, 38836, 38479, 38130,
37786, 37449, 37117, 36792, 36472, 36157, 35848, 35544, 35246, 34952, 34663,
34379, 34100, 33825, 33554, 33288, 33026, 32768, 32513, 32263, 32017, 31775,
31536, 31300, 31068, 30840, 30615, 30393, 30174, 29959, 29746, 29537, 29330,
29127, 28926, 28728, 28532, 28339, 28149, 27962, 27776, 27594, 27413, 27235,
27060, 26886, 26715, 26546, 26379, 26214, 26051, 25890, 25731, 25575, 25420,
25266, 25115, 24966, 24818, 24672, 24528, 24385, 24244, 24105, 23967, 23831,
23696, 23563, 23431, 23301, 23172, 23045, 22919, 22795, 22671, 22550, 22429,
22310, 22192, 22075, 21959, 21845, 21732, 21620, 21509, 21399, 21290, 21183,
21076, 20971, 20867, 20763, 20661, 20560, 20460, 20360, 20262, 20164, 20068,
19972, 19878, 19784, 19691, 19599, 19508, 19418, 19328, 19239, 19152, 19065,
18978, 18893, 18808, 18724, 18641, 18558, 18477, 18396, 18315, 18236, 18157,
18078, 18001, 17924, 17848, 17772, 17697, 17623, 17549, 17476, 17403, 17331,
17260, 17189, 17119, 17050, 16980, 16912, 16844, 16777, 16710, 16644, 16578,
16513, 16448, 16384, 16320, 16256, 16194, 16131, 16070, 16008, 15947, 15887,
15827, 15768, 15709, 15650, 15592, 15534, 15477, 15420, 15363, 15307, 15252,
15196, 15141, 15087, 15033, 14979, 14926, 14873, 14820, 14768, 14716, 14665,
14614, 14563, 14513, 14463, 14413, 14364, 14315, 14266, 14217, 14169, 14122,
14074, 14027, 13981, 13934, 13888, 13842, 13797, 13751, 13706, 13662, 13617,
13573, 13530, 13486, 13443, 13400, 13357, 13315, 13273, 13231, 13189, 13148,
13107, 13066, 13025, 12985, 12945, 12905, 12865, 12826, 12787, 12748, 12710,
12671, 12633, 12595, 12557, 12520, 12483, 12446, 12409, 12372, 12336, 12300,
12264, 12228, 12192, 12157, 12122, 12087, 12052, 12018, 11983, 11949, 11915,
11881, 11848, 11814, 11781, 11748, 11715, 11683, 11650, 11618, 11586, 11554,
11522, 11491, 11459, 11428, 11397, 11366, 11335, 11305, 11275, 11244, 11214,
11184, 11155, 11125, 11096, 11066, 11037, 11008, 10979, 10951, 10922, 10894,
10866, 10837, 10810, 10782, 10754, 10727, 10699, 10672, 10645, 10618, 10591,
10564, 10538, 10512, 10485, 10459, 10433, 10407, 10381, 10356, 10330, 10305,
10280, 10255, 10230, 10205, 10180, 10155, 10131, 10106, 10082, 10058, 10034,
10010, 9986, 9962, 9939, 9915, 9892, 9868, 9845, 9822, 9799, 9776, 9754, 9731,
9709, 9686, 9664, 9642, 9619, 9597, 9576, 9554, 9532, 9510, 9489, 9467, 9446,
9425, 9404, 9383, 9362, 9341, 9320, 9300, 9279, 9258, 9238, 9218, 9198, 9177,
9157, 9137, 9118, 9098, 9078, 9058, 9039, 9020, 9000, 8981, 8962, 8943, 8924,
8905, 8886, 8867, 8848, 8830, 8811, 8793, 8774, 8756, 8738, 8719, 8701, 8683,
8665, 8648, 8630, 8612, 8594, 8577, 8559, 8542, 8525, 8507, 8490, 8473, 8456,
8439, 8422, 8405, 8388, 8371, 8355, 8338, 8322, 8305, 8289, 8272, 8256, 8240,
8224, 8208, 8192, 8176, 8160, 8144, 8128, 8112, 8097, 8081, 8065, 8050, 8035,
8019, 8004, 7989, 7973, 7958, 7943, 7928, 7913, 7898, 7884, 7869, 7854, 7839,
7825, 7810, 7796, 7781, 7767, 7752, 7738, 7724, 7710, 7695, 7681, 7667, 7653,
7639, 7626, 7612, 7598, 7584, 7570, 7557, 7543, 7530, 7516, 7503, 7489, 7476,
7463, 7449, 7436, 7423, 7410, 7397, 7384, 7371, 7358, 7345, 7332, 7319, 7307,
7294, 7281, 7269, 7256, 7244, 7231, 7219, 7206, 7194, 7182, 7169, 7157, 7145,
7133, 7121, 7108, 7096, 7084, 7073, 7061, 7049, 7037, 7025, 7013, 7002, 6990,
6978, 6967, 6955, 6944, 6932, 6921, 6909, 6898, 6887, 6875, 6864, 6853, 6842,
6831, 6820, 6808, 6797, 6786, 6775, 6765, 6754, 6743, 6732, 6721, 6710, 6700,
6689, 6678, 6668, 6657, 6647, 6636, 6626, 6615, 6605, 6594, 6584, 6574, 6563,
6553, 6543, 6533, 6523, 6512, 6502, 6492, 6482, 6472, 6462, 6452, 6442, 6432,
6423, 6413, 6403, 6393, 6384, 6374, 6364, 6355, 6345, 6335, 6326, 6316, 6307,
6297, 6288, 6278, 6269, 6260, 6250, 6241, 6232, 6223, 6213, 6204, 6195, 6186,
6177, 6168, 6159, 6150, 6141, 6132, 6123, 6114, 6105, 6096, 6087, 6078, 6069,
6061, 6052, 6043, 6034, 6026, 6017, 6009, 6000, 5991, 5983, 5974, 5966, 5957,
5949, 5940, 5932, 5924, 5915, 5907, 5899, 5890, 5882, 5874, 5866, 5857, 5849,
5841, 5833, 5825, 5817, 5809, 5801, 5793, 5785, 5777, 5769, 5761, 5753, 5745,
5737, 5729, 5722, 5714, 5706, 5698, 5691, 5683, 5675, 5667, 5660, 5652, 5645,
5637, 5629, 5622, 5614, 5607, 5599, 5592, 5584, 5577, 5570, 5562, 5555, 5548,
5540, 5533, 5526, 5518, 5511, 5504, 5497, 5489, 5482, 5475, 5468, 5461, 5454,
5447, 5440, 5433, 5426, 5418, 5412, 5405, 5398, 5391, 5384, 5377, 5370, 5363,
5356, 5349, 5343, 5336, 5329, 5322, 5315, 5309, 5302, 5295, 5289, 5282, 5275,
5269, 5262, 5256, 5249, 5242, 5236, 5229, 5223, 5216, 5210, 5203, 5197, 5190,
5184, 5178, 5171, 5165, 5159, 5152, 5146, 5140, 5133, 5127, 5121, 5115, 5108,
5102, 5096, 5090, 5084, 5077, 5071, 5065, 5059, 5053, 5047, 5041, 5035, 5029,
5023, 5017, 5011, 5005, 4999, 4993, 4987, 4981, 4975, 4969, 4963, 4957, 4951,
4946, 4940, 4934, 4928, 4922, 4917, 4911, 4905, 4899, 4894, 4888, 4882, 4877,
4871, 4865, 4860, 4854, 4848, 4843, 4837, 4832, 4826, 4821, 4815, 4809, 4804,
4798, 4793, 4788, 4782, 4777, 4771, 4766, 4760, 4755, 4750, 4744, 4739, 4733,
4728, 4723, 4718, 4712, 4707, 4702, 4696, 4691, 4686, 4681, 4675, 4670, 4665,
4660, 4655, 4650, 4644, 4639, 4634, 4629, 4624, 4619, 4614, 4609, 4604, 4599,
4593, 4588, 4583, 4578, 4573, 4568, 4563, 4559, 4554, 4549, 4544, 4539, 4534,
4529, 4524, 4519, 4514, 4510, 4505, 4500, 4495, 4490, 4485, 4481, 4476, 4471,
4466, 4462, 4457, 4452, 4447, 4443, 4438, 4433, 4429, 4424, 4419, 4415, 4410,
4405, 4401, 4396, 4391, 4387, 4382, 4378, 4373, 4369, 4364, 4359, 4355, 4350,
4346, 4341, 4337, 4332, 4328, 4324, 4319, 4315, 4310, 4306, 4301, 4297, 4293,
4288, 4284, 4279, 4275, 4271, 4266, 4262, 4258, 4253, 4249, 4245, 4240, 4236,
4232, 4228, 4223, 4219, 4215, 4211, 4206, 4202, 4198, 4194, 4190, 4185, 4181,
4177, 4173, 4169, 4165, 4161, 4156, 4152, 4148, 4144, 4140, 4136, 4132, 4128,
4124, 4120, 4116, 4112, 4108, 4104, 4100
};

View File

@ -1,17 +0,0 @@
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkFDot6Constants_DEFINED
#define SkFDot6Constants_DEFINED
#include "SkTypes.h"
static const int kInverseTableSize = 1024; // SK_FDot6One * 16
extern const int32_t gFDot6INVERSE[kInverseTableSize * 2];
#endif

View File

@ -34,38 +34,6 @@ static void test_clz(skiatest::Reporter* reporter) {
} }
} }
static void test_quick_div(skiatest::Reporter* reporter) {
/*
The inverse table is generated by turning on SkDebugf in the following test code
*/
SkFixed storage[kInverseTableSize * 2];
SkFixed* table = storage + kInverseTableSize;
// SkDebugf("static const int gFDot6INVERSE[] = {");
for (SkFDot6 i=-kInverseTableSize; i<kInverseTableSize; i++) {
if (i != 0) {
table[i] = SkFDot6Div(SK_FDot6One, i);
REPORTER_ASSERT(reporter, table[i] == gFDot6INVERSE[i + kInverseTableSize]);
}
// SkDebugf("%d, ", table[i]);
}
// SkDebugf("}\n");
for (SkFDot6 a = -1024; a <= 1024; a++) {
for (SkFDot6 b = -1024; b <= 1024; b++) {
if (b != 0) {
SkFixed ourAnswer = QuickSkFDot6Div(a, b);
SkFixed directAnswer = SkFDot6Div(a, b);
REPORTER_ASSERT(reporter,
(directAnswer == 0 && ourAnswer == 0) ||
SkFixedDiv(SkAbs32(directAnswer - ourAnswer), SkAbs32(directAnswer)) <= 1 << 10
);
}
}
}
}
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
static float sk_fsel(float pred, float result_ge, float result_lt) { static float sk_fsel(float pred, float result_ge, float result_lt) {
@ -513,7 +481,6 @@ DEF_TEST(Math, reporter) {
test_muldivround(reporter); test_muldivround(reporter);
test_clz(reporter); test_clz(reporter);
test_quick_div(reporter);
} }
template <typename T> struct PairRec { template <typename T> struct PairRec {

View File

@ -103,7 +103,6 @@ ignore = [
'src/c/sk_c_from_to.h', 'src/c/sk_c_from_to.h',
'src/core/*Template.h', 'src/core/*Template.h',
'src/core/SkBitmapProcState_*.h', 'src/core/SkBitmapProcState_*.h',
'src/core/SkFDot6Constants.h',
'src/core/SkLinearBitmapPipeline.h', 'src/core/SkLinearBitmapPipeline.h',
'src/core/SkLinearBitmapPipeline_*.h', 'src/core/SkLinearBitmapPipeline_*.h',
'src/core/SkUnPreMultiplyPriv.h', 'src/core/SkUnPreMultiplyPriv.h',