When converting from Instructions to OptimizedInstructions
place instructions that reduce register pressure earlier in
the instruction list.
This change reduces some register pressure in SkVM, and
improves the bitmap_RGBA_8888_A_scale_bilerp benchmark by
about 5%.
Change-Id: If5f6385bd2f7720701d1c827265062b35491a790
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/276485
Commit-Queue: Herb Derby <herb@google.com>
Reviewed-by: Mike Klein <mtklein@google.com>
While I think trunc(mad(x, scale, 0.5)) is fine for doing our float
to fixed point conversions, round(mul(x, scale)) was kind of better
all around:
- better rounding than +0.5 and trunc
- faster when mad() is not an fma
- often now no need to use the constant 0.5f or have it in a register
- allows the mul() in to_unorm to use mul_f32_imm
Those last two points are key... this actually frees up 2 registers in
the x86 JIT when using to_unorm().
So I think maybe we can resurrect round and still guarantee our desired
intra-machine stability by committing to using instructions that follow
the current rounding mode, which is what [v]cvtps2dq inextricably uses.
Left some notes on the ARM impl... we're rounding to nearest even there,
which is probably the current mode anyway, but to be more correct we
need a slightly longer impl that rounds float->float then "truncates".
Unsure whether it matters in practice. Same deal in the unit test that
I added back, now testing negative and 0.5 cases too. The expectations
assume the current mode is nearest even.
I had the idea to resurrect this when I was looking at adding _imm Ops
for fma_f32. I noticed that the y and z arguments to an fma_f32 were by
far most likely to be constants, and when they are, they're by far likely
to both be constants, e.g. 255.0f & 0.5f from to_unorm(8,...).
llvm disassembly for SkVM_round unit test looks good:
~ $ llc -mcpu=haswell /tmp/skvm-jit-1231521224.bc -o -
.section __TEXT,__text,regular,pure_instructions
.macosx_version_min 10, 15
.globl "_skvm-jit-1231521224" ## -- Begin function skvm-jit-1231521224
.p2align 4, 0x90
"_skvm-jit-1231521224": ## @skvm-jit-1231521224
.cfi_startproc
cmpl $8, %edi
jl LBB0_3
.p2align 4, 0x90
LBB0_2: ## %loopK
## =>This Inner Loop Header: Depth=1
vcvtps2dq (%rsi), %ymm0
vmovupd %ymm0, (%rdx)
addl $-8, %edi
addq $32, %rsi
addq $32, %rdx
cmpl $8, %edi
jge LBB0_2
LBB0_3: ## %hoist1
xorl %eax, %eax
testl %edi, %edi
jle LBB0_6
.p2align 4, 0x90
LBB0_5: ## %loop1
## =>This Inner Loop Header: Depth=1
vcvtss2si (%rsi,%rax), %ecx
movl %ecx, (%rdx,%rax)
decl %edi
addq $4, %rax
testl %edi, %edi
jg LBB0_5
LBB0_6: ## %leave
vzeroupper
retq
.cfi_endproc
## -- End function
Change-Id: Ib59eb3fd8a6805397850d93226c6c6d37cc3ab84
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/276738
Auto-Submit: Mike Klein <mtklein@google.com>
Commit-Queue: Herb Derby <herb@google.com>
Reviewed-by: Herb Derby <herb@google.com>
- hook up fmls.4s as fnma_f32
- add fneg.4s
- use fneg.4s + fmls.4s to impl fms_f32
- more tests to exercise these
Change-Id: I60173a5e4618ab968a9361e15334a1d63c001372
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/275412
Commit-Queue: Herb Derby <herb@google.com>
Reviewed-by: Herb Derby <herb@google.com>
Add fms op and instruction generation. Do fms and fnma
instruction selection.
TODO: Add the ops to Arm
Change-Id: I7e53abd7f4752eb99c31dcbff1f2ea7cf28af6c9
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/275197
Reviewed-by: Mike Klein <mtklein@google.com>
Commit-Queue: Mike Klein <mtklein@google.com>
Peephole add(F32,F32) for an argument that is a mul().
As a flourish, only generate Op::fma_f32 on machines we know support
real fused mul-adds. This removes the ambiguity of whether Op::mad_f32
is an FMA or not; the new Op::fma_f32 is always an FMA, and otherwise
you'll just see ordinary mul-add. No more Op::mad_f32.
Change-Id: I38016a2430774583116d8d6a8ada677012c1a8fc
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/275138
Reviewed-by: Herb Derby <herb@google.com>
Commit-Queue: Herb Derby <herb@google.com>
We really only need to_unorm(),
and that's fine with trunc(mad(x, scale, 0.5)).
Change-Id: I1561c678501963a9ae53c22994fc906159fc7199
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/275075
Commit-Queue: Mike Klein <mtklein@google.com>
Reviewed-by: Herb Derby <herb@google.com>
Reviewed-by: Mike Klein <mtklein@google.com>
Implement all AE grouping modes: character/word/line/all.
-- character grouping was already supported (default mode)
-- for word and line grouping, expand the existing domain mapping logic
to also track cumulative advance and max(ascent) per span, then use
this info to compute anchor point boxes
-- for "all" grouping, the anchor point box coincides with the text box
(https://helpx.adobe.com/after-effects/using/animating-text.html#text_anchor_point_properties)
TBR=
Change-Id: I8564f1349d167d82c31862d8f7e57615cdae0dcf
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/274201
Reviewed-by: Florin Malita <fmalita@chromium.org>
Commit-Queue: Florin Malita <fmalita@chromium.org>
In adition to transforms/opacity/etc, text animators can target
per-glyph opacity.
Change-Id: I6ab63a6e49a64beaf63fc955f0b672a5b8ba84ba
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/272886
Reviewed-by: Mike Reed <reed@google.com>
Commit-Queue: Florin Malita <fmalita@chromium.org>
When per-character 3D is enabled, text properties can be animated in
3 dimensions.
- position and scale become 3-value vectors
- in addition to existing "r" (really rz), rotation gains "rx" and "ry"
- instead of specializing for 3D, expand the existing structures to
handle both 3D and 2D modes
- also ensure that sksg::Transform does not flatten to SkMatrix
Change-Id: I426a7ee1ff38c1702deb85e9f1db80f6069f36d6
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/272648
Reviewed-by: Mike Reed <reed@google.com>
Commit-Queue: Florin Malita <fmalita@chromium.org>
AE discards lines with baselines outside the paragraph box.
This aligns Skottie's behavior with AE for default/top-alignment
(but not for any of the custom vertical alignment modes).
Bug: skia:9933
Change-Id: Id0318f0744bf89580774e89494faf19bfb6f6d14
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/272376
Reviewed-by: Ben Wagner <bungeman@google.com>
Commit-Queue: Florin Malita <fmalita@chromium.org>
Stroking in Skia follows the SVG rules of adding end caps to degenerate
contours. Skip all degenerate contours and degenerate curves on contours
to avoid this.
Bug: skia:9820
Change-Id: I320beeeb3728f39c764729454dcb128a05524d35
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/268166
Commit-Queue: Ben Wagner <bungeman@google.com>
Reviewed-by: Herb Derby <herb@google.com>
There are probably ways to make this more efficient by only optimizing
what's necessary (e.g. try JIT first, then interpreter only if it fails)
and some other performance improvements to make, but for now I want to
focus mostly on keeping things simple and correct.
The line between Builder::done() and Program::Program() is particularly
fuzzy and becoming fuzzier here, and I think that'll be something
that'll change eventually.
This makes SkVMTest debug dumps more portable, though perhaps less
useful. Might kill that feature soon now that SkVM is tested more
thoroughly in unit tests and GMs and bots and such.
Change-Id: Id9ce8daaf8570e5bea8b10f1a80b97f5b33d45dc
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/269941
Reviewed-by: Herb Derby <herb@google.com>
Commit-Queue: Mike Klein <mtklein@google.com>
Bug: b/135133301
Follow-on to 196f319b.
- Add SkCodec::getICCProfile to match the SkAndroidCodec version.
- Update comments on getPixels() regarding how the SkColorSpace on the
SkImageInfo is treated.
- Add two new images that have ICC profiles that do not map to an
SkColorSpace. Add a test to verify that they have the un-transformed
color we expect.
- Stop uploading ColorCodecSrc images decoded to a null SkColorSpace to
Gold. Though they may be correct, they do not match other images they're
compared against. The new test above verifies that we do not do color
conversion with a null SkColorSpace.
Change-Id: I08635e4262f16500fab32ef97511d305c2c06483
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/269236
Reviewed-by: Derek Sollenberger <djsollen@google.com>
Commit-Queue: Leon Scroggins <scroggo@google.com>
This adds a specialization pass to Builder::optimize() and moves the
x86-specific _imm ops there, rewriting with the Builder API itself. I'm
only using the private Builder::push() call for the moment, but that's
enough to make me feel confident that this is a good way forward: it's
still all going through CSE that way.
We're still doing this any time we're on x86, not when targeting the
JIT, but that'll come next, see the new TODOs. It's mildly better for
the interpreter to not use the _imm ops, but this is really all still
warmup for optimizations with less mild opinions.
I'm not proud of the switch/goto impl but it's the clearest I found.
Change-Id: I30594b403832343528b95967724fd50324cd79d1
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/269232
Reviewed-by: Herb Derby <herb@google.com>
Commit-Queue: Mike Klein <mtklein@google.com>
Kind of brewing a big refactor here, to give me some room between
skvm::Builder and skvm::Program to do optimizations, bakend
specializations and analysis.
As a warmup, I'm trying to split up today's Builder::Instruction into
two forms, first just what the user requested in Builder (this stays
Builder::Instruction) then a new type representing any transformation or
analysis we've done to it (OptimizedInstruction).
Roughly six important optimizations happen in SkVM today, in this order:
1) constant folding
2) backend-specific instruction specialization
3) common sub-expression elimination
4) reordering + dead code elimination
5) loop invariant and lifetime analysis
6) register assignment
At head 1-5 all happen in Builder, and 2 is particularly
awkward to have there (e.g. mul_f32 -> mul_f32_imm).
6 happens in Program per-backend, and that seems healthy.
As of this CL, 1-3 happen in Builder, 4-5 now on this middle
OptimizedInstruction format, and 6 still in Program.
I'd like to get to the point where 1 stays in Builder, 2-5 all happen on
this middle IR, and 6 stays in Program. That ought to let me do things
like turn mul_f32 -> mul_f32_imm when it's good to and still benefit
from things like common sub-expression elimination and code reordering
happening after that trnasformation.
And then, I hope that's also a good spot to do more complicated
transformations, like lowering gather8 into gather32 plus some fix up
when targeting an x86 JIT but not anywhere else. Today's Builder is too
early to know whether we should do this or not, and in Program it's
actually kind of awkward to do this sort of thing while also doing
having to do register assignment. Some middle might be right.
Change-Id: I9c00268a084f07fbab88d05eb441f1957a0d7c67
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/269181
Reviewed-by: Herb Derby <herb@google.com>
Commit-Queue: Mike Klein <mtklein@google.com>
Similar to existing ADBE Easy Levels2, but provides separate mapping
controls per channel.
Change-Id: Ibc58c58e1e8cb8793d6eb819998c1804ccbbf859
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/268936
Reviewed-by: Mike Reed <reed@google.com>
Commit-Queue: Florin Malita <fmalita@chromium.org>
The GM exercises the compressed image formats using externally created resources
Note: the original image for the new flower resources can be found on Wikimedia Commons and has a "CC0 1.0 Universal Public Domain Dedication" license.
Bug: skia:9680
Change-Id: I6c5f9a12fcbbecdc3ba548dbb078bc21522073fe
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/267836
Reviewed-by: Mike Reed <reed@google.com>
Commit-Queue: Robert Phillips <robertphillips@google.com>
Also fix a couple of custom props issues:
- solid layer colors were not dispatched
- text values were not sync'ed
TBR=
Change-Id: I827f8c1d8c8bb73b03f05de15e1c7c96753a631e
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/264936
Reviewed-by: Florin Malita <fmalita@chromium.org>
Commit-Queue: Florin Malita <fmalita@chromium.org>
extract() can generate silly instruction patterns like
v0 = ...
v1 = shr v0 24
v2 = bit_and v1 FF
v3 = whatever v2 ...
This CL skips those pointless bit_ands when we see the
mask is an immediate and (0xFFFFFFFF>>shift) == mask.
Change-Id: I2bb3847fbb2efdf24d024870ac37b37bb8f9aa3c
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/263101
Reviewed-by: Herb Derby <herb@google.com>
Commit-Queue: Mike Klein <mtklein@google.com>
- Remove extract... it's not going to have any special impl.
I've left it on skvm::Builder as an inline compound method.
- Add no-op shift short circuits.
- Add immediate ops for bit_{and,or,xor,clear}.
This comes from me noticing that the masks for extract today are always
immediates, and then when I started converting it to be (I32, int shift,
int mask), I realized it might be even better to break it up into its
component pieces. There's no backend that can do extract any better
than shift-then-mask, so might as well leave it that way so we can
dedup, reorder, and specialize those micro ops.
Will follow up soon to get this all JITing again,
and these can-we-JIT test changes will be reverted.
Change-Id: I0835bcd825e417104ccc7efc79e9a0f2f4897841
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/263217
Reviewed-by: Herb Derby <herb@google.com>
Commit-Queue: Mike Klein <mtklein@google.com>
- Add instruction numbers to program dumps.
- Dump the program when an assertion fails,
and print the failing condition or an optional
other value (e.g. if alpha outside [0,1], print alpha).
With all that and the new commented assert enabled, I'm seeing that
sometimes we get a bilerp alpha of 0x3f800001, just a little more than
1.0f. Fix still tbd.
Change-Id: I2c20e41ae370d8cd2963e2dbf0fd91aa0fd50061
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/262808
Reviewed-by: Mike Klein <mtklein@google.com>
Commit-Queue: Mike Klein <mtklein@google.com>
With the recent transition to creating fonts from data as CTFonts and
dropping variation support from macOS 10.11 and earlier, it is now
possible to reliably make variation clones and get the axis information.
Change-Id: Ia9a0922ac94a29e1508d2e74d4ce973751044866
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/259421
Reviewed-by: Herb Derby <herb@google.com>
Reviewed-by: Dominik Röttsches <drott@chromium.org>
Commit-Queue: Ben Wagner <bungeman@google.com>
Currently, we treat track matte source layers (tagged with td:1) as single-shot mask triggers:
we apply once to the following layer, then move on.
But track mattes can cascade: a layer with a matte can itself be applied as a track matte for the
following layer.
Also, for matte/masking purposes, only the layer content is being considered (ignoring blend mode
and any masks applied to the matte itself).
To support this, refactor the layer attachment code:
- instead of tracking the presence of a single-shot matte source, always track
previous layer content trees
- instead of triggering matte attachment in the presence of a matte source, trigger based on
the matte *target* property (tt: X)
- log errors on unknown matte modes
Change-Id: I6c71d4007e1e27d3f3a139344bbf367d7bc6e29d
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/259820
Reviewed-by: Mike Reed <reed@google.com>
Commit-Queue: Florin Malita <fmalita@chromium.org>
Precomp layers can have a different size vs. main composition.
Instead of relying on the global animation (main comp) size, use the
current (pre)comp size when setting up cameras.
Change-Id: I54106375fb39dde2bfd11e14a38e5ec3e7190764
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/258156
Commit-Queue: Florin Malita <fmalita@chromium.org>
Commit-Queue: Mike Reed <reed@google.com>
Auto-Submit: Florin Malita <fmalita@chromium.org>
Reviewed-by: Mike Reed <reed@google.com>
Provides functionality similar to AE property maps
Change-Id: I1705706a6b7e25fbab55465f2e20d0b145330b0b
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/255977
Reviewed-by: Brian Osman <brianosman@google.com>
Commit-Queue: Brian Osman <brianosman@google.com>
Currently just for image drawable, but going to use this for
references to other kinds of data in bindings, too.
Change-Id: Ic6673530013337bbaadd2d3f1c040626ec24ffb8
Bug: skia:9513
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/256776
Commit-Queue: Brian Osman <brianosman@google.com>
Reviewed-by: Kevin Lubick <kjlubick@google.com>
This adds a bunch of tests for ops that can all be evaluated directly in
skvm::Builder. You can see the sort of effect this has by looking at
the diffs for SkVMTest.expected... lots of `v3 = sub_f32 v2 v2`
transformed to `v3 = splat 0 (0)` and that sort of thing.
My favorite part is handling many assert_true() calls at compile time!
While the old inter-Op code parallels aren't as clear now, these new
early-out tests kind of work like comments explaining each op. I find
that nice. I found it hard to parse so many uses of the word "splat" so
I did go back to isImm() from isSplat(), and added allImm() to test for
and read several immediates all at once.
Some of this is less C++17 than I'd like. :/
Change-Id: Ie8187d5d184195e3c0c92d613508fb708c28302f
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/255814
Reviewed-by: Herb Derby <herb@google.com>
Commit-Queue: Mike Klein <mtklein@google.com>
So far Skottie has been assuming all cameras are two-node (have a point
of interest).
AE also supports one-node cameras, where the camera does not auto-orient
towards a POI but starts off perpendicular to the z == 0 plane.
(https://helpx.adobe.com/after-effects/how-to/camera-animation.html)
Change-Id: Id565de7d8feb9a762940ac372c1bbbcce2e2dfc6
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/254559
Reviewed-by: Florin Malita <fmalita@chromium.org>
Commit-Queue: Florin Malita <fmalita@chromium.org>
Lots of x86 instructions can take their right hand side argument from
memory directly rather than a register. We can use this to avoid the
need to allocate a register for many constants.
The strategy in this CL is one of several I've been stewing over, the
simplest of those strategies I think. There are some trade offs
particularly on ARM; this naive ARM implementation means we'll load&op
every time, even though the load part of the operation can logically be
hoisted. From here on I'm going to just briefly enumerate a few other
approaches that allow the optimization on x86 and still allow the
immediate splats to hoist on ARM.
1) don't do it on ARM
A very simple approach is to simply not perform this optimization on
ARM. ARM has more vector registers than x86, and so register pressure
is lower there. We're going to end up with splatted constants in
registers anyway, so maybe just let that happen the normal way instead
of some roundabout complicated hack like I'll talk about in 2). The
only downside in my mind is that this approach would make high-level
program descriptions platform dependent, which isn't so bad, but it's
been nice to be able to compare and diff debug dumps.
2) split Op::splat up
The next less-simple approach to this problem could fix this by
splitting splats into two Ops internally, one inner Op::immediate that
guantees at least the constant is in memory and is compatible with
immediate-aware Ops like mul_f32_imm, and an outer Op::constant that
depends on that Op::immediate and further guarantees that constant has
been broadcast into a register to be compatible with non-immediate-aware
ops like div_f32. When building a program, immediate-aware ops would
peek for Op::constants as they do today for Op::splats, but instead of
embedding the immediate themselves, they'd replace their dependency with
the inner Op::immediate.
On x86 these new Ops would work just as advertised, with Op::immediate a
runtime no-op, Op::constant the usual vbroadcastss. On ARM
Op::immediate needs to go all the way and splat out a register to make
the constant compatible with immediate-aware ops, and the Op::constant
becomes a noop now instead. All this comes together to let the
Op::immediate splat hoist up out of the loop while still feeding
Op::mul_f32_imm and co. It's a rather complicated approach to solving
this issue, but I might want to explore it just to see how bad it is.
3) do it inside the x86 JIT
The conceptually best approach is to find a way to do this peepholing
only inside the JIT only on x86, avoiding the need for new
Op::mul_f32_imm and co. ARM and the interpreter don't benefit from this
peephole, so the x86 JIT is the logical owner of this optimization.
Finding a clean way to do this without too much disruption is the least
baked idea I've got here, though I think the most desirable long-term.
Cq-Include-Trybots: skia.primary:Test-Debian9-Clang-GCE-CPU-AVX2-x86_64-Debug-All-SK_USE_SKVM_BLITTER,Test-Debian9-Clang-GCE-CPU-AVX2-x86_64-Release-All-SK_USE_SKVM_BLITTER
Change-Id: Ie9c6336ed08b6fbeb89acf920a48a319f74f3643
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/254217
Commit-Queue: Mike Klein <mtklein@google.com>
Reviewed-by: Herb Derby <herb@google.com>
The matrices we're using can produce very slightly out of range color
channels. This gives surprising results when in shader blending is used
for color burn and color dodge. After this change we clamp the RGB
values to 0..1 before applying premul.
Adds a GM modeled on a blink layout test that shows the problem using
SkImageMakeFromYUVAPixmaps.
Bug: skia:9619
Change-Id: I446d39763a7f5a2f7c5f61d94d163927d851baa3
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/253879
Reviewed-by: Brian Osman <brianosman@google.com>
Commit-Queue: Brian Salomon <bsalomon@google.com>
This does open us up to a little bit of possible inconsistency of
rounding when right on a x.5 (sometimes we'll +0.5 and trunc, sometimes
round to nearest, sometimes round according to the default mode which is
usually round to nearest) but I think that inconsistency may be worth
the free register not needing a splat(0.5f) buys us.
A few invisible diffs.
Change-Id: I9af092c937ccf7c5891c2ab3cb298d217e4a9e9f
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/253725
Commit-Queue: Mike Klein <mtklein@google.com>
Reviewed-by: Mike Reed <reed@google.com>
This plumbs through round but doesn't use it. I want that change to be
its own CL. It's nice to have assembler support and the name changes
even if I revert using round.
Change-Id: I6d67ec5c63546069eb7cc1c91599b599bafcda66
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/253724
Reviewed-by: Mike Reed <reed@google.com>
Commit-Queue: Mike Klein <mtklein@google.com>
Refactor as a single interpolating loop, based on careful selection
of lerp coefficients.
Change-Id: I58786cddb2f042b53dcbac80c2346736429be102
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/252858
Commit-Queue: Florin Malita <fmalita@chromium.org>
Reviewed-by: Mike Reed <reed@google.com>
Change-Id: Iea0f804b1b2fed9e663e45c33fb54a91b10fd07b
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/252652
Reviewed-by: Mike Klein <mtklein@google.com>
Commit-Queue: Mike Klein <mtklein@google.com>
Observed AE layer parenting semantics:
* layers are flagged as either 2D or 3D
* camera applies to 3D layers, but not to 2D layers
* parented 3D layers treat their ancestor transform chain as 3D (SkMatrix44)
* parented 2D layers treat their ancestor transform chain as 2D (SkMatrix, ignoring 3D components)
This means that for a given layer, we may need to build two distinct transform chains - depending
on the type of descendant layer being considered.
Furthermore, transforms are animatable and their animators are scoped to a layer controller. Since
we're potentially building two version of the transform node, we need to ensure all animators for
both of them are transferred to controller object (we still want to only instantiate a single layer
controller and render tree to avoid duplication). IOW, all dependent layer transforms need to be
considered before "sealing off" a given layer controller.
In order to avoid a layer dependency/topological sort, we can split off the transform tree
construction into a separate pass. High-level changes:
-- replace existing LayerAttachContext with CompositionBuilder
(holds LayerBuilders and other Composition-wide state)
-- replace LayerRec with LayerBuilder
(holds Layer-wide state and also caches transform nodes)
-- pass 1: for each LayerBuilder, transitively build and cache a transform chain
of a type (2d/3d) determined by the leaf (entry point) layer
-- pass 2: for each LayerBuilder, build the actual layer content render tree
and instantiate the layer controller objects
Bug: skia:8914
Change-Id: I9f7efcf4819424282fd3dda98f5621ba12fd001b
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/251001
Reviewed-by: Mike Reed <reed@google.com>
Commit-Queue: Florin Malita <fmalita@chromium.org>
Use `extra_cflags=["-DSK_CAPTURE_DRAW_TEXT_BLOB"]` to enable.
Change-Id: I1d6db478ee91696cdce090647b889c17a83a2718
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/250259
Commit-Queue: Hal Canary <halcanary@google.com>
Reviewed-by: Herb Derby <herb@google.com>
Rewrite program instructions so that each value becomes available as
late as possible, just before it's used by another instruction. This
reorders blocks of instructions to reduce them number of temporary
registers in flight.
Take this example of the sort of program that we naturally write,
noting the registers needed as we progress down the right:
src = load32 ... (1)
sr = extract src ... (2)
sg = extract src ... (3)
sb = extract src ... (4)
sa = extract src ... (4, src dies)
dst = load32 ... (5)
dr = extract dst ... (6)
dg = extract dst ... (7)
db = extract dst ... (8)
da = extract dst ... (8, dst dies)
r = add sr dr (7, sr and dr die)
g = add sg dg (6, sg and dg die)
b = add sb db (5, sb and db die)
a = add sa da (4, sa and da die)
rg = pack r g ... (3, r and g die)
ba = pack b a ... (2, b and a die)
rgba = pack rg ba ... (1, rg and ba die)
store32 rgba ... (0, rgba dies)
That original ordering of the code needs 8 registers (perhaps with a
temporary 9th, but we'll ignore that here). This CL will rewrite the
program to something more like this by recursively issuing inputs only
once needed:
src = load32 ... (1)
sr = extract src ... (2)
dst = load32 ... (3)
dr = extract dst ... (4)
r = add sr dr (3, sr and dr die)
sg = extract src ... (4)
dg = extract dst ... (5)
g = add sg dg (4, sg and dg die)
rg = pack r g (3, r and g die)
sb = extract src ... (4)
db = extract dst ... (5)
b = add sb db (4, sb and db die)
sa = extract src ... (4, src dies)
da = extract dst ... (4, dst dies)
a = add sa da (3, sa and da die)
ba = pack b a (2, b and a die)
rgba = pack rg ba ... (1, rg and ba die)
store32 rgba ... (0)
That trims 3 registers off the example, just by reordering!
I've added the real version of this example to SkVMTest.cpp.
(Its 6th register comes from holding the 0xff byte mask used
by extract, in case you're curious).
I'll admit it's not exactly easy to work out how this reordering works
without a pen and paper or trial and error. I've tried to make the
implementation preserve the original program's order as much as makes
sense (i.e. when order is an otherwise arbitrary choice) to keep it
somewhat sane to follow.
This reordering naturally skips dead code, so pour one out for ☠️ .
We lose our cute dead code emoji marker, but on the other hand all code
downstream of Builder::done() can assume every instruction is live.
Change-Id: Iceffcd10fd7465eae51a39ef8eec7a7189766ba2
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/249999
Commit-Queue: Mike Klein <mtklein@google.com>
Reviewed-by: Herb Derby <herb@google.com>
Change-Id: I6d29290eb2962262bb080a86dc829c39986cae4f
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/249226
Reviewed-by: Brian Osman <brianosman@google.com>
Commit-Queue: Brian Osman <brianosman@google.com>