This is a major change resulting from a minor
tweak. In the old code, the intersection point
of two curves was shared between them, but the
intersection points and end points of sorted edges was
computed directly from the intersection T value.
In this CL, both intersection points and sorted points
are the same, and intermediate control points are computed
to preserve their slope.
The sort itself has been completely rewritten to be more
robust and remove 'magic' checks, conditions that empirically
worked but couldn't be rationalized.
This CL was triggered by errors generated computing the clips
of SKP files. At this point, all 73M standard tests work and
at least the first troublesome SKPs work.
Review URL: https://codereview.chromium.org/15338003
git-svn-id: http://skia.googlecode.com/svn/trunk@9432 2bbb7eff-a529-9590-31e7-b0007b416f81
standardize tests
use SK_ARRAY_COUNT everywhere
debug why x87 differs from SIMD 64
various platform specific fixes
git-svn-id: http://skia.googlecode.com/svn/trunk@8689 2bbb7eff-a529-9590-31e7-b0007b416f81
This CL depends on
https://codereview.chromium.org/12827020/
"Add base types for path ops"
The intersection of a line, quadratic, or cubic
with another curve (or with itself) is found by
solving the implicit equation for the curve pair.
The curves are first reduced to find the simplest
form that will describe the original, and to detect
degenerate or special-case data like horizontal and
vertical lines.
For cubic self-intersection, and for a pair of cubics,
the intersection is found by recursively
approximating the cubic with a series of quadratics.
The implicit solutions depend on the root finding
contained in the DCubic and DQuad structs, and
the quartic root finder included here.
Review URL: https://codereview.chromium.org/12880016
git-svn-id: http://skia.googlecode.com/svn/trunk@8552 2bbb7eff-a529-9590-31e7-b0007b416f81