SkTaskGroup is like SkThreadPool except the threads stay in
one global pool. Each SkTaskGroup itself is tiny (4 bytes)
and its wait() method applies only to tasks add()ed to that
instance, not the whole thread pool.
This means we don't need to bring up new thread pools when
tests themselves want to use multithreading (e.g. pathops,
quilt). We just create a new SkTaskGroup and wait for that
to complete. This should be more efficient, and allow us
to expand where we use threads to really latency sensitive
places. E.g. we can probably now use these in nanobench
for CPU .skp rendering.
Now that all threads are sharing the same pool, I think we
can remove most of the custom mechanism pathops tests use
to control threading. They'll just ride on the global pool
with all other tests now.
This (temporarily?) removes the GPU multithreading feature
from DM, which we don't use.
On my desktop, DM runs a little faster (57s -> 55s) in
Debug, and a lot faster in Release (36s -> 24s). The bots
show speedups of similar proportions, cutting more than a
minute off the N4/Release and Win7/Debug runtimes.
BUG=skia:
Committed: https://skia.googlesource.com/skia/+/9c7207b5dc71dc5a96a2eb107d401133333d5b6fR=caryclark@google.com, bsalomon@google.com, bungeman@google.com, mtklein@google.com, reed@google.com
Author: mtklein@chromium.org
Review URL: https://codereview.chromium.org/531653002
Reason for revert:
Leaks, leaks, leaks.
Original issue's description:
> SkThreadPool ~~> SkTaskGroup
>
> SkTaskGroup is like SkThreadPool except the threads stay in
> one global pool. Each SkTaskGroup itself is tiny (4 bytes)
> and its wait() method applies only to tasks add()ed to that
> instance, not the whole thread pool.
>
> This means we don't need to bring up new thread pools when
> tests themselves want to use multithreading (e.g. pathops,
> quilt). We just create a new SkTaskGroup and wait for that
> to complete. This should be more efficient, and allow us
> to expand where we use threads to really latency sensitive
> places. E.g. we can probably now use these in nanobench
> for CPU .skp rendering.
>
> Now that all threads are sharing the same pool, I think we
> can remove most of the custom mechanism pathops tests use
> to control threading. They'll just ride on the global pool
> with all other tests now.
>
> This (temporarily?) removes the GPU multithreading feature
> from DM, which we don't use.
>
> On my desktop, DM runs a little faster (57s -> 55s) in
> Debug, and a lot faster in Release (36s -> 24s). The bots
> show speedups of similar proportions, cutting more than a
> minute off the N4/Release and Win7/Debug runtimes.
>
> BUG=skia:
>
> Committed: https://skia.googlesource.com/skia/+/9c7207b5dc71dc5a96a2eb107d401133333d5b6fR=caryclark@google.com, bsalomon@google.com, bungeman@google.com, reed@google.com, mtklein@chromium.orgTBR=bsalomon@google.com, bungeman@google.com, caryclark@google.com, mtklein@chromium.org, reed@google.com
NOTREECHECKS=true
NOTRY=true
BUG=skia:
Author: mtklein@google.com
Review URL: https://codereview.chromium.org/533393002
SkTaskGroup is like SkThreadPool except the threads stay in
one global pool. Each SkTaskGroup itself is tiny (4 bytes)
and its wait() method applies only to tasks add()ed to that
instance, not the whole thread pool.
This means we don't need to bring up new thread pools when
tests themselves want to use multithreading (e.g. pathops,
quilt). We just create a new SkTaskGroup and wait for that
to complete. This should be more efficient, and allow us
to expand where we use threads to really latency sensitive
places. E.g. we can probably now use these in nanobench
for CPU .skp rendering.
Now that all threads are sharing the same pool, I think we
can remove most of the custom mechanism pathops tests use
to control threading. They'll just ride on the global pool
with all other tests now.
This (temporarily?) removes the GPU multithreading feature
from DM, which we don't use.
On my desktop, DM runs a little faster (57s -> 55s) in
Debug, and a lot faster in Release (36s -> 24s). The bots
show speedups of similar proportions, cutting more than a
minute off the N4/Release and Win7/Debug runtimes.
BUG=skia:
R=caryclark@google.com, bsalomon@google.com, bungeman@google.com, mtklein@google.com, reed@google.com
Author: mtklein@chromium.org
Review URL: https://codereview.chromium.org/531653002
PathOps tests internal routines direcctly. Check to make sure that
test points, lines, quads, curves, triangles, and bounds read from
arrays are valid (i.e., don't contain NaN) before calling the
test function.
Repurpose the test flags.
- make 'v' verbose test region output against path output
- make 'z' single threaded (before it made it multithreaded)
The latter change speeds up tests run by the buildbot by 2x to 3x.
BUG=
Review URL: https://codereview.chromium.org/19374003
git-svn-id: http://skia.googlecode.com/svn/trunk@10107 2bbb7eff-a529-9590-31e7-b0007b416f81
modify threaded path ops tests to check
Background: this CL came out of a conversation with Eric where I learned that 10s of machines host 100s of bots. Since the bot hosting tests may be shared with many other tasks, it seems unwise for path ops to launch multiple test threads.
The change here is to make launching multiple threads "opt-in" and by default, bots can run path ops in a single thread.
Review URL: https://codereview.chromium.org/14002007
git-svn-id: http://skia.googlecode.com/svn/trunk@8750 2bbb7eff-a529-9590-31e7-b0007b416f81
fix bugs in tests on 32 bit release
Most changes revolve around pinning computed t values
very close to zero and one.
git-svn-id: http://skia.googlecode.com/svn/trunk@8745 2bbb7eff-a529-9590-31e7-b0007b416f81
standardize tests
use SK_ARRAY_COUNT everywhere
debug why x87 differs from SIMD 64
various platform specific fixes
git-svn-id: http://skia.googlecode.com/svn/trunk@8689 2bbb7eff-a529-9590-31e7-b0007b416f81
This CL depends on
https://codereview.chromium.org/12880016/
"Add intersections for path ops"
Given a path, iterate through its contour, and
construct an array of segments containing its curves.
Intersect each curve with every other curve, and for
cubics, with itself.
Given the set of intersections, find one with the
smallest y and sort the curves eminating from the
intersection. Assign each curve a winding value.
Operate on the curves, keeping and discarding them
according to the current operation and the sum of
the winding values.
Assemble the kept curves into an output path.
Review URL: https://codereview.chromium.org/13094010
git-svn-id: http://skia.googlecode.com/svn/trunk@8553 2bbb7eff-a529-9590-31e7-b0007b416f81