Avoid loop-dependent behavior in GrMemoryPoolBench

This helps stability of benchmark across repeated runs, and across code
changes. Previously, a change to the tuned loop count could radically
change the allocation behavior within the loop's iteration and lead to
unfair comparisons.

In addition, this separates the stack allocation pattern into N allocations
followed by N LIFO releases, and a push-pop alternating pattern of N
allocates and releases (so still LIFO, but reuses the memory at the start
of a block).

In later CLs experimenting on the memory pool, I found that there were
surprising effects on performance linked to the specific interaction between
the allocation size, per-allocation metadata, and per-block metadata. To
help differentiate these coincidences, this adds two modes of allocation
where one should already be aligned.

It also moves away from a global pool, so that it's possible to benchmark
on different block sizes and factor in the allocation/release cost of the
actual blocks (vs. the cursor management of a larger sized pool). As part
of this, the new/delete reference operator is added as an explicit benchmark.

Change-Id: I12b8c11cb75db0df70460fe2e8cf6c029db7eb22
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/262936
Commit-Queue: Michael Ludwig <michaelludwig@google.com>
Reviewed-by: Brian Salomon <bsalomon@google.com>
This commit is contained in:
Michael Ludwig 2020-01-07 16:29:14 -05:00 committed by Skia Commit-Bot
parent fa424b2e6a
commit f811fc331a

View File

@ -5,185 +5,204 @@
* found in the LICENSE file.
*/
#include "include/core/SkTypes.h"
#include "bench/Benchmark.h"
#include "include/private/SkTDArray.h"
#include "include/private/SkTemplates.h"
#include "include/private/GrTypesPriv.h"
#include "include/utils/SkRandom.h"
#include "src/gpu/GrMemoryPool.h"
#include <new>
// change this to 0 to compare GrMemoryPool to default new / delete
#define OVERRIDE_NEW 1
struct A {
int gStuff[10];
#if OVERRIDE_NEW
void* operator new(size_t size) { return gBenchPool->allocate(size); }
void operator delete(void* mem) {
if (mem) {
return gBenchPool->release(mem);
}
}
#endif
static std::unique_ptr<GrMemoryPool> gBenchPool;
// sizeof is a multiple of GrMemoryPool::kAlignment
struct Aligned {
int fStuff[12]; // Will align on 4, 8, or 16 alignment
};
std::unique_ptr<GrMemoryPool> A::gBenchPool = GrMemoryPool::Make(10 * (1 << 10), 10 * (1 << 10));
static_assert(sizeof(Aligned) % GrMemoryPool::kAlignment == 0);
/**
* This benchmark creates and deletes objects in stack order
*/
class GrMemoryPoolBenchStack : public Benchmark {
public:
bool isSuitableFor(Backend backend) override {
return backend == kNonRendering_Backend;
}
// sizeof is not a multiple of GrMemoryPool::kAlignment
struct Unaligned {
int fStuff[9]; // Will not align on 8 or 16, but will on 4...
};
static_assert(sizeof(Unaligned) % GrMemoryPool::kAlignment != 0);
protected:
const char* onGetName() override {
return "grmemorypool_stack";
}
// All benchmarks create and delete the same number of objects. The key difference is the order
// of operations, the size of the objects being allocated, and the size of the pool.
typedef void (*RunBenchProc)(GrMemoryPool*, int);
void onDraw(int loops, SkCanvas*) override {
SkRandom r;
enum {
kMaxObjects = 4 * (1 << 10),
};
A* objects[kMaxObjects];
// We delete if a random number [-1, 1] is < the thresh. Otherwise,
// we allocate. We start allocate-biased and ping-pong to delete-biased
SkScalar delThresh = -SK_ScalarHalf;
const int kSwitchThreshPeriod = loops / (2 * kMaxObjects);
int s = 0;
int count = 0;
for (int i = 0; i < loops; i++, ++s) {
if (kSwitchThreshPeriod == s) {
delThresh = -delThresh;
s = 0;
}
SkScalar del = r.nextSScalar1();
if (count &&
(kMaxObjects == count || del < delThresh)) {
delete objects[count-1];
--count;
// N objects are created, and then destroyed in reverse order (fully unwinding the cursor within
// each block of the memory pool).
template <typename T>
static void run_stack(GrMemoryPool* pool, int loops) {
static const int kMaxObjects = 4 * (1 << 10);
T* objs[kMaxObjects];
for (int i = 0; i < loops; ++i) {
// Push N objects into the pool (or heap if pool is null)
for (int j = 0; j < kMaxObjects; ++j) {
objs[j] = pool ? (T*) pool->allocate(sizeof(T)) : new T;
}
// Pop N objects off in LIFO order
for (int j = kMaxObjects - 1; j >= 0; --j) {
if (pool) {
pool->release(objs[j]);
} else {
objects[count] = new A;
++count;
delete objs[j];
}
}
for (int i = 0; i < count; ++i) {
delete objects[i];
// Everything has been cleaned up for the next loop
}
}
// N objects are created, and then destroyed in creation order (is not able to unwind the cursor
// within each block, but can reclaim the block once everything is destroyed).
template <typename T>
static void run_queue(GrMemoryPool* pool, int loops) {
static const int kMaxObjects = 4 * (1 << 10);
T* objs[kMaxObjects];
for (int i = 0; i < loops; ++i) {
// Push N objects into the pool (or heap if pool is null)
for (int j = 0; j < kMaxObjects; ++j) {
objs[j] = pool ? (T*) pool->allocate(sizeof(T)) : new T;
}
}
private:
typedef Benchmark INHERITED;
};
struct B {
int gStuff[10];
#if OVERRIDE_NEW
void* operator new(size_t size) { return gBenchPool->allocate(size); }
void operator delete(void* mem) {
if (mem) {
return gBenchPool->release(mem);
}
}
#endif
static std::unique_ptr<GrMemoryPool> gBenchPool;
};
std::unique_ptr<GrMemoryPool> B::gBenchPool = GrMemoryPool::Make(10 * (1 << 10), 10 * (1 << 10));
/**
* This benchmark creates objects and deletes them in random order
*/
class GrMemoryPoolBenchRandom : public Benchmark {
public:
bool isSuitableFor(Backend backend) override {
return backend == kNonRendering_Backend;
}
protected:
const char* onGetName() override {
return "grmemorypool_random";
}
void onDraw(int loops, SkCanvas*) override {
SkRandom r;
enum {
kMaxObjects = 4 * (1 << 10),
};
std::unique_ptr<B> objects[kMaxObjects];
for (int i = 0; i < loops; i++) {
uint32_t idx = r.nextRangeU(0, kMaxObjects-1);
if (nullptr == objects[idx].get()) {
objects[idx].reset(new B);
// Pop N objects off in FIFO order
for (int j = 0; j < kMaxObjects; ++j) {
if (pool) {
pool->release(objs[j]);
} else {
objects[idx].reset();
delete objs[j];
}
}
// Everything has been cleaned up for the next loop
}
}
private:
typedef Benchmark INHERITED;
};
struct C {
int gStuff[10];
#if OVERRIDE_NEW
void* operator new(size_t size) { return gBenchPool->allocate(size); }
void operator delete(void* mem) {
if (mem) {
return gBenchPool->release(mem);
// N objects are created and immediately destroyed, so space at the start of the pool should be
// immediately reclaimed.
template <typename T>
static void run_pushpop(GrMemoryPool* pool, int loops) {
static const int kMaxObjects = 4 * (1 << 10);
T* objs[kMaxObjects];
for (int i = 0; i < loops; ++i) {
// Push N objects into the pool (or heap if pool is null)
for (int j = 0; j < kMaxObjects; ++j) {
if (pool) {
objs[j] = (T*) pool->allocate(sizeof(T));
pool->release(objs[j]);
} else {
objs[j] = new T;
delete objs[j];
}
}
}
#endif
static std::unique_ptr<GrMemoryPool> gBenchPool;
};
std::unique_ptr<GrMemoryPool> C::gBenchPool = GrMemoryPool::Make(10 * (1 << 10), 10 * (1 << 10));
/**
* This benchmark creates objects and deletes them in queue order
*/
class GrMemoryPoolBenchQueue : public Benchmark {
enum {
M = 4 * (1 << 10),
// Everything has been cleaned up for the next loop
}
}
// N object creations and destructions are invoked in random order.
template <typename T>
static void run_random(GrMemoryPool* pool, int loops) {
static const int kMaxObjects = 4 * (1 << 10);
T* objs[kMaxObjects];
for (int i = 0; i < kMaxObjects; ++i) {
objs[i] = nullptr;
}
auto del = [&](int j) {
// Delete
if (pool) {
pool->release(objs[j]);
} else {
delete objs[j];
}
objs[j] = nullptr;
};
SkRandom r;
for (int i = 0; i < loops; ++i) {
// Execute 2*kMaxObjects operations, which should average to N create and N destroy,
// followed by a small number of remaining deletions.
for (int j = 0; j < 2 * kMaxObjects; ++j) {
int k = r.nextRangeU(0, kMaxObjects-1);
if (objs[k]) {
del(k);
} else {
// Create
objs[k] = pool ? (T*) pool->allocate(sizeof(T)) : new T;
}
}
// Ensure everything is null for the next loop
for (int j = 0; j < kMaxObjects; ++j) {
if (objs[j]) {
del(j);
}
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
class GrMemoryPoolBench : public Benchmark {
public:
GrMemoryPoolBench(const char* name, RunBenchProc proc, int poolSize)
: fPoolSize(poolSize)
, fProc(proc) {
fName.printf("grmemorypool_%s", name);
}
bool isSuitableFor(Backend backend) override {
return backend == kNonRendering_Backend;
}
protected:
const char* onGetName() override {
return "grmemorypool_queue";
return fName.c_str();
}
void onDraw(int loops, SkCanvas*) override {
SkRandom r;
C* objects[M];
for (int i = 0; i < loops; i++) {
uint32_t count = r.nextRangeU(0, M-1);
for (uint32_t i = 0; i < count; i++) {
objects[i] = new C;
}
for (uint32_t i = 0; i < count; i++) {
delete objects[i];
}
}
std::unique_ptr<GrMemoryPool> pool;
if (fPoolSize > 0) {
pool = GrMemoryPool::Make(fPoolSize, fPoolSize);
} // else keep it null to test regular new/delete performance
fProc(pool.get(), loops);
}
private:
SkString fName;
int fPoolSize;
RunBenchProc fProc;
typedef Benchmark INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////
DEF_BENCH( return new GrMemoryPoolBenchStack(); )
DEF_BENCH( return new GrMemoryPoolBenchRandom(); )
DEF_BENCH( return new GrMemoryPoolBenchQueue(); )
static const int kLargePool = 10 * (1 << 10);
static const int kSmallPool = GrMemoryPool::kMinAllocationSize;
DEF_BENCH( return new GrMemoryPoolBench("stack_aligned_lg", run_stack<Aligned>, kLargePool); )
DEF_BENCH( return new GrMemoryPoolBench("stack_aligned_sm", run_stack<Aligned>, kSmallPool); )
DEF_BENCH( return new GrMemoryPoolBench("stack_aligned_ref", run_stack<Aligned>, 0); )
DEF_BENCH( return new GrMemoryPoolBench("stack_unaligned_lg", run_stack<Unaligned>, kLargePool); )
DEF_BENCH( return new GrMemoryPoolBench("stack_unaligned_sm", run_stack<Unaligned>, kSmallPool); )
DEF_BENCH( return new GrMemoryPoolBench("stack_unaligned_ref", run_stack<Unaligned>, 0); )
DEF_BENCH( return new GrMemoryPoolBench("queue_aligned_lg", run_queue<Aligned>, kLargePool); )
DEF_BENCH( return new GrMemoryPoolBench("queue_aligned_sm", run_queue<Aligned>, kSmallPool); )
DEF_BENCH( return new GrMemoryPoolBench("queue_aligned_ref", run_queue<Aligned>, 0); )
DEF_BENCH( return new GrMemoryPoolBench("queue_unaligned_lg", run_queue<Unaligned>, kLargePool); )
DEF_BENCH( return new GrMemoryPoolBench("queue_unaligned_sm", run_queue<Unaligned>, kSmallPool); )
DEF_BENCH( return new GrMemoryPoolBench("queue_unaligned_ref", run_queue<Unaligned>, 0); )
DEF_BENCH( return new GrMemoryPoolBench("pushpop_aligned_lg", run_pushpop<Aligned>, kLargePool); )
DEF_BENCH( return new GrMemoryPoolBench("pushpop_aligned_sm", run_pushpop<Aligned>, kSmallPool); )
// DEF_BENCH( return new GrMemoryPoolBench("pushpop_aligned_ref", run_pushpop<Aligned>, 0); )
DEF_BENCH( return new GrMemoryPoolBench("pushpop_unaligned_lg", run_pushpop<Unaligned>, kLargePool); )
DEF_BENCH( return new GrMemoryPoolBench("pushpop_unaligned_sm", run_pushpop<Unaligned>, kSmallPool); )
// DEF_BENCH( return new GrMemoryPoolBench("pushpop_unaligned_ref", run_pushpop<Unaligned>, 0); )
// pushpop_x_ref are not meaningful because the compiler completely optimizes away new T; delete *.
DEF_BENCH( return new GrMemoryPoolBench("random_aligned_lg", run_random<Aligned>, kLargePool); )
DEF_BENCH( return new GrMemoryPoolBench("random_aligned_sm", run_random<Aligned>, kSmallPool); )
DEF_BENCH( return new GrMemoryPoolBench("random_aligned_ref", run_random<Aligned>, 0); )
DEF_BENCH( return new GrMemoryPoolBench("random_unaligned_lg", run_random<Unaligned>, kLargePool); )
DEF_BENCH( return new GrMemoryPoolBench("random_unaligned_sm", run_random<Unaligned>, kSmallPool); )
DEF_BENCH( return new GrMemoryPoolBench("random_unaligned_ref", run_random<Unaligned>, 0); )