Clening up GrBinHashKey. Removing unnecessary streaming capability

BUG=http://code.google.com/p/skia/issues/detail?id=278
REVIEW=http://codereview.appspot.com/4910045/



git-svn-id: http://skia.googlecode.com/svn/trunk@2136 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
junov@google.com 2011-08-18 18:15:16 +00:00
parent 37ad8fb72f
commit f7c00f6be1
5 changed files with 68 additions and 255 deletions

View File

@ -13,213 +13,77 @@
#include "GrTypes.h"
/**
* Abstract base class that presents the building interface of GrBinHashKey.
* This base class allows builder methods to not know the exact template
* parameters of GrBinHashKey
*/
class GrBinHashKeyBuilder {
public:
GrBinHashKeyBuilder() {}
virtual ~GrBinHashKeyBuilder() {}
virtual void keyData(const uint32_t *dataToAdd, size_t len) = 0;
};
/**
* Hash function class than can take a data stream of indeterminate length.
* It also has the ability to recieve data in several chunks (steamed). The
* hash function used is the One-at-a-Time Hash
* Hash function class that can take a data chunk of any predetermined
* length. The hash function used is the One-at-a-Time Hash
* (http://burtleburtle.net/bob/hash/doobs.html).
*
* Keys are built in two passes the first pass builds the key until the
* allocated storage for the key runs out, raw data accumulation stops, but
* the calculation of the 32-bit hash value and total key length continue.
* The second pass is only necessary if storage ran-out during the first pass.
* If that is the case, the heap storage portion of the key will be
* re-allocated so that the entire key can be stored in the second pass.
*
* Code for building a key:
*
* GrBinHashKey<MyEntryStruct, MyStackSize> MyKey;
* while( MyKey->doPass() )
* {
* MyObject->buildKey(&MyKey); //invoke a builder method
* }
*
* All the builder method needs to do is make calls to the keyData method to
* append binary data to the key.
*/
template<typename Entry, size_t StackSize>
class GrBinHashKey : public GrBinHashKeyBuilder {
template<typename Entry, size_t KeySize>
class GrBinHashKey {
public:
GrBinHashKey()
: fA(0)
, fLength(0)
, fHeapData(NULL)
, fPhysicalSize(StackSize)
, fUseHeap(false)
, fPass(0)
: fHash(0)
#if GR_DEBUG
, fIsValid(true)
, fIsValid(false)
#endif
{}
private:
// Illegal: must choose explicitly between copyAndTakeOwnership
// and deepCopyFrom.
// Not inheriting GrNoncopyable, because it causes very obscure compiler
// errors with template classes, which are hard to trace back to the use
// of assignment.
GrBinHashKey(const GrBinHashKey<Entry, StackSize>&) {}
GrBinHashKey<Entry, StackSize>& operator=(const GrBinHashKey<Entry,
StackSize>&) {
return this;
GrBinHashKey(const GrBinHashKey<Entry, KeySize>& other) {
*this = other;
}
public:
void copyAndTakeOwnership(GrBinHashKey<Entry, StackSize>& key) {
GrAssert(key.fIsValid);
copyFields(key);
if (fUseHeap) {
key.fHeapData = NULL; // ownership transfer
}
// Consistency Checking
// To avoid the overhead of copying or ref-counting the dynamically
// allocated portion of the key, we use ownership transfer
// Key usability is only tracked in debug builds.
GR_DEBUGCODE(key.fIsValid = false;)
}
void deepCopyFrom(const GrBinHashKey<Entry, StackSize>& key) {
GrAssert(key.fIsValid);
copyFields(key);
if (fUseHeap) {
fHeapData = reinterpret_cast<uint8_t*>(
GrMalloc(sizeof(uint8_t) * fPhysicalSize));
memcpy(fHeapData, key.fHeapData, fLength);
}
GrBinHashKey<Entry, KeySize>& operator=(const GrBinHashKey<Entry,
KeySize>& other) {
memcpy(this, &other, sizeof(*this));
return *this;
}
virtual ~GrBinHashKey() {
if (fUseHeap) {
GrFree(fHeapData);
}
}
bool doPass() {
GrAssert(fIsValid);
if (0 == fPass) {
fPass++;
return true;
void setKeyData(const uint32_t *data) {
GrAssert(GrIsALIGN4(KeySize));
memcpy(&fData, data, KeySize);
fHash = 0;
size_t len = KeySize;
while (len >= 4) {
fHash += *data++;
fHash += (fHash << 10);
fHash ^= (fHash >> 6);
len -= 4;
}
if (1 == fPass) {
bool passNeeded = false;
if (fLength > fPhysicalSize) {
// If the first pass ran out of space the we need to
// re-allocate and perform a second pass
GrFree(fHeapData);
fHeapData = reinterpret_cast<uint8_t*>(
GrMalloc(sizeof(uint8_t) * fLength));
fPhysicalSize = fLength;
fUseHeap = true;
passNeeded = true;
fLength = 0;
}
fPass++;
return passNeeded;
}
return false;
fHash += (fHash << 3);
fHash ^= (fHash >> 11);
fHash += (fHash << 15);
#if GR_DEBUG
fIsValid = true;
#endif
}
void keyData(const uint32_t *dataToAdd, size_t len) {
GrAssert(fIsValid);
GrAssert(fPass);
GrAssert(GrIsALIGN4(len));
if (fUseHeap) {
GrAssert(fHeapData);
GrAssert(fLength + len <= fPhysicalSize);
memcpy(&fHeapData[fLength], dataToAdd, len );
} else {
if (fLength + len <= StackSize) {
memcpy(&fStackData[fLength], dataToAdd, len);
} else {
GrAssert(1 == fPass);
}
}
fLength += len;
if (1 == fPass) {
uint32_t a = fA;
while (len >= 4) {
a += *dataToAdd++;
a += (a << 10);
a ^= (a >> 6);
len -= 4;
}
a += (a << 3);
a ^= (a >> 11);
a += (a << 15);
fA = a;
}
}
int compare(const GrBinHashKey<Entry, StackSize>& key) const {
GrAssert(fIsValid);
if (fLength == key.fLength) {
GrAssert(fUseHeap == key.fUseHeap);
if(fUseHeap) {
return memcmp(fHeapData, key.fHeapData, fLength);
} else {
return memcmp(fStackData, key.fStackData, fLength);
}
}
return (fLength - key.fLength);
int compare(const GrBinHashKey<Entry, KeySize>& key) const {
GrAssert(fIsValid && key.fIsValid);
return memcmp(fData, key.fData, KeySize);
}
static bool
EQ(const Entry& entry, const GrBinHashKey<Entry, StackSize>& key) {
EQ(const Entry& entry, const GrBinHashKey<Entry, KeySize>& key) {
GrAssert(key.fIsValid);
return 0 == entry.compare(key);
}
static bool
LT(const Entry& entry, const GrBinHashKey<Entry, StackSize>& key) {
LT(const Entry& entry, const GrBinHashKey<Entry, KeySize>& key) {
GrAssert(key.fIsValid);
return entry.compare(key) < 0;
}
uint32_t getHash() const {
GrAssert(fIsValid);
return fA;
return fHash;
}
private:
void copyFields(const GrBinHashKey<Entry, StackSize>& src) {
if (fUseHeap) {
GrFree(fHeapData);
}
// We do a field-by-field copy because this is a non-POD
// class, and therefore memcpy would be bad
fA = src.fA;
fLength = src.fLength;
memcpy(fStackData, src.fStackData, StackSize);
fHeapData = src.fHeapData;
fPhysicalSize = src.fPhysicalSize;
fUseHeap = src.fUseHeap;
fPass = src.fPass;
}
uint32_t fA;
// For accumulating the variable length binary key
size_t fLength; // length of data accumulated so far
uint8_t fStackData[StackSize]; //Buffer for key storage
uint8_t* fHeapData; //Dynamically allocated extended key storage
size_t fPhysicalSize; //Total size available for key storage
bool fUseHeap; //Using a dynamically allocated key storage
int fPass; //Key generation pass counter
uint32_t fHash;
uint8_t fData[KeySize]; //Buffer for key storage
#if GR_DEBUG
public:

View File

@ -9,7 +9,6 @@
#include "GrGLProgram.h"
#include "GrBinHashKey.h"
#include "GrGLConfig.h"
#include "SkTrace.h"
@ -165,11 +164,6 @@ void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff,
}
}
void GrGLProgram::buildKey(GrBinHashKeyBuilder& key) const {
// Add stage configuration to the key
key.keyData(reinterpret_cast<const uint32_t*>(&fProgramDesc), sizeof(ProgramDesc));
}
// assigns modulation of two vars to an output var
// vars can be vec4s or floats (or one of each)
// result is always vec4

View File

@ -46,14 +46,6 @@ public:
GrGLProgram();
~GrGLProgram();
/**
* Streams data that can uniquely identifies the generated
* gpu program into a key, for cache indexing purposes.
*
* @param key The key object to receive the key data
*/
void buildKey(GrBinHashKeyBuilder& key) const;
/**
* This is the heavy initilization routine for building a GLProgram.
* The result of heavy init is not stored in datamembers of GrGLProgam,
@ -265,6 +257,15 @@ public:
}; // CachedData
enum Constants {
kProgramKeySize = sizeof(ProgramDesc)
};
// Provide an opaque ProgramDesc
const uint32_t* keyData() const{
return reinterpret_cast<const uint32_t*>(&fProgramDesc);
}
private:
enum {
kUseUniform = 2000

View File

@ -24,18 +24,14 @@ class GrGpuGLShaders::ProgramCache : public ::GrNoncopyable {
private:
class Entry;
#if GR_DEBUG
typedef GrBinHashKey<Entry, 4> ProgramHashKey; // Flex the dynamic allocation muscle in debug
#else
typedef GrBinHashKey<Entry, 64> ProgramHashKey;
#endif
typedef GrBinHashKey<Entry, GrGLProgram::kProgramKeySize> ProgramHashKey;
class Entry : public ::GrNoncopyable {
public:
Entry() {}
void copyAndTakeOwnership(Entry& entry) {
fProgramData.copyAndTakeOwnership(entry.fProgramData);
fKey.copyAndTakeOwnership(entry.fKey); // ownership transfer
fKey = entry.fKey; // ownership transfer
fLRUStamp = entry.fLRUStamp;
}
@ -84,9 +80,8 @@ public:
GrGLProgram::CachedData* getProgramData(const GrGLProgram& desc) {
Entry newEntry;
while (newEntry.fKey.doPass()) {
desc.buildKey(newEntry.fKey);
}
newEntry.fKey.setKeyData(desc.keyData());
Entry* entry = fHashCache.find(newEntry.fKey);
if (NULL == entry) {
if (!desc.genProgram(&newEntry.fProgramData)) {

View File

@ -77,72 +77,31 @@ class BogusEntry {};
static void test_binHashKey()
{
const char* testStringA = "abcdABCD";
const char* testStringB = "abcdBBCD";
const char* testStringA_ = "abcdABCD";
const char* testStringB_ = "abcdBBCD";
const uint32_t* testStringA = reinterpret_cast<const uint32_t*>(testStringA_);
const uint32_t* testStringB = reinterpret_cast<const uint32_t*>(testStringB_);
enum {
kDataLenUsedForKey = 8
};
typedef GrBinHashKey<BogusEntry, kDataLenUsedForKey> KeyType;
class Entry {};
KeyType keyA;
int passCnt = 0;
while (keyA.doPass()) {
++passCnt;
keyA.keyData(reinterpret_cast<const uint32_t*>(testStringA), kDataLenUsedForKey);
}
GrAssert(passCnt == 1); //We expect the static allocation to suffice
GrBinHashKey<BogusEntry, kDataLenUsedForKey-1> keyBust;
passCnt = 0;
while (keyBust.doPass()) {
++passCnt;
// Exceed static storage by 1
keyBust.keyData(reinterpret_cast<const uint32_t*>(testStringA), kDataLenUsedForKey);
}
GrAssert(passCnt == 2); //We expect dynamic allocation to be necessary
GrAssert(keyA.getHash() == keyBust.getHash());
// Test that adding keyData in chunks gives
// the same hash as with one chunk
KeyType keyA2;
while (keyA2.doPass()) {
keyA2.keyData(reinterpret_cast<const uint32_t*>(testStringA), 4);
keyA2.keyData(&reinterpret_cast<const uint32_t*>(testStringA)[4], kDataLenUsedForKey-4);
}
GrBinHashKey<Entry, kDataLenUsedForKey> keyA;
keyA.setKeyData(testStringA);
// test copy constructor and comparison
GrBinHashKey<Entry, kDataLenUsedForKey> keyA2(keyA);
GrAssert(keyA.compare(keyA2) == 0);
GrAssert(keyA.getHash() == keyA2.getHash());
KeyType keyB;
while (keyB.doPass()){
keyB.keyData(reinterpret_cast<const uint32_t*>(testStringB), kDataLenUsedForKey);
}
// test re-init
keyA2.setKeyData(testStringA);
GrAssert(keyA.compare(keyA2) == 0);
GrAssert(keyA.getHash() == keyA2.getHash());
// test sorting
GrBinHashKey<Entry, kDataLenUsedForKey> keyB;
keyB.setKeyData(testStringB);
GrAssert(keyA.compare(keyB) < 0);
GrAssert(keyA.compare(keyA2) == 0);
//Test ownership tranfer and copying
keyB.copyAndTakeOwnership(keyA);
GrAssert(keyA.fIsValid == false);
GrAssert(keyB.fIsValid);
GrAssert(keyB.getHash() == keyA2.getHash());
GrAssert(keyB.compare(keyA2) == 0);
keyA.deepCopyFrom(keyB);
GrAssert(keyA.fIsValid);
GrAssert(keyB.fIsValid);
GrAssert(keyA.getHash() == keyA2.getHash());
GrAssert(keyA.compare(keyA2) == 0);
//Test ownership tranfer and copying with key on heap
GrBinHashKey<BogusEntry, kDataLenUsedForKey-1> keyBust2;
keyBust2.deepCopyFrom(keyBust);
GrAssert(keyBust.fIsValid);
GrAssert(keyBust2.fIsValid);
GrAssert(keyBust.getHash() == keyBust2.getHash());
GrAssert(keyBust.compare(keyBust2) == 0);
GrBinHashKey<BogusEntry, kDataLenUsedForKey-1> keyBust3;
keyBust3.deepCopyFrom(keyBust);
GrAssert(keyBust.fIsValid == false);
GrAssert(keyBust3.fIsValid);
GrAssert(keyBust3.getHash() == keyBust2.getHash());
GrAssert(keyBust3.compare(keyBust2) == 0);
GrAssert(keyA.getHash() != keyB.getHash());
}
static void test_convex() {