Various optimizations to stroke tessellation shaders
Bug: skia:10419 Change-Id: I1544113b6ea2327674a48a0430146a859a547723 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/322796 Commit-Queue: Chris Dalton <csmartdalton@google.com> Reviewed-by: Michael Ludwig <michaelludwig@google.com>
This commit is contained in:
parent
7205080055
commit
f58db3c94d
@ -18,8 +18,11 @@ constexpr static float kLinearizationIntolerance =
|
||||
|
||||
class GrStrokeTessellateShader::Impl : public GrGLSLGeometryProcessor {
|
||||
public:
|
||||
const char* getTessControlArgsUniformName(const GrGLSLUniformHandler& uniformHandler) const {
|
||||
return uniformHandler.getUniformCStr(fTessControlArgsUniform);
|
||||
const char* getTessArgs1UniformName(const GrGLSLUniformHandler& uniformHandler) const {
|
||||
return uniformHandler.getUniformCStr(fTessArgs1Uniform);
|
||||
}
|
||||
const char* getTessArgs2UniformName(const GrGLSLUniformHandler& uniformHandler) const {
|
||||
return uniformHandler.getUniformCStr(fTessArgs2Uniform);
|
||||
}
|
||||
const char* getTranslateUniformName(const GrGLSLUniformHandler& uniformHandler) const {
|
||||
return uniformHandler.getUniformCStr(fTranslateUniform);
|
||||
@ -31,19 +34,23 @@ public:
|
||||
private:
|
||||
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
|
||||
const auto& shader = args.fGP.cast<GrStrokeTessellateShader>();
|
||||
auto* uniHandler = args.fUniformHandler;
|
||||
|
||||
args.fVaryingHandler->emitAttributes(shader);
|
||||
|
||||
auto* uniHandler = args.fUniformHandler;
|
||||
fTessControlArgsUniform = uniHandler->addUniform(nullptr,
|
||||
kTessControl_GrShaderFlag |
|
||||
kTessEvaluation_GrShaderFlag,
|
||||
kFloat4_GrSLType, "tessControlArgs",
|
||||
nullptr);
|
||||
// uNumSegmentsInJoin, uCubicConstantPow2, uNumRadialSegmentsPerRadian, uMiterLimitInvPow2.
|
||||
fTessArgs1Uniform = uniHandler->addUniform(nullptr, kTessControl_GrShaderFlag,
|
||||
kFloat4_GrSLType, "tessArgs1", nullptr);
|
||||
// uRadialTolerancePow2, uStrokeRadius.
|
||||
fTessArgs2Uniform = uniHandler->addUniform(nullptr, kTessControl_GrShaderFlag |
|
||||
kTessEvaluation_GrShaderFlag,
|
||||
kFloat2_GrSLType,
|
||||
"tessArgs2", nullptr);
|
||||
if (!shader.viewMatrix().isIdentity()) {
|
||||
fTranslateUniform = uniHandler->addUniform(nullptr, kTessEvaluation_GrShaderFlag,
|
||||
kFloat2_GrSLType, "translate", nullptr);
|
||||
fAffineMatrixUniform = uniHandler->addUniform(nullptr, kTessEvaluation_GrShaderFlag,
|
||||
kFloat2x2_GrSLType, "affineMatrix",
|
||||
kFloat4_GrSLType, "affineMatrix",
|
||||
nullptr);
|
||||
}
|
||||
const char* colorUniformName;
|
||||
@ -78,12 +85,14 @@ private:
|
||||
// form the original input points or else the seams might crack.
|
||||
float2 tan0 = (P[1] == P[0]) ? P[2] - P[0] : P[1] - P[0];
|
||||
float2 tan1 = (P[3] == P[2]) ? P[3] - P[1] : P[3] - P[2];
|
||||
|
||||
if (tan1 == float2(0)) {
|
||||
// [p0, p3, p3, p3] is a reserved pattern that means this patch is a join only.
|
||||
P[1] = P[2] = P[3] = P[0]; // Colocate all the curve's points.
|
||||
// This will disable the (co-located) curve sections by making their tangents equal.
|
||||
tan1 = tan0;
|
||||
}
|
||||
|
||||
if (tan0 == float2(0)) {
|
||||
// [p0, p0, p0, p3] is a reserved pattern that means this patch is a cusp point.
|
||||
P[3] = P[0]; // Colocate all the points on the cusp.
|
||||
@ -116,7 +125,8 @@ private:
|
||||
float a = cross(A, B);
|
||||
float b = cross(A, C);
|
||||
float c = cross(B, C);
|
||||
float discr = b*b - 4*a*c;
|
||||
float b_over_2 = b*.5;
|
||||
float discr_over_4 = b_over_2*b_over_2 - a*c;
|
||||
|
||||
float2x2 innerTangents = float2x2(0);
|
||||
if (float3(a,b,c) == float3(0)) {
|
||||
@ -131,11 +141,11 @@ private:
|
||||
//
|
||||
float3 coeffs = tan0 * float3x2(A,B,C);
|
||||
a = coeffs.x;
|
||||
b = coeffs.y*2;
|
||||
b_over_2 = coeffs.y;
|
||||
c = coeffs.z;
|
||||
discr = max(b*b - 4*a*c, 0);
|
||||
discr_over_4 = max(b_over_2*b_over_2 - a*c, 0);
|
||||
innerTangents = float2x2(-tan0, -tan0);
|
||||
} else if (discr <= 0) {
|
||||
} else if (discr_over_4 <= 0) {
|
||||
// The curve does not inflect. This means it might rotate more than 180 degrees instead.
|
||||
// Craft a quadratic whose roots are the points were rotation == 180 deg and 0. (These
|
||||
// are the points where the tangent is parallel to tan0.)
|
||||
@ -148,18 +158,19 @@ private:
|
||||
// NOTE: When P0 == P1 then C != tan0, C == 0 and these roots will be undefined. But
|
||||
// that's ok because when P0 == P1 the curve cannot rotate more than 180 degrees anyway.
|
||||
a = b;
|
||||
b = c*2;
|
||||
b_over_2 = c;
|
||||
c = 0;
|
||||
discr = b*b;
|
||||
discr_over_4 = b_over_2*b_over_2;
|
||||
innerTangents[0] = -C;
|
||||
}
|
||||
|
||||
// Solve our quadratic equation for the chop points.
|
||||
float x = sqrt(discr);
|
||||
if (b < 0) {
|
||||
x = -x;
|
||||
// Solve our quadratic equation for the chop points. This is inspired by the quadratic
|
||||
// formula from Numerical Recipes in C.
|
||||
float q = sqrt(discr_over_4);
|
||||
if (b_over_2 > 0) {
|
||||
q = -q;
|
||||
}
|
||||
float q = -.5 * (b + x);
|
||||
q -= b_over_2;
|
||||
float2 chopT = float2((a != 0) ? q/a : 0,
|
||||
(q != 0) ? c/q : 0);
|
||||
|
||||
@ -194,37 +205,29 @@ private:
|
||||
innerTangents = float2x2(tan0, tan0);
|
||||
}
|
||||
|
||||
// Chop the curve at chopT[0].
|
||||
float2 ab = mix(P[0], P[1], chopT[0]);
|
||||
float2 bc = mix(P[1], P[2], chopT[0]);
|
||||
float2 cd = mix(P[2], P[3], chopT[0]);
|
||||
float2 abc = mix(ab, bc, chopT[0]);
|
||||
float2 bcd = mix(bc, cd, chopT[0]);
|
||||
float2 abcd = mix(abc, bcd, chopT[0]);
|
||||
|
||||
// Chop the curve at chopT[1].
|
||||
float2 xy = mix(P[0], P[1], chopT[1]);
|
||||
float2 yz = mix(P[1], P[2], chopT[1]);
|
||||
float2 zw = mix(P[2], P[3], chopT[1]);
|
||||
float2 xyz = mix(xy, yz, chopT[1]);
|
||||
float2 yzw = mix(yz, zw, chopT[1]);
|
||||
float2 xyzw = mix(xyz, yzw, chopT[1]);
|
||||
// Chop the curve at chopT[0] and chopT[1].
|
||||
float4 ab = mix(P[0].xyxy, P[1].xyxy, chopT.sstt);
|
||||
float4 bc = mix(P[1].xyxy, P[2].xyxy, chopT.sstt);
|
||||
float4 cd = mix(P[2].xyxy, P[3].xyxy, chopT.sstt);
|
||||
float4 abc = mix(ab, bc, chopT.sstt);
|
||||
float4 bcd = mix(bc, cd, chopT.sstt);
|
||||
float4 abcd = mix(abc, bcd, chopT.sstt);
|
||||
float4 middle = mix(abc, bcd, chopT.ttss);
|
||||
|
||||
// Find tangents at the chop points if an inner tangent wasn't specified.
|
||||
if (innerTangents[0] == float2(0)) {
|
||||
innerTangents[0] = bcd - abc;
|
||||
innerTangents[0] = bcd.xy - abc.xy;
|
||||
}
|
||||
if (innerTangents[1] == float2(0)) {
|
||||
innerTangents[1] = yzw - xyz;
|
||||
innerTangents[1] = bcd.zw - abc.zw;
|
||||
}
|
||||
|
||||
// Package arguments for the tessellation control stage.
|
||||
vsPts01 = float4(P[0], ab);
|
||||
vsPts23 = float4(abc, abcd);
|
||||
vsPts45 = float4(mix(abcd, bcd, (chopT[1] - chopT[0]) / (1 - chopT[0])),
|
||||
mix(xyz, xyzw, (chopT[1] != 0) ? chopT[0] / chopT[1] : 0));
|
||||
vsPts67 = float4(xyzw, yzw);
|
||||
vsPts89 = float4(zw, P[3]);
|
||||
vsPts01 = float4(P[0], ab.xy);
|
||||
vsPts23 = float4(abc.xy, abcd.xy);
|
||||
vsPts45 = middle;
|
||||
vsPts67 = float4(abcd.zw, bcd.zw);
|
||||
vsPts89 = float4(cd.zw, P[3]);
|
||||
vsTans01 = float4(tan0, innerTangents[0]);
|
||||
vsTans23 = float4(innerTangents[1], tan1);
|
||||
vsPrevJoinTangent = (prevJoinTangent == float2(0)) ? tan0 : prevJoinTangent;
|
||||
@ -250,21 +253,30 @@ private:
|
||||
numSegmentsInJoin = 0; // Use the rotation to calculate the number of segments.
|
||||
break;
|
||||
}
|
||||
pdman.set4f(fTessControlArgsUniform,
|
||||
shader.fStroke.getWidth() * .5, // uStrokeRadius.
|
||||
numSegmentsInJoin, // uNumSegmentsInJoin
|
||||
kLinearizationIntolerance * shader.fMatrixScale, // uIntolerance in path space.
|
||||
1/(shader.fStroke.getMiter()*shader.fStroke.getMiter())); // uMiterLimitPowMinus2.
|
||||
float intolerance = kLinearizationIntolerance * shader.fMatrixScale;
|
||||
float cubicConstant = GrWangsFormula::cubic_constant(intolerance);
|
||||
float strokeRadius = shader.fStroke.getWidth() * .5;
|
||||
float radialIntolerance = 1 / (strokeRadius * intolerance);
|
||||
float miterLimit = shader.fStroke.getMiter();
|
||||
pdman.set4f(fTessArgs1Uniform,
|
||||
numSegmentsInJoin, // uNumSegmentsInJoin
|
||||
cubicConstant * cubicConstant, // uCubicConstantPow2 in path space.
|
||||
.5f / acosf(std::max(1 - radialIntolerance, -1.f)), // uNumRadialSegmentsPerRadian
|
||||
1 / (miterLimit * miterLimit)); // uMiterLimitInvPow2.
|
||||
pdman.set2f(fTessArgs2Uniform,
|
||||
radialIntolerance * radialIntolerance, // uRadialTolerancePow2.
|
||||
strokeRadius); // uStrokeRadius.
|
||||
const SkMatrix& m = shader.viewMatrix();
|
||||
if (!m.isIdentity()) {
|
||||
pdman.set2f(fTranslateUniform, m.getTranslateX(), m.getTranslateY());
|
||||
float affineMatrix[4] = {m.getScaleX(), m.getSkewY(), m.getSkewX(), m.getScaleY()};
|
||||
pdman.setMatrix2f(fAffineMatrixUniform, affineMatrix);
|
||||
pdman.set4f(fAffineMatrixUniform, m.getScaleX(), m.getSkewY(), m.getSkewX(),
|
||||
m.getScaleY());
|
||||
}
|
||||
pdman.set4fv(fColorUniform, 1, shader.fColor.vec());
|
||||
}
|
||||
|
||||
GrGLSLUniformHandler::UniformHandle fTessControlArgsUniform;
|
||||
GrGLSLUniformHandler::UniformHandle fTessArgs1Uniform;
|
||||
GrGLSLUniformHandler::UniformHandle fTessArgs2Uniform;
|
||||
GrGLSLUniformHandler::UniformHandle fTranslateUniform;
|
||||
GrGLSLUniformHandler::UniformHandle fAffineMatrixUniform;
|
||||
GrGLSLUniformHandler::UniformHandle fColorUniform;
|
||||
@ -284,12 +296,16 @@ SkString GrStrokeTessellateShader::getTessControlShaderGLSL(
|
||||
code.appendf("const float kMaxTessellationSegments = %i;\n",
|
||||
shaderCaps.maxTessellationSegments());
|
||||
|
||||
const char* tessControlArgsName = impl->getTessControlArgsUniformName(uniformHandler);
|
||||
code.appendf("uniform vec4 %s;\n", tessControlArgsName);
|
||||
code.appendf("#define uStrokeRadius %s.x\n", tessControlArgsName);
|
||||
code.appendf("#define uNumSegmentsInJoin %s.y\n", tessControlArgsName);
|
||||
code.appendf("#define uIntolerance %s.z\n", tessControlArgsName);
|
||||
code.appendf("#define uMiterLimitPowMinus2 %s.w\n", tessControlArgsName);
|
||||
const char* tessArgs1Name = impl->getTessArgs1UniformName(uniformHandler);
|
||||
code.appendf("uniform vec4 %s;\n", tessArgs1Name);
|
||||
code.appendf("#define uNumSegmentsInJoin %s.x\n", tessArgs1Name);
|
||||
code.appendf("#define uCubicConstantPow2 %s.y\n", tessArgs1Name);
|
||||
code.appendf("#define uNumRadialSegmentsPerRadian %s.z\n", tessArgs1Name);
|
||||
code.appendf("#define uMiterLimitInvPow2 %s.w\n", tessArgs1Name);
|
||||
|
||||
const char* tessArgs2Name = impl->getTessArgs2UniformName(uniformHandler);
|
||||
code.appendf("uniform vec2 %s;\n", tessArgs2Name);
|
||||
code.appendf("#define uRadialTolerancePow2 %s.x\n", tessArgs2Name);
|
||||
|
||||
code.append(R"(
|
||||
in vec4 vsPts01[];
|
||||
@ -322,6 +338,10 @@ SkString GrStrokeTessellateShader::getTessControlShaderGLSL(
|
||||
return determinant(mat2(a,b));
|
||||
}
|
||||
|
||||
float length_pow2(vec2 v) {
|
||||
return dot(v, v);
|
||||
}
|
||||
|
||||
void main() {
|
||||
// Unpack the input arguments from the vertex shader.
|
||||
mat4x2 P;
|
||||
@ -348,15 +368,14 @@ SkString GrStrokeTessellateShader::getTessControlShaderGLSL(
|
||||
// section of the curve into. (See GrWangsFormula::cubic() for more documentation on this
|
||||
// formula.) The final tessellated strip will be a composition of these parametric segments
|
||||
// as well as radial segments.
|
||||
float numParametricSegments = sqrt(
|
||||
.75*uIntolerance * length(max(abs(P[2] - P[1]*2.0 + P[0]),
|
||||
abs(P[3] - P[2]*2.0 + P[1]))));
|
||||
float w = length_pow2(max(abs(P[2] - P[1]*2.0 + P[0]),
|
||||
abs(P[3] - P[2]*2.0 + P[1]))) * uCubicConstantPow2;
|
||||
float numParametricSegments = ceil(inversesqrt(inversesqrt(max(w, 1e-2))));
|
||||
if (P[0] == P[1] && P[2] == P[3]) {
|
||||
// This is how the patch builder articulates lineTos but Wang's formula returns
|
||||
// >>1 segment in this scenario. Assign 1 parametric segment.
|
||||
numParametricSegments = 1;
|
||||
}
|
||||
numParametricSegments = max(ceil(numParametricSegments), 1);
|
||||
|
||||
// Determine the curve's start angle.
|
||||
float angle0 = atan2(tangents[0]);
|
||||
@ -382,28 +401,27 @@ SkString GrStrokeTessellateShader::getTessControlShaderGLSL(
|
||||
// Calculate the number of evenly spaced radial segments to chop this section of the curve
|
||||
// into. Radial segments divide the curve's rotation into even steps. The final tessellated
|
||||
// strip will be a composition of both parametric and radial segments.
|
||||
float radialTolerance = 1 / (uStrokeRadius * uIntolerance);
|
||||
float numRadialSegments = abs(rotation) / (2 * acos(max(1 - radialTolerance, -1)));
|
||||
float numRadialSegments = abs(rotation) * uNumRadialSegmentsPerRadian;
|
||||
numRadialSegments = max(ceil(numRadialSegments), 1);
|
||||
|
||||
if (gl_InvocationID == 0) {
|
||||
// Set up joins.
|
||||
numParametricSegments = 1; // Joins don't have parametric segments.
|
||||
numRadialSegments = (uNumSegmentsInJoin == 0) ? numRadialSegments : uNumSegmentsInJoin;
|
||||
float innerStrokeRadius = uStrokeRadius;
|
||||
float innerStrokeRadiusMultiplier = 1;
|
||||
if (uNumSegmentsInJoin == 2) {
|
||||
// Miter join: extend the middle radius to either the miter point or the bevel edge.
|
||||
float x = fma(cosTheta, .5, .5);
|
||||
innerStrokeRadius *= (x >= uMiterLimitPowMinus2) ? inversesqrt(x) : sqrt(x);
|
||||
innerStrokeRadiusMultiplier = (x >= uMiterLimitInvPow2) ? inversesqrt(x) : sqrt(x);
|
||||
}
|
||||
vec2 strokeOutsetClamp = vec2(-1, 1);
|
||||
if (distance(tan0norm, tan1norm) > radialTolerance) {
|
||||
if (length_pow2(tan1norm - tan0norm) > uRadialTolerancePow2) {
|
||||
// Clamp the join to the exterior side of its junction. We only do this if the join
|
||||
// angle is large enough to guarantee there won't be cracks on the interior side of
|
||||
// the junction.
|
||||
strokeOutsetClamp = (rotation > 0) ? vec2(-1,0) : vec2(0,1);
|
||||
}
|
||||
tcsJoinArgs = vec3(innerStrokeRadius, strokeOutsetClamp);
|
||||
tcsJoinArgs = vec3(innerStrokeRadiusMultiplier, strokeOutsetClamp);
|
||||
}
|
||||
|
||||
// The first and last edges are shared by both the parametric and radial sets of edges, so
|
||||
@ -482,16 +500,16 @@ SkString GrStrokeTessellateShader::getTessEvaluationShaderGLSL(
|
||||
|
||||
code.appendf("const float kPI = 3.141592653589793238;\n");
|
||||
|
||||
const char* tessControlArgsName = impl->getTessControlArgsUniformName(uniformHandler);
|
||||
code.appendf("uniform vec4 %s;\n", tessControlArgsName);
|
||||
code.appendf("#define uStrokeRadius %s.x\n", tessControlArgsName);
|
||||
const char* tessArgs2Name = impl->getTessArgs2UniformName(uniformHandler);
|
||||
code.appendf("uniform vec2 %s;\n", tessArgs2Name);
|
||||
code.appendf("#define uStrokeRadius %s.y\n", tessArgs2Name);
|
||||
|
||||
if (!this->viewMatrix().isIdentity()) {
|
||||
const char* translateName = impl->getTranslateUniformName(uniformHandler);
|
||||
code.appendf("uniform vec2 %s;\n", translateName);
|
||||
code.appendf("#define uTranslate %s\n", translateName);
|
||||
const char* affineMatrixName = impl->getAffineMatrixUniformName(uniformHandler);
|
||||
code.appendf("uniform mat2x2 %s;\n", affineMatrixName);
|
||||
code.appendf("uniform vec4 %s;\n", affineMatrixName);
|
||||
code.appendf("#define uAffineMatrix %s\n", affineMatrixName);
|
||||
}
|
||||
|
||||
@ -526,7 +544,7 @@ SkString GrStrokeTessellateShader::getTessEvaluationShaderGLSL(
|
||||
P = mat4x2(tcsPts01[0], tcsPt2Tan0[0].xy, tcsPts01[1].xy);
|
||||
tan0 = tcsPt2Tan0[0].zw;
|
||||
tessellationArgs = tcsTessArgs[0].yzw;
|
||||
strokeRadius = (localEdgeID == 1) ? tcsJoinArgs.x : strokeRadius;
|
||||
strokeRadius *= (localEdgeID == 1) ? tcsJoinArgs.x : 1;
|
||||
strokeOutsetClamp = tcsJoinArgs.yz;
|
||||
} else if ((localEdgeID -= tcsTessArgs[0].x) < tcsTessArgs[1].x) {
|
||||
// Our edge belongs to the first curve section.
|
||||
@ -549,24 +567,25 @@ SkString GrStrokeTessellateShader::getTessEvaluationShaderGLSL(
|
||||
float angle0 = tessellationArgs.y;
|
||||
float radsPerSegment = tessellationArgs.z;
|
||||
|
||||
// Find a tangent matrix C' in power basis form. (This gives the derivative scaled by 1/3.)
|
||||
//
|
||||
// |T^2|
|
||||
// dx,dy (divided by 3) = tangent = C_ * | T|
|
||||
// | 1|
|
||||
mat3x2 C_ = P * mat3x4(-1, 3, -3, 1,
|
||||
2, -4, 2, 0,
|
||||
-1, 1, 0, 0);
|
||||
// Start by finding the cubic's power basis coefficients. These define a tangent direction
|
||||
// (scaled by a uniform 1/3) as:
|
||||
// |T^2|
|
||||
// Tangent_Direction(T) = dx,dy = |A 2B C| * |T |
|
||||
// |. . .| |1 |
|
||||
vec2 C = P[1] - P[0];
|
||||
vec2 D = P[2] - P[1];
|
||||
vec2 E = P[3] - P[0];
|
||||
vec2 B = D - C;
|
||||
vec2 A = fma(vec2(-3), D, E);
|
||||
|
||||
// Find the matrix C_s that produces an (arbitrarily scaled) tangent vector from a
|
||||
// parametric edge ID:
|
||||
// Now find the coefficients that give a tangent direction from a parametric edge ID:
|
||||
//
|
||||
// |parametricEdgeId^2|
|
||||
// C_s * | parametricEdgeId| = tangent * s
|
||||
// | 1|
|
||||
// |parametricEdgeID^2|
|
||||
// Tangent_Direction(parametricEdgeID) = dx,dy = |A B_ C_| * |parametricEdgeID |
|
||||
// |. . .| |1 |
|
||||
//
|
||||
mat3x2 C_s = mat3x2(C_[0], C_[1] * numParametricSegments,
|
||||
C_[2] * (numParametricSegments * numParametricSegments));
|
||||
vec2 B_ = B * (numParametricSegments * 2);
|
||||
vec2 C_ = C * (numParametricSegments * numParametricSegments);
|
||||
|
||||
// Run an O(log N) search to determine the highest parametric edge that is located on or
|
||||
// before the localEdgeID. A local edge ID is determined by the sum of complete parametric
|
||||
@ -583,8 +602,8 @@ SkString GrStrokeTessellateShader::getTessEvaluationShaderGLSL(
|
||||
// Test the parametric edge at lastParametricEdgeID + 2^exp.
|
||||
float testParametricID = lastParametricEdgeID + (1 << exp);
|
||||
if (testParametricID <= maxParametricEdgeID) {
|
||||
vec2 testTan = fma(vec2(testParametricID), C_s[0], C_s[1]);
|
||||
testTan = fma(vec2(testParametricID), testTan, C_s[2]);
|
||||
vec2 testTan = fma(vec2(testParametricID), A, B_);
|
||||
testTan = fma(vec2(testParametricID), testTan, C_);
|
||||
float cosRotation = dot(normalize(testTan), tan0norm);
|
||||
float maxRotation = fma(testParametricID, negAbsRadsPerSegment, maxRotation0);
|
||||
maxRotation = min(maxRotation, kPI);
|
||||
@ -605,35 +624,34 @@ SkString GrStrokeTessellateShader::getTessEvaluationShaderGLSL(
|
||||
// Now that we've identified the highest parametric edge on or before the localEdgeID, the
|
||||
// highest radial edge is easy:
|
||||
float lastRadialEdgeID = localEdgeID - lastParametricEdgeID;
|
||||
float radialAngle = fma(lastRadialEdgeID, radsPerSegment, angle0);
|
||||
|
||||
// Find the T value of the edge at lastRadialEdgeID. This is the point whose tangent angle
|
||||
// is equal to radialAngle, or whose tangent vector is orthogonal to "norm".
|
||||
// Find the tangent vector on the edge at lastRadialEdgeID.
|
||||
float radialAngle = fma(lastRadialEdgeID, radsPerSegment, angle0);
|
||||
vec2 tangent = vec2(cos(radialAngle), sin(radialAngle));
|
||||
vec2 norm = vec2(-tangent.y, tangent.x);
|
||||
|
||||
// Find the T value where the cubic's tangent is orthogonal to norm:
|
||||
// Find the T value where the cubic's tangent is orthogonal to norm. This is a quadratic:
|
||||
//
|
||||
// |T^2|
|
||||
// dot(tangent, norm) == 0: norm * C_ * | T| == 0
|
||||
// | 1|
|
||||
// dot(norm, Tangent_Direction(T)) == 0
|
||||
//
|
||||
// The coeffs for the quadratic equation we need to solve are therefore: norm * C_.
|
||||
vec3 coeffs = norm * C_;
|
||||
float a=coeffs.x, b=coeffs.y, c=coeffs.z;
|
||||
|
||||
// Quadratic formula from Numerical Recipes in C.
|
||||
float x = sqrt(max(b*b - 4*a*c, 0));
|
||||
if (b < 0) {
|
||||
x = -x;
|
||||
// |T^2|
|
||||
// norm * |A 2B C| * |T | == 0
|
||||
// |. . .| |1 |
|
||||
//
|
||||
vec3 coeffs = norm * mat3x2(A,B,C);
|
||||
float a=coeffs.x, b_over_2=coeffs.y, c=coeffs.z;
|
||||
float discr_over_4 = max(b_over_2*b_over_2 - a*c, 0);
|
||||
float q = sqrt(discr_over_4);
|
||||
if (b_over_2 > 0) {
|
||||
q = -q;
|
||||
}
|
||||
float q = -.5 * (b + x);
|
||||
q -= b_over_2;
|
||||
|
||||
// Roots are q/a and c/q. Since each curve section does not inflect or rotate more than 180
|
||||
// degrees, there can only be one tangent orthogonal to "norm" inside 0..1. Pick the root
|
||||
// nearest 0.5.
|
||||
float _5qa = .5*q*a;
|
||||
vec2 root = (abs(q*q - _5qa) < abs(a*c - _5qa)) ? vec2(q,a) : vec2(c,q);
|
||||
// nearest .5.
|
||||
float _5qa = -.5*q*a;
|
||||
vec2 root = (abs(fma(q,q,_5qa)) < abs(fma(a,c,_5qa))) ? vec2(q,a) : vec2(c,q);
|
||||
float radialT = (root.t != 0) ? root.s / root.t : 0;
|
||||
radialT = clamp(radialT, 0, 1);
|
||||
|
||||
@ -688,7 +706,7 @@ SkString GrStrokeTessellateShader::getTessEvaluationShaderGLSL(
|
||||
// Transform after tessellation. Stroke widths and normals are defined in (pre-transform) local
|
||||
// path space.
|
||||
if (!this->viewMatrix().isIdentity()) {
|
||||
code.append("vertexPos = uAffineMatrix * vertexPos + uTranslate;");
|
||||
code.append("vertexPos = mat2(uAffineMatrix) * vertexPos + uTranslate;");
|
||||
}
|
||||
|
||||
code.append(R"(
|
||||
|
@ -81,7 +81,7 @@ void GrTessellationPathRenderer::initAtlasFlags(GrRecordingContext* rContext) {
|
||||
// GrWangsFormula::worst_case_cubic(kLinearizationIntolerance, w, kMaxAtlasPathHeight^2 / w)
|
||||
// == maxTessellationSegments
|
||||
//
|
||||
float k = GrWangsFormula::cubic_k(kLinearizationIntolerance);
|
||||
float k = GrWangsFormula::cubic_constant(kLinearizationIntolerance);
|
||||
float h = kMaxAtlasPathHeight;
|
||||
float s = caps.shaderCaps()->maxTessellationSegments();
|
||||
// Quadratic formula from Numerical Recipes in C:
|
||||
|
@ -28,7 +28,7 @@ SK_ALWAYS_INLINE static int ceil_log2_sqrt_sqrt(float x) {
|
||||
}
|
||||
|
||||
// Constant term for the quatratic formula.
|
||||
constexpr float quadratic_k(float intolerance) {
|
||||
constexpr float quadratic_constant(float intolerance) {
|
||||
return .25f * intolerance;
|
||||
}
|
||||
|
||||
@ -43,7 +43,7 @@ SK_ALWAYS_INLINE static float quadratic_pow4(float intolerance, const SkPoint pt
|
||||
Sk2f v = p0 + p1*-2 + p2;
|
||||
v = vectorXform(v);
|
||||
Sk2f vv = v*v;
|
||||
float k = quadratic_k(intolerance);
|
||||
float k = quadratic_constant(intolerance);
|
||||
return k*k * (vv[0] + vv[1]);
|
||||
}
|
||||
|
||||
@ -62,7 +62,7 @@ SK_ALWAYS_INLINE static int quadratic_log2(float intolerance, const SkPoint pts[
|
||||
}
|
||||
|
||||
// Constant term for the cubic formula.
|
||||
constexpr float cubic_k(float intolerance) {
|
||||
constexpr float cubic_constant(float intolerance) {
|
||||
return .75f * intolerance;
|
||||
}
|
||||
|
||||
@ -78,7 +78,7 @@ SK_ALWAYS_INLINE static float cubic_pow4(float intolerance, const SkPoint pts[],
|
||||
v = vectorXform(v);
|
||||
Sk4f vv = v*v;
|
||||
vv = Sk4f::Max(vv, SkNx_shuffle<2,3,0,1>(vv));
|
||||
float k = cubic_k(intolerance);
|
||||
float k = cubic_constant(intolerance);
|
||||
return k*k * (vv[0] + vv[1]);
|
||||
}
|
||||
|
||||
@ -100,7 +100,7 @@ SK_ALWAYS_INLINE static int cubic_log2(float intolerance, const SkPoint pts[],
|
||||
// would ever need to be divided into. This is simply a special case of the cubic formula where we
|
||||
// maximize its value by placing control points on specific corners of the bounding box.
|
||||
SK_ALWAYS_INLINE static float worst_case_cubic(float intolerance, float devWidth, float devHeight) {
|
||||
float k = cubic_k(intolerance);
|
||||
float k = cubic_constant(intolerance);
|
||||
return SkScalarSqrt(2*k * SkVector::Length(devWidth, devHeight));
|
||||
}
|
||||
|
||||
@ -108,7 +108,7 @@ SK_ALWAYS_INLINE static float worst_case_cubic(float intolerance, float devWidth
|
||||
// size would ever need to be divided into.
|
||||
SK_ALWAYS_INLINE static int worst_case_cubic_log2(float intolerance, float devWidth,
|
||||
float devHeight) {
|
||||
float k = cubic_k(intolerance);
|
||||
float k = cubic_constant(intolerance);
|
||||
return ceil_log2_sqrt_sqrt(4*k*k * (devWidth * devWidth + devHeight * devHeight));
|
||||
}
|
||||
|
||||
|
@ -30,7 +30,7 @@ static float wangs_formula_quadratic_reference_impl(float intolerance, const SkP
|
||||
Sk2f p0 = Sk2f::Load(pts);
|
||||
Sk2f p1 = Sk2f::Load(pts + 1);
|
||||
Sk2f p2 = Sk2f::Load(pts + 2);
|
||||
float k = GrWangsFormula::quadratic_k(intolerance);
|
||||
float k = GrWangsFormula::quadratic_constant(intolerance);
|
||||
return SkScalarSqrt(k * length(p0 - p1*2 + p2));
|
||||
}
|
||||
|
||||
@ -39,7 +39,7 @@ static float wangs_formula_cubic_reference_impl(float intolerance, const SkPoint
|
||||
Sk2f p1 = Sk2f::Load(pts + 1);
|
||||
Sk2f p2 = Sk2f::Load(pts + 2);
|
||||
Sk2f p3 = Sk2f::Load(pts + 3);
|
||||
float k = GrWangsFormula::cubic_k(intolerance);
|
||||
float k = GrWangsFormula::cubic_constant(intolerance);
|
||||
return SkScalarSqrt(k * length(Sk2f::Max((p0 - p1*2 + p2).abs(),
|
||||
(p1 - p2*2 + p3).abs())));
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user