Reverting r11777 (ARM Skia NEON patches - 30 - Xfermode: NEON modeprocs) due to Chromium compilation failure

git-svn-id: http://skia.googlecode.com/svn/trunk@11799 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
robertphillips@google.com 2013-10-16 01:12:38 +00:00
parent 607b3a93e0
commit f8dd38424c
8 changed files with 148 additions and 741 deletions

View File

@ -22,7 +22,6 @@
'../include/utils',
'../include/xml',
'../src/core',
'../src/opts',
'../src/image',
],
'sources': [

View File

@ -173,7 +173,6 @@
'../src/opts/SkBitmapProcState_matrix_clamp_neon.h',
'../src/opts/SkBitmapProcState_matrix_repeat_neon.h',
'../src/opts/SkBlitRow_opts_arm_neon.cpp',
'../src/opts/SkXfermode_opts_arm_neon.cpp',
],
},
],

View File

@ -13,11 +13,6 @@
#include "SkFlattenableBuffers.h"
#include "SkMathPriv.h"
#include "SkString.h"
#include "SkUtilsArm.h"
#if !SK_ARM_NEON_IS_NONE
#include "SkXfermode_opts_arm_neon.h"
#endif
SK_DEFINE_INST_COUNT(SkXfermode)
@ -1955,7 +1950,4 @@ SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkXfermode)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSrcXfermode)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkDstInXfermode)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkDstOutXfermode)
#if !SK_ARM_NEON_IS_NONE
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkNEONProcCoeffXfermode)
#endif
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END

View File

@ -53,10 +53,6 @@ protected:
virtual void flatten(SkFlattenableWriteBuffer& buffer) const SK_OVERRIDE;
Mode getMode() const {
return fMode;
}
private:
Mode fMode;
Coeff fSrcCoeff, fDstCoeff;

View File

@ -3,30 +3,9 @@
#include "SkTypes.h"
#include <arm_neon.h>
#define NEON_A (SK_A32_SHIFT / 8)
#define NEON_R (SK_R32_SHIFT / 8)
#define NEON_G (SK_G32_SHIFT / 8)
#define NEON_B (SK_B32_SHIFT / 8)
static inline uint16x8_t SkAlpha255To256_neon8(uint8x8_t alpha) {
return vaddw_u8(vdupq_n_u16(1), alpha);
}
static inline uint8x8_t SkAlphaMul_neon8(uint8x8_t color, uint16x8_t scale) {
return vshrn_n_u16(vmovl_u8(color) * scale, 8);
}
static inline uint8x8x4_t SkAlphaMulQ_neon8(uint8x8x4_t color, uint16x8_t scale) {
uint8x8x4_t ret;
ret.val[NEON_A] = SkAlphaMul_neon8(color.val[NEON_A], scale);
ret.val[NEON_R] = SkAlphaMul_neon8(color.val[NEON_R], scale);
ret.val[NEON_G] = SkAlphaMul_neon8(color.val[NEON_G], scale);
ret.val[NEON_B] = SkAlphaMul_neon8(color.val[NEON_B], scale);
return ret;
}
#endif /* #ifndef SkColor_opts_neon_DEFINED */

View File

@ -1,16 +1,158 @@
#include "SkXfermode.h"
#include "SkXfermode_proccoeff.h"
#include "SkColorPriv.h"
#include "SkUtilsArm.h"
extern SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_neon(const ProcCoeff& rec,
SkXfermode::Mode mode);
#if !SK_ARM_NEON_IS_NONE
SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl(const ProcCoeff& rec,
SkXfermode::Mode mode) {
return NULL;
#include <arm_neon.h>
////////////////////////////////////////////////////////////////////////////////
typedef uint8x8x4_t (*SkXfermodeProcSIMD)(uint8x8x4_t src, uint8x8x4_t dst);
class SkNEONProcCoeffXfermode : public SkProcCoeffXfermode {
public:
SkNEONProcCoeffXfermode(const ProcCoeff& rec, SkXfermode::Mode mode,
SkXfermodeProcSIMD procSIMD)
: INHERITED(rec, mode), fProcSIMD(procSIMD) {}
virtual void xfer32(SkPMColor dst[], const SkPMColor src[], int count,
const SkAlpha aa[]) const SK_OVERRIDE;
SK_DEVELOPER_TO_STRING()
SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkNEONProcCoeffXfermode)
private:
SkNEONProcCoeffXfermode(SkFlattenableReadBuffer& buffer)
: INHERITED(buffer) {
fProcSIMD = NULL;
if (!buffer.isCrossProcess()) {
fProcSIMD = (SkXfermodeProcSIMD)buffer.readFunctionPtr();
}
}
virtual void flatten(SkFlattenableWriteBuffer& buffer) const SK_OVERRIDE;
SkXfermodeProcSIMD fProcSIMD;
typedef SkProcCoeffXfermode INHERITED;
};
void SkNEONProcCoeffXfermode::xfer32(SkPMColor dst[], const SkPMColor src[],
int count, const SkAlpha aa[]) const {
SkASSERT(dst && src && count >= 0);
SkXfermodeProc proc = this->getProc();
SkXfermodeProcSIMD procSIMD = fProcSIMD;
if (NULL == aa) {
// Unrolled NEON code
while (count >= 8) {
uint8x8x4_t vsrc, vdst, vres;
asm volatile (
"vld4.u8 %h[vsrc], [%[src]]! \t\n"
"vld4.u8 %h[vdst], [%[dst]] \t\n"
: [vsrc] "=w" (vsrc), [vdst] "=w" (vdst)
: [src] "r" (src), [dst] "r" (dst)
:
);
vres = procSIMD(vsrc, vdst);
vst4_u8((uint8_t*)dst, vres);
count -= 8;
dst += 8;
}
// Leftovers
for (int i = 0; i < count; i++) {
dst[i] = proc(src[i], dst[i]);
}
} else {
for (int i = count - 1; i >= 0; --i) {
unsigned a = aa[i];
if (0 != a) {
SkPMColor dstC = dst[i];
SkPMColor C = proc(src[i], dstC);
if (a != 0xFF) {
C = SkFourByteInterp(C, dstC, a);
}
dst[i] = C;
}
}
}
}
#ifdef SK_DEVELOPER
void SkNEONProcCoeffXfermode::toString(SkString* str) const {
this->INHERITED::toString(str);
}
#endif
void SkNEONProcCoeffXfermode::flatten(SkFlattenableWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
if (!buffer.isCrossProcess()) {
buffer.writeFunctionPtr((void*)fProcSIMD);
}
}
////////////////////////////////////////////////////////////////////////////////
SkXfermodeProcSIMD gNEONXfermodeProcs[] = {
[SkXfermode::kClear_Mode] = NULL,
[SkXfermode::kSrc_Mode] = NULL,
[SkXfermode::kDst_Mode] = NULL,
[SkXfermode::kSrcOver_Mode] = NULL,
[SkXfermode::kDstOver_Mode] = NULL,
[SkXfermode::kSrcIn_Mode] = NULL,
[SkXfermode::kDstIn_Mode] = NULL,
[SkXfermode::kSrcOut_Mode] = NULL,
[SkXfermode::kDstOut_Mode] = NULL,
[SkXfermode::kSrcATop_Mode] = NULL,
[SkXfermode::kDstATop_Mode] = NULL,
[SkXfermode::kXor_Mode] = NULL,
[SkXfermode::kPlus_Mode] = NULL,
[SkXfermode::kModulate_Mode]= NULL,
[SkXfermode::kScreen_Mode] = NULL,
[SkXfermode::kOverlay_Mode] = NULL,
[SkXfermode::kDarken_Mode] = NULL,
[SkXfermode::kLighten_Mode] = NULL,
[SkXfermode::kColorDodge_Mode] = NULL,
[SkXfermode::kColorBurn_Mode] = NULL,
[SkXfermode::kHardLight_Mode] = NULL,
[SkXfermode::kSoftLight_Mode] = NULL,
[SkXfermode::kDifference_Mode] = NULL,
[SkXfermode::kExclusion_Mode] = NULL,
[SkXfermode::kMultiply_Mode] = NULL,
[SkXfermode::kHue_Mode] = NULL,
[SkXfermode::kSaturation_Mode] = NULL,
[SkXfermode::kColor_Mode] = NULL,
[SkXfermode::kLuminosity_Mode] = NULL,
};
SK_COMPILE_ASSERT(
SK_ARRAY_COUNT(gNEONXfermodeProcs) == SkXfermode::kLastMode + 1,
mode_count_arm
);
#endif
SkProcCoeffXfermode* SkPlatformXfermodeFactory(const ProcCoeff& rec,
SkXfermode::Mode mode) {
return SK_ARM_NEON_WRAP(SkPlatformXfermodeFactory_impl)(rec, mode);
#if !SK_ARM_NEON_IS_NONE
#if SK_ARM_NEON_IS_DYNAMIC
if ((sk_cpu_arm_has_neon()) && (gNEONXfermodeProcs[mode] != NULL)) {
#elif SK_ARM_NEON_IS_ALWAYS
if (gNEONXfermodeProcs[mode] != NULL) {
#endif
return SkNEW_ARGS(SkNEONProcCoeffXfermode,
(rec, mode, gNEONXfermodeProcs[mode]));
}
#endif
return NULL;
}

View File

@ -1,673 +0,0 @@
#include "SkXfermode.h"
#include "SkXfermode_proccoeff.h"
#include "SkColorPriv.h"
#include <arm_neon.h>
#include "SkColor_opts_neon.h"
#include "SkXfermode_opts_arm_neon.h"
#define SkAlphaMulAlpha(a, b) SkMulDiv255Round(a, b)
////////////////////////////////////////////////////////////////////////////////
// NEONized skia functions
////////////////////////////////////////////////////////////////////////////////
static inline uint8x8_t SkAlphaMulAlpha_neon8(uint8x8_t color, uint8x8_t alpha) {
uint16x8_t tmp;
uint8x8_t ret;
tmp = vmull_u8(color, alpha);
tmp = vaddq_u16(tmp, vdupq_n_u16(128));
tmp = vaddq_u16(tmp, vshrq_n_u16(tmp, 8));
ret = vshrn_n_u16(tmp, 8);
return ret;
}
static inline uint16x8_t SkAlphaMulAlpha_neon8_16(uint8x8_t color, uint8x8_t alpha) {
uint16x8_t ret;
ret = vmull_u8(color, alpha);
ret = vaddq_u16(ret, vdupq_n_u16(128));
ret = vaddq_u16(ret, vshrq_n_u16(ret, 8));
ret = vshrq_n_u16(ret, 8);
return ret;
}
static inline uint8x8_t SkDiv255Round_neon8_32_8(int32x4_t p1, int32x4_t p2) {
uint16x8_t tmp;
tmp = vcombine_u16(vmovn_u32(vreinterpretq_u32_s32(p1)),
vmovn_u32(vreinterpretq_u32_s32(p2)));
tmp += vdupq_n_u16(128);
tmp += vshrq_n_u16(tmp, 8);
return vshrn_n_u16(tmp, 8);
}
static inline uint16x8_t SkDiv255Round_neon8_16_16(uint16x8_t prod) {
prod += vdupq_n_u16(128);
prod += vshrq_n_u16(prod, 8);
return vshrq_n_u16(prod, 8);
}
static inline uint8x8_t clamp_div255round_simd8_32(int32x4_t val1, int32x4_t val2) {
uint8x8_t ret;
uint32x4_t cmp1, cmp2;
uint16x8_t cmp16;
uint8x8_t cmp8, cmp8_1;
// Test if <= 0
cmp1 = vcleq_s32(val1, vdupq_n_s32(0));
cmp2 = vcleq_s32(val2, vdupq_n_s32(0));
cmp16 = vcombine_u16(vmovn_u32(cmp1), vmovn_u32(cmp2));
cmp8_1 = vmovn_u16(cmp16);
// Init to zero
ret = vdup_n_u8(0);
// Test if >= 255*255
cmp1 = vcgeq_s32(val1, vdupq_n_s32(255*255));
cmp2 = vcgeq_s32(val2, vdupq_n_s32(255*255));
cmp16 = vcombine_u16(vmovn_u32(cmp1), vmovn_u32(cmp2));
cmp8 = vmovn_u16(cmp16);
// Insert 255 where true
ret = vbsl_u8(cmp8, vdup_n_u8(255), ret);
// Calc SkDiv255Round
uint8x8_t div = SkDiv255Round_neon8_32_8(val1, val2);
// Insert where false and previous test false
cmp8 = cmp8 | cmp8_1;
ret = vbsl_u8(cmp8, ret, div);
// Return the final combination
return ret;
}
////////////////////////////////////////////////////////////////////////////////
// 8 pixels modeprocs
////////////////////////////////////////////////////////////////////////////////
uint8x8x4_t dstover_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint16x8_t src_scale;
src_scale = vsubw_u8(vdupq_n_u16(256), dst.val[NEON_A]);
ret.val[NEON_A] = dst.val[NEON_A] + SkAlphaMul_neon8(src.val[NEON_A], src_scale);
ret.val[NEON_R] = dst.val[NEON_R] + SkAlphaMul_neon8(src.val[NEON_R], src_scale);
ret.val[NEON_G] = dst.val[NEON_G] + SkAlphaMul_neon8(src.val[NEON_G], src_scale);
ret.val[NEON_B] = dst.val[NEON_B] + SkAlphaMul_neon8(src.val[NEON_B], src_scale);
return ret;
}
uint8x8x4_t srcin_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint16x8_t scale;
scale = SkAlpha255To256_neon8(dst.val[NEON_A]);
ret.val[NEON_A] = SkAlphaMul_neon8(src.val[NEON_A], scale);
ret.val[NEON_R] = SkAlphaMul_neon8(src.val[NEON_R], scale);
ret.val[NEON_G] = SkAlphaMul_neon8(src.val[NEON_G], scale);
ret.val[NEON_B] = SkAlphaMul_neon8(src.val[NEON_B], scale);
return ret;
}
uint8x8x4_t dstin_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint16x8_t scale;
scale = SkAlpha255To256_neon8(src.val[NEON_A]);
ret = SkAlphaMulQ_neon8(dst, scale);
return ret;
}
uint8x8x4_t srcout_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint16x8_t scale = vsubw_u8(vdupq_n_u16(256), dst.val[NEON_A]);
ret = SkAlphaMulQ_neon8(src, scale);
return ret;
}
uint8x8x4_t dstout_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint16x8_t scale = vsubw_u8(vdupq_n_u16(256), src.val[NEON_A]);
ret = SkAlphaMulQ_neon8(dst, scale);
return ret;
}
uint8x8x4_t srcatop_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint8x8_t isa;
isa = vsub_u8(vdup_n_u8(255), src.val[NEON_A]);
ret.val[NEON_A] = dst.val[NEON_A];
ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], dst.val[NEON_A])
+ SkAlphaMulAlpha_neon8(dst.val[NEON_R], isa);
ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], dst.val[NEON_A])
+ SkAlphaMulAlpha_neon8(dst.val[NEON_G], isa);
ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], dst.val[NEON_A])
+ SkAlphaMulAlpha_neon8(dst.val[NEON_B], isa);
return ret;
}
uint8x8x4_t dstatop_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint8x8_t ida;
ida = vsub_u8(vdup_n_u8(255), dst.val[NEON_A]);
ret.val[NEON_A] = src.val[NEON_A];
ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], ida)
+ SkAlphaMulAlpha_neon8(dst.val[NEON_R], src.val[NEON_A]);
ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], ida)
+ SkAlphaMulAlpha_neon8(dst.val[NEON_G], src.val[NEON_A]);
ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], ida)
+ SkAlphaMulAlpha_neon8(dst.val[NEON_B], src.val[NEON_A]);
return ret;
}
uint8x8x4_t xor_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint8x8_t isa, ida;
uint16x8_t tmp_wide, tmp_wide2;
isa = vsub_u8(vdup_n_u8(255), src.val[NEON_A]);
ida = vsub_u8(vdup_n_u8(255), dst.val[NEON_A]);
// First calc alpha
tmp_wide = vmovl_u8(src.val[NEON_A]);
tmp_wide = vaddw_u8(tmp_wide, dst.val[NEON_A]);
tmp_wide2 = vshll_n_u8(SkAlphaMulAlpha_neon8(src.val[NEON_A], dst.val[NEON_A]), 1);
tmp_wide = vsubq_u16(tmp_wide, tmp_wide2);
ret.val[NEON_A] = vmovn_u16(tmp_wide);
// Then colors
ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], ida)
+ SkAlphaMulAlpha_neon8(dst.val[NEON_R], isa);
ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], ida)
+ SkAlphaMulAlpha_neon8(dst.val[NEON_G], isa);
ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], ida)
+ SkAlphaMulAlpha_neon8(dst.val[NEON_B], isa);
return ret;
}
uint8x8x4_t plus_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = vqadd_u8(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = vqadd_u8(src.val[NEON_R], dst.val[NEON_R]);
ret.val[NEON_G] = vqadd_u8(src.val[NEON_G], dst.val[NEON_G]);
ret.val[NEON_B] = vqadd_u8(src.val[NEON_B], dst.val[NEON_B]);
return ret;
}
uint8x8x4_t modulate_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = SkAlphaMulAlpha_neon8(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], dst.val[NEON_R]);
ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], dst.val[NEON_G]);
ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], dst.val[NEON_B]);
return ret;
}
static inline uint8x8_t srcover_color(uint8x8_t a, uint8x8_t b) {
uint16x8_t tmp;
tmp = vaddl_u8(a, b);
tmp -= SkAlphaMulAlpha_neon8_16(a, b);
return vmovn_u16(tmp);
}
uint8x8x4_t screen_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = srcover_color(src.val[NEON_R], dst.val[NEON_R]);
ret.val[NEON_G] = srcover_color(src.val[NEON_G], dst.val[NEON_G]);
ret.val[NEON_B] = srcover_color(src.val[NEON_B], dst.val[NEON_B]);
return ret;
}
template <bool overlay>
static inline uint8x8_t overlay_hardlight_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
/*
* In the end we're gonna use (rc + tmp) with a different rc
* coming from an alternative.
* The whole value (rc + tmp) can always be expressed as
* VAL = COM - SUB in the if case
* VAL = COM + SUB - sa*da in the else case
*
* with COM = 255 * (sc + dc)
* and SUB = sc*da + dc*sa - 2*dc*sc
*/
// Prepare common subexpressions
uint16x8_t const255 = vdupq_n_u16(255);
uint16x8_t sc_plus_dc = vaddl_u8(sc, dc);
uint16x8_t scda = vmull_u8(sc, da);
uint16x8_t dcsa = vmull_u8(dc, sa);
uint16x8_t sada = vmull_u8(sa, da);
// Prepare non common subexpressions
uint16x8_t dc2, sc2;
uint32x4_t scdc2_1, scdc2_2;
if (overlay) {
dc2 = vshll_n_u8(dc, 1);
scdc2_1 = vmull_u16(vget_low_u16(dc2), vget_low_u16(vmovl_u8(sc)));
scdc2_2 = vmull_u16(vget_high_u16(dc2), vget_high_u16(vmovl_u8(sc)));
} else {
sc2 = vshll_n_u8(sc, 1);
scdc2_1 = vmull_u16(vget_low_u16(sc2), vget_low_u16(vmovl_u8(dc)));
scdc2_2 = vmull_u16(vget_high_u16(sc2), vget_high_u16(vmovl_u8(dc)));
}
// Calc COM
int32x4_t com1, com2;
com1 = vreinterpretq_s32_u32(
vmull_u16(vget_low_u16(const255), vget_low_u16(sc_plus_dc)));
com2 = vreinterpretq_s32_u32(
vmull_u16(vget_high_u16(const255), vget_high_u16(sc_plus_dc)));
// Calc SUB
int32x4_t sub1, sub2;
sub1 = vreinterpretq_s32_u32(vaddl_u16(vget_low_u16(scda), vget_low_u16(dcsa)));
sub2 = vreinterpretq_s32_u32(vaddl_u16(vget_high_u16(scda), vget_high_u16(dcsa)));
sub1 = vsubq_s32(sub1, vreinterpretq_s32_u32(scdc2_1));
sub2 = vsubq_s32(sub2, vreinterpretq_s32_u32(scdc2_2));
// Compare 2*dc <= da
uint16x8_t cmp;
if (overlay) {
cmp = vcleq_u16(dc2, vmovl_u8(da));
} else {
cmp = vcleq_u16(sc2, vmovl_u8(sa));
}
// Prepare variables
int32x4_t val1_1, val1_2;
int32x4_t val2_1, val2_2;
uint32x4_t cmp1, cmp2;
cmp1 = vmovl_u16(vget_low_u16(cmp));
cmp1 |= vshlq_n_u32(cmp1, 16);
cmp2 = vmovl_u16(vget_high_u16(cmp));
cmp2 |= vshlq_n_u32(cmp2, 16);
// Calc COM - SUB
val1_1 = com1 - sub1;
val1_2 = com2 - sub2;
// Calc COM + SUB - sa*da
val2_1 = com1 + sub1;
val2_2 = com2 + sub2;
val2_1 = vsubq_s32(val2_1, vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(sada))));
val2_2 = vsubq_s32(val2_2, vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(sada))));
// Insert where needed
val1_1 = vbslq_s32(cmp1, val1_1, val2_1);
val1_2 = vbslq_s32(cmp2, val1_2, val2_2);
// Call the clamp_div255round function
return clamp_div255round_simd8_32(val1_1, val1_2);
}
static inline uint8x8_t overlay_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
return overlay_hardlight_color<true>(sc, dc, sa, da);
}
uint8x8x4_t overlay_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = overlay_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = overlay_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = overlay_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
template <bool lighten>
static inline uint8x8_t lighten_darken_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
uint16x8_t sd, ds, cmp, tmp, tmp2;
// Prepare
sd = vmull_u8(sc, da);
ds = vmull_u8(dc, sa);
// Do test
if (lighten) {
cmp = vcgtq_u16(sd, ds);
} else {
cmp = vcltq_u16(sd, ds);
}
// Assign if
tmp = vaddl_u8(sc, dc);
tmp2 = tmp;
tmp -= SkDiv255Round_neon8_16_16(ds);
// Calc else
tmp2 -= SkDiv255Round_neon8_16_16(sd);
// Insert where needed
tmp = vbslq_u16(cmp, tmp, tmp2);
return vmovn_u16(tmp);
}
static inline uint8x8_t darken_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
return lighten_darken_color<false>(sc, dc, sa, da);
}
uint8x8x4_t darken_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = darken_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = darken_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = darken_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
static inline uint8x8_t lighten_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
return lighten_darken_color<true>(sc, dc, sa, da);
}
uint8x8x4_t lighten_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = lighten_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = lighten_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = lighten_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
static inline uint8x8_t hardlight_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
return overlay_hardlight_color<false>(sc, dc, sa, da);
}
uint8x8x4_t hardlight_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = hardlight_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = hardlight_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = hardlight_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
static inline uint8x8_t difference_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
uint16x8_t sd, ds, tmp;
int16x8_t val;
sd = vmull_u8(sc, da);
ds = vmull_u8(dc, sa);
tmp = vminq_u16(sd, ds);
tmp = SkDiv255Round_neon8_16_16(tmp);
tmp = vshlq_n_u16(tmp, 1);
val = vreinterpretq_s16_u16(vaddl_u8(sc, dc));
val -= vreinterpretq_s16_u16(tmp);
val = vmaxq_s16(val, vdupq_n_s16(0));
val = vminq_s16(val, vdupq_n_s16(255));
return vmovn_u16(vreinterpretq_u16_s16(val));
}
uint8x8x4_t difference_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = difference_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = difference_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = difference_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
static inline uint8x8_t exclusion_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
/* The equation can be simplified to 255(sc + dc) - 2 * sc * dc */
uint16x8_t sc_plus_dc, scdc, const255;
int32x4_t term1_1, term1_2, term2_1, term2_2;
/* Calc (sc + dc) and (sc * dc) */
sc_plus_dc = vaddl_u8(sc, dc);
scdc = vmull_u8(sc, dc);
/* Prepare constants */
const255 = vdupq_n_u16(255);
/* Calc the first term */
term1_1 = vreinterpretq_s32_u32(
vmull_u16(vget_low_u16(const255), vget_low_u16(sc_plus_dc)));
term1_2 = vreinterpretq_s32_u32(
vmull_u16(vget_high_u16(const255), vget_high_u16(sc_plus_dc)));
/* Calc the second term */
term2_1 = vreinterpretq_s32_u32(vshll_n_u16(vget_low_u16(scdc), 1));
term2_2 = vreinterpretq_s32_u32(vshll_n_u16(vget_high_u16(scdc), 1));
return clamp_div255round_simd8_32(term1_1 - term2_1, term1_2 - term2_2);
}
uint8x8x4_t exclusion_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = exclusion_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = exclusion_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = exclusion_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
static inline uint8x8_t blendfunc_multiply_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
uint32x4_t val1, val2;
uint16x8_t scdc, t1, t2;
t1 = vmull_u8(sc, vdup_n_u8(255) - da);
t2 = vmull_u8(dc, vdup_n_u8(255) - sa);
scdc = vmull_u8(sc, dc);
val1 = vaddl_u16(vget_low_u16(t1), vget_low_u16(t2));
val2 = vaddl_u16(vget_high_u16(t1), vget_high_u16(t2));
val1 = vaddw_u16(val1, vget_low_u16(scdc));
val2 = vaddw_u16(val2, vget_high_u16(scdc));
return clamp_div255round_simd8_32(
vreinterpretq_s32_u32(val1), vreinterpretq_s32_u32(val2));
}
uint8x8x4_t multiply_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = blendfunc_multiply_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = blendfunc_multiply_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = blendfunc_multiply_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
////////////////////////////////////////////////////////////////////////////////
typedef uint8x8x4_t (*SkXfermodeProcSIMD)(uint8x8x4_t src, uint8x8x4_t dst);
extern SkXfermodeProcSIMD gNEONXfermodeProcs[];
SkNEONProcCoeffXfermode::SkNEONProcCoeffXfermode(SkFlattenableReadBuffer& buffer)
: INHERITED(buffer) {
fProcSIMD = reinterpret_cast<void*>(gNEONXfermodeProcs[this->getMode()]);
}
void SkNEONProcCoeffXfermode::xfer32(SkPMColor dst[], const SkPMColor src[],
int count, const SkAlpha aa[]) const {
SkASSERT(dst && src && count >= 0);
SkXfermodeProc proc = this->getProc();
SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD);
if (NULL == aa) {
// Unrolled NEON code
while (count >= 8) {
uint8x8x4_t vsrc, vdst, vres;
asm volatile (
"vld4.u8 %h[vsrc], [%[src]]! \t\n"
"vld4.u8 %h[vdst], [%[dst]] \t\n"
: [vsrc] "=w" (vsrc), [vdst] "=w" (vdst), [src] "+r" (src)
: [dst] "r" (dst)
:
);
vres = procSIMD(vsrc, vdst);
vst4_u8((uint8_t*)dst, vres);
count -= 8;
dst += 8;
}
// Leftovers
for (int i = 0; i < count; i++) {
dst[i] = proc(src[i], dst[i]);
}
} else {
for (int i = count - 1; i >= 0; --i) {
unsigned a = aa[i];
if (0 != a) {
SkPMColor dstC = dst[i];
SkPMColor C = proc(src[i], dstC);
if (a != 0xFF) {
C = SkFourByteInterp(C, dstC, a);
}
dst[i] = C;
}
}
}
}
#ifdef SK_DEVELOPER
void SkNEONProcCoeffXfermode::toString(SkString* str) const {
this->INHERITED::toString(str);
}
#endif
////////////////////////////////////////////////////////////////////////////////
SkXfermodeProcSIMD gNEONXfermodeProcs[] = {
[SkXfermode::kClear_Mode] = NULL,
[SkXfermode::kSrc_Mode] = NULL,
[SkXfermode::kDst_Mode] = NULL,
[SkXfermode::kSrcOver_Mode] = NULL,
[SkXfermode::kDstOver_Mode] = dstover_modeproc_neon8,
[SkXfermode::kSrcIn_Mode] = srcin_modeproc_neon8,
[SkXfermode::kDstIn_Mode] = dstin_modeproc_neon8,
[SkXfermode::kSrcOut_Mode] = srcout_modeproc_neon8,
[SkXfermode::kDstOut_Mode] = dstout_modeproc_neon8,
[SkXfermode::kSrcATop_Mode] = srcatop_modeproc_neon8,
[SkXfermode::kDstATop_Mode] = dstatop_modeproc_neon8,
[SkXfermode::kXor_Mode] = xor_modeproc_neon8,
[SkXfermode::kPlus_Mode] = plus_modeproc_neon8,
[SkXfermode::kModulate_Mode]= modulate_modeproc_neon8,
[SkXfermode::kScreen_Mode] = screen_modeproc_neon8,
[SkXfermode::kOverlay_Mode] = overlay_modeproc_neon8,
[SkXfermode::kDarken_Mode] = darken_modeproc_neon8,
[SkXfermode::kLighten_Mode] = lighten_modeproc_neon8,
[SkXfermode::kColorDodge_Mode] = NULL,
[SkXfermode::kColorBurn_Mode] = NULL,
[SkXfermode::kHardLight_Mode] = hardlight_modeproc_neon8,
[SkXfermode::kSoftLight_Mode] = NULL,
[SkXfermode::kDifference_Mode] = difference_modeproc_neon8,
[SkXfermode::kExclusion_Mode] = exclusion_modeproc_neon8,
[SkXfermode::kMultiply_Mode] = multiply_modeproc_neon8,
[SkXfermode::kHue_Mode] = NULL,
[SkXfermode::kSaturation_Mode] = NULL,
[SkXfermode::kColor_Mode] = NULL,
[SkXfermode::kLuminosity_Mode] = NULL,
};
SK_COMPILE_ASSERT(
SK_ARRAY_COUNT(gNEONXfermodeProcs) == SkXfermode::kLastMode + 1,
mode_count_arm
);
SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_neon(const ProcCoeff& rec,
SkXfermode::Mode mode) {
void* procSIMD = reinterpret_cast<void*>(gNEONXfermodeProcs[mode]);
if (procSIMD != NULL) {
return SkNEW_ARGS(SkNEONProcCoeffXfermode, (rec, mode, procSIMD));
}
return NULL;
}

View File

@ -1,27 +0,0 @@
#ifndef SkXfermode_opts_arm_neon_DEFINED
#define SkXfermode_opts_arm_neon_DEFINED
#include "SkXfermode_proccoeff.h"
class SkNEONProcCoeffXfermode : public SkProcCoeffXfermode {
public:
SkNEONProcCoeffXfermode(const ProcCoeff& rec, SkXfermode::Mode mode,
void* procSIMD)
: INHERITED(rec, mode), fProcSIMD(procSIMD) {}
virtual void xfer32(SkPMColor dst[], const SkPMColor src[], int count,
const SkAlpha aa[]) const SK_OVERRIDE;
SK_DEVELOPER_TO_STRING()
SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkNEONProcCoeffXfermode)
private:
SkNEONProcCoeffXfermode(SkFlattenableReadBuffer& buffer);
// void* is used to avoid pulling arm_neon.h in the core and having to build
// it with -mfpu=neon.
void* fProcSIMD;
typedef SkProcCoeffXfermode INHERITED;
};
#endif //#ifdef SkXfermode_opts_arm_neon_DEFINED