Renames vars and methods that used the work "access" to refer to this type.
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=4931
Change-Id: Ibcf488fbd445c5119fc13d190544cd98981bdbee
Reviewed-on: https://skia-review.googlesource.com/4931
Commit-Queue: Brian Salomon <bsalomon@google.com>
Reviewed-by: Greg Daniel <egdaniel@google.com>
This also makes the required changed to src, tests, and tools. The few
public APIs modified by this change appear to be unused outside of Skia.
Removing these from the public API makes it easier to ensure users are
no longer using them.
This also updates GrGpu::wrapBackendXXX and the
::onWrapBackendXXX methods to clarify ownership.
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2448593002
Review-Url: https://codereview.chromium.org/2448593002
Moves the coverage logic into GrGLXferProcessor for XPs that perform
dst reads. XPs that don't use a dst read are still responsible to
handle coverage on their own.
BUG=skia:
Review URL: https://codereview.chromium.org/1170553002
Renames getInvariantOutput to getInvariantBlendedColor on GrXPFactory
and redefines it to not account for coverage conflation. This is the
information that all the callsites actually wanted to know.
BUG=skia:
Review URL: https://codereview.chromium.org/1161273005
Removes the runtime logic used by PorterDuffXferProcessor to decide
blend coeffs and shader outputs, and instead uses a compile-time
constant table of pre-selected blend formulas. Separates out the dst
read fallback into its own XP.
Introduces a new blend strategy for srcCoeff=0 that can apply coverage
with a reverse subtract blend equation instead of dual source
blending.
Adds new macros in GrBlend.h to analyze blend formulas both runtime.
Removes kSetCoverageDrawing_OptFlag and GrSimplifyBlend as they are no
longer used.
Adds a GM that verifies all xfermodes, including arithmetic, with the
color/coverage invariants used by Porter Duff.
Adds a unit test that verifies each Porter Duff formula with every
color/coverage invariant.
Major changes:
* Uses a reverse subtract blend equation for coverage when srcCoeff=0
(clear, dst-out [Sa=1], dst-in, modulate). Platforms that don't
support dual source blending no longer require a dst copy for
dst-in and modulate.
* Sets BlendInfo::fWriteColor to false when the blend does not modify
the dst. GrGLGpu will now use glColorMask instead of blending for
these modes (dst, dst-in [Sa=1], modulate ignored for [Sc=1]).
* Converts all SA blend coeffs to One for opaque inputs, and ISA to
Zero if there is also no coverage. (We keep ISA around when there
is coverage because we use it to tweak alpha for coverage.)
* Abandons solid white optimizations for the sake of simplicity
(screen was the only mode that previous had solid white opts).
Minor differences:
* Inconsequential differences in opt flags (e.g. we now return
kCanTweakAlphaForCoverage_OptFlag even when there is no coverage).
* Src coeffs when the shader outputs 0.
* IS2C vs IS2A when the secondary output is scalar.
BUG=skia:
Committed: https://skia.googlesource.com/skia/+/9a70920db22b6309c671f8e5d519bb95570e4414
Review URL: https://codereview.chromium.org/1124373002
Reason for revert:
Blocking DEPS roll into Chromium. Crashing virtual/gpu/fast/canvas/canvas-composite-*.html tests with the assert
../../third_party/skia/src/gpu/gl/builders/GrGLFragmentShaderBuilder.cpp:281: failed assertion "k110_GrGLSLGeneration != gpu->glslGeneration() || fOutputs.empty()"
Original issue's description:
> Implement Porter Duff XP with a blend table
>
> Removes the runtime logic used by PorterDuffXferProcessor to decide
> blend coeffs and shader outputs, and instead uses a compile-time
> constant table of pre-selected blend formulas.
>
> Introduces a new blend strategy for srcCoeff=0 that can apply coverage
> with a reverse subtract blend equation instead of dual source
> blending.
>
> Adds new macros in GrBlend.h to analyze blend formulas both runtime.
>
> Removes kSetCoverageDrawing_OptFlag and GrSimplifyBlend as they are no
> longer used.
>
> Adds a GM that verifies all xfermodes, including arithmetic, with the
> color/coverage invariants used by Porter Duff.
>
> Adds a unit test that verifies each Porter Duff formula with every
> color/coverage invariant.
>
> Major changes:
>
> * Uses a reverse subtract blend equation for coverage when srcCoeff=0
> (clear, dst-out [Sa=1], dst-in, modulate). Platforms that don't
> support dual source blending no longer require a dst copy for
> dst-in and modulate.
>
> * Sets BlendInfo::fWriteColor to false when the blend does not modify
> the dst. GrGLGpu will now use glColorMask instead of blending for
> these modes (dst, dst-in [Sa=1], modulate ignored for [Sc=1]).
>
> * Converts all SA blend coeffs to One for opaque inputs, and ISA to
> Zero if there is also no coverage. (We keep ISA around when there
> is coverage because we use it to tweak alpha for coverage.)
>
> * Abandons solid white optimizations for the sake of simplicity
> (screen was the only mode that previous had solid white opts).
>
> Minor differences:
>
> * Inconsequential differences in opt flags (e.g. we now return
> kCanTweakAlphaForCoverage_OptFlag even when there is no coverage).
>
> * Src coeffs when the shader outputs 0.
>
> * IS2C vs IS2A when the secondary output is scalar.
>
> BUG=skia:
>
> Committed: https://skia.googlesource.com/skia/+/9a70920db22b6309c671f8e5d519bb95570e4414TBR=egdaniel@google.com,bsalomon@google.com,cdalton@nvidia.com
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=skia:
Review URL: https://codereview.chromium.org/1153993002
Removes the runtime logic used by PorterDuffXferProcessor to decide
blend coeffs and shader outputs, and instead uses a compile-time
constant table of pre-selected blend formulas.
Introduces a new blend strategy for srcCoeff=0 that can apply coverage
with a reverse subtract blend equation instead of dual source
blending.
Adds new macros in GrBlend.h to analyze blend formulas both runtime.
Removes kSetCoverageDrawing_OptFlag and GrSimplifyBlend as they are no
longer used.
Adds a GM that verifies all xfermodes, including arithmetic, with the
color/coverage invariants used by Porter Duff.
Adds a unit test that verifies each Porter Duff formula with every
color/coverage invariant.
Major changes:
* Uses a reverse subtract blend equation for coverage when srcCoeff=0
(clear, dst-out [Sa=1], dst-in, modulate). Platforms that don't
support dual source blending no longer require a dst copy for
dst-in and modulate.
* Sets BlendInfo::fWriteColor to false when the blend does not modify
the dst. GrGLGpu will now use glColorMask instead of blending for
these modes (dst, dst-in [Sa=1], modulate ignored for [Sc=1]).
* Converts all SA blend coeffs to One for opaque inputs, and ISA to
Zero if there is also no coverage. (We keep ISA around when there
is coverage because we use it to tweak alpha for coverage.)
* Abandons solid white optimizations for the sake of simplicity
(screen was the only mode that previous had solid white opts).
Minor differences:
* Inconsequential differences in opt flags (e.g. we now return
kCanTweakAlphaForCoverage_OptFlag even when there is no coverage).
* Src coeffs when the shader outputs 0.
* IS2C vs IS2A when the secondary output is scalar.
BUG=skia:
Review URL: https://codereview.chromium.org/1124373002
Updates GrXferProcessor to read directly from the RT texture when
texture barriers are supported and it needs to know the dst color.
Also adds the notion of an Xfer barrier and uses it to issue texture
barriers when the XP will read the RT.
BUG=skia:
Review URL: https://codereview.chromium.org/1040303002
Effectively all this does is future-proof any GLSL-specific code, as
GLSLCaps is just a typedef of GLCaps.
BUG=skia:
Review URL: https://codereview.chromium.org/1109863004
Adds an onGetBlendInfo method for GrXferProcessor subclasses to
override instead of overriding getBlendInfo directly. This gives the
base class a chance to initialize the struct with default values
before passing it on. As the BlendInfo struct grows, this will keep
things simple and less error prone.
BUG=skia:
NOTREECHECKS=true
NOTRY=true
Review URL: https://codereview.chromium.org/1049143002