Commit Graph

5 Commits

Author SHA1 Message Date
skia.committer@gmail.com
2b34fe01d7 Sanitizing source files in Housekeeper-Nightly
git-svn-id: http://skia.googlecode.com/svn/trunk@9051 2bbb7eff-a529-9590-31e7-b0007b416f81
2013-05-08 07:01:40 +00:00
caryclark@google.com
a5e55925ea path ops -- fix skp bugs
This fixes a series of bugs discovered by running
the small set of Skia skp files through pathops
to flatten the clips.
Review URL: https://codereview.chromium.org/14798004

git-svn-id: http://skia.googlecode.com/svn/trunk@9042 2bbb7eff-a529-9590-31e7-b0007b416f81
2013-05-07 18:51:31 +00:00
caryclark@google.com
0361032c0b path ops work in progress
fix bugs in tests on 32 bit release

Most changes revolve around pinning computed t values
very close to zero and one.

git-svn-id: http://skia.googlecode.com/svn/trunk@8745 2bbb7eff-a529-9590-31e7-b0007b416f81
2013-04-18 15:58:21 +00:00
caryclark@google.com
ad65a3e5fb path ops work in progress
standardize tests
use SK_ARRAY_COUNT everywhere
debug why x87 differs from SIMD 64
various platform specific fixes

git-svn-id: http://skia.googlecode.com/svn/trunk@8689 2bbb7eff-a529-9590-31e7-b0007b416f81
2013-04-15 19:13:59 +00:00
caryclark@google.com
9166dcb3a0 Add intersections for path ops
This CL depends on 
https://codereview.chromium.org/12827020/
"Add base types for path ops"

The intersection of a line, quadratic, or cubic
with another curve (or with itself) is found by
solving the implicit equation for the curve pair.

The curves are first reduced to find the simplest
form that will describe the original, and to detect
degenerate or special-case data like horizontal and
vertical lines.

For cubic self-intersection, and for a pair of cubics,
the intersection is found by recursively
approximating the cubic with a series of quadratics.

The implicit solutions depend on the root finding
contained in the DCubic and DQuad structs, and
the quartic root finder included here.
Review URL: https://codereview.chromium.org/12880016

git-svn-id: http://skia.googlecode.com/svn/trunk@8552 2bbb7eff-a529-9590-31e7-b0007b416f81
2013-04-08 11:50:00 +00:00