/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "dm/DMSrcSink.h" #include "gm/verifiers/gmverifier.h" #include "include/codec/SkAndroidCodec.h" #include "include/codec/SkCodec.h" #include "include/core/SkColorSpace.h" #include "include/core/SkData.h" #include "include/core/SkDeferredDisplayListRecorder.h" #include "include/core/SkDocument.h" #include "include/core/SkExecutor.h" #include "include/core/SkImageGenerator.h" #include "include/core/SkMallocPixelRef.h" #include "include/core/SkPictureRecorder.h" #include "include/core/SkStream.h" #include "include/core/SkSurface.h" #include "include/core/SkSurfaceCharacterization.h" #include "include/docs/SkPDFDocument.h" #include "include/gpu/GrBackendSurface.h" #include "include/gpu/GrDirectContext.h" #include "include/ports/SkImageGeneratorCG.h" #include "include/ports/SkImageGeneratorNDK.h" #include "include/ports/SkImageGeneratorWIC.h" #include "include/private/SkImageInfoPriv.h" #include "include/private/SkTLogic.h" #include "include/third_party/skcms/skcms.h" #include "include/utils/SkNullCanvas.h" #include "include/utils/SkPaintFilterCanvas.h" #include "include/utils/SkRandom.h" #include "modules/skottie/utils/SkottieUtils.h" #include "src/codec/SkCodecImageGenerator.h" #include "src/codec/SkSwizzler.h" #include "src/core/SkAutoMalloc.h" #include "src/core/SkAutoPixmapStorage.h" #include "src/core/SkOSFile.h" #include "src/core/SkOpts.h" #include "src/core/SkPictureCommon.h" #include "src/core/SkPictureData.h" #include "src/core/SkRecordDraw.h" #include "src/core/SkRecorder.h" #include "src/core/SkTaskGroup.h" #include "src/gpu/GrDirectContextPriv.h" #include "src/gpu/GrGpu.h" #include "src/utils/SkMultiPictureDocumentPriv.h" #include "src/utils/SkOSPath.h" #include "tools/DDLPromiseImageHelper.h" #include "tools/DDLTileHelper.h" #include "tools/Resources.h" #include "tools/RuntimeBlendUtils.h" #include "tools/debugger/DebugCanvas.h" #include "tools/gpu/BackendSurfaceFactory.h" #include "tools/gpu/MemoryCache.h" #if defined(SK_BUILD_FOR_WIN) #include "include/docs/SkXPSDocument.h" #include "src/utils/win/SkAutoCoInitialize.h" #include "src/utils/win/SkHRESULT.h" #include "src/utils/win/SkTScopedComPtr.h" #include #endif #if defined(SK_ENABLE_SKOTTIE) #include "modules/skottie/include/Skottie.h" #include "modules/skresources/include/SkResources.h" #endif #if defined(SK_ENABLE_SKRIVE) #include "experimental/skrive/include/SkRive.h" #endif #if defined(SK_ENABLE_SVG) #include "include/svg/SkSVGCanvas.h" #include "modules/svg/include/SkSVGDOM.h" #include "modules/svg/include/SkSVGNode.h" #include "src/xml/SkXMLWriter.h" #endif #ifdef SK_GRAPHITE_ENABLED #include "experimental/graphite/include/Context.h" #include "experimental/graphite/include/SkStuff.h" #include "tools/graphite/ContextFactory.h" #include "tools/graphite/GraphiteTestContext.h" #endif #if defined(SK_ENABLE_ANDROID_UTILS) #include "client_utils/android/BitmapRegionDecoder.h" #endif #include "tests/TestUtils.h" #include #include static DEFINE_bool(multiPage, false, "For document-type backends, render the source into multiple pages"); static DEFINE_bool(RAW_threading, true, "Allow RAW decodes to run on multiple threads?"); DECLARE_int(gpuThreads); using sk_gpu_test::GrContextFactory; using sk_gpu_test::ContextInfo; namespace DM { GMSrc::GMSrc(skiagm::GMFactory factory) : fFactory(factory) {} Result GMSrc::draw(GrDirectContext* context, SkCanvas* canvas) const { std::unique_ptr gm(fFactory()); SkString msg; skiagm::DrawResult gpuSetupResult = gm->gpuSetup(context, canvas, &msg); switch (gpuSetupResult) { case skiagm::DrawResult::kOk : break; case skiagm::DrawResult::kFail: return Result(Result::Status::Fatal, msg); case skiagm::DrawResult::kSkip: return Result(Result::Status::Skip, msg); default: SK_ABORT(""); } skiagm::DrawResult drawResult = gm->draw(canvas, &msg); switch (drawResult) { case skiagm::DrawResult::kOk : return Result(Result::Status::Ok, msg); case skiagm::DrawResult::kFail: return Result(Result::Status::Fatal, msg); case skiagm::DrawResult::kSkip: return Result(Result::Status::Skip, msg); default: SK_ABORT(""); } // Note: we don't call "gpuTeardown" here because, when testing DDL recording, we want // the gpu-backed images to live past the lifetime of the GM. } SkISize GMSrc::size() const { std::unique_ptr gm(fFactory()); return gm->getISize(); } Name GMSrc::name() const { std::unique_ptr gm(fFactory()); return gm->getName(); } void GMSrc::modifyGrContextOptions(GrContextOptions* options) const { std::unique_ptr gm(fFactory()); gm->modifyGrContextOptions(options); } std::unique_ptr GMSrc::getVerifiers() const { std::unique_ptr gm(fFactory()); return gm->getVerifiers(); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static SkString get_scaled_name(const Path& path, float scale) { return SkStringPrintf("%s_%.3f", SkOSPath::Basename(path.c_str()).c_str(), scale); } #ifdef SK_ENABLE_ANDROID_UTILS BRDSrc::BRDSrc(Path path, Mode mode, CodecSrc::DstColorType dstColorType, uint32_t sampleSize) : fPath(path) , fMode(mode) , fDstColorType(dstColorType) , fSampleSize(sampleSize) {} bool BRDSrc::veto(SinkFlags flags) const { // No need to test to non-raster or indirect backends. return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; } static std::unique_ptr create_brd(Path path) { sk_sp encoded(SkData::MakeFromFileName(path.c_str())); return android::skia::BitmapRegionDecoder::Make(encoded); } static inline void alpha8_to_gray8(SkBitmap* bitmap) { // Android requires kGray8 bitmaps to be tagged as kAlpha8. Here we convert // them back to kGray8 so our test framework can draw them correctly. if (kAlpha_8_SkColorType == bitmap->info().colorType()) { SkImageInfo newInfo = bitmap->info().makeColorType(kGray_8_SkColorType) .makeAlphaType(kOpaque_SkAlphaType); *const_cast(&bitmap->info()) = newInfo; } } Result BRDSrc::draw(GrDirectContext*, SkCanvas* canvas) const { SkColorType colorType = canvas->imageInfo().colorType(); if (kRGB_565_SkColorType == colorType && CodecSrc::kGetFromCanvas_DstColorType != fDstColorType) { return Result::Skip("Testing non-565 to 565 is uninteresting."); } switch (fDstColorType) { case CodecSrc::kGetFromCanvas_DstColorType: break; case CodecSrc::kGrayscale_Always_DstColorType: colorType = kGray_8_SkColorType; break; default: SkASSERT(false); break; } auto brd = create_brd(fPath); if (nullptr == brd) { return Result::Skip("Could not create brd for %s.", fPath.c_str()); } auto recommendedCT = brd->computeOutputColorType(colorType); if (kRGB_565_SkColorType == colorType && recommendedCT != colorType) { return Result::Skip("Skip decoding non-opaque to 565."); } colorType = recommendedCT; auto colorSpace = brd->computeOutputColorSpace(colorType, nullptr); const uint32_t width = brd->width(); const uint32_t height = brd->height(); // Visually inspecting very small output images is not necessary. if ((width / fSampleSize <= 10 || height / fSampleSize <= 10) && 1 != fSampleSize) { return Result::Skip("Scaling very small images is uninteresting."); } switch (fMode) { case kFullImage_Mode: { SkBitmap bitmap; if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(0, 0, width, height), fSampleSize, colorType, false, colorSpace)) { return Result::Fatal("Cannot decode (full) region."); } alpha8_to_gray8(&bitmap); canvas->drawImage(bitmap.asImage(), 0, 0); return Result::Ok(); } case kDivisor_Mode: { const uint32_t divisor = 2; if (width < divisor || height < divisor) { return Result::Skip("Divisor is larger than image dimension."); } // Use a border to test subsets that extend outside the image. // We will not allow the border to be larger than the image dimensions. Allowing // these large borders causes off by one errors that indicate a problem with the // test suite, not a problem with the implementation. const uint32_t maxBorder = std::min(width, height) / (fSampleSize * divisor); const uint32_t scaledBorder = std::min(5u, maxBorder); const uint32_t unscaledBorder = scaledBorder * fSampleSize; // We may need to clear the canvas to avoid uninitialized memory. // Assume we are scaling a 780x780 image with sampleSize = 8. // The output image should be 97x97. // Each subset will be 390x390. // Each scaled subset be 48x48. // Four scaled subsets will only fill a 96x96 image. // The bottom row and last column will not be touched. // This is an unfortunate result of our rounding rules when scaling. // Maybe we need to consider testing scaled subsets without trying to // combine them to match the full scaled image? Or maybe this is the // best we can do? canvas->clear(0); for (uint32_t x = 0; x < divisor; x++) { for (uint32_t y = 0; y < divisor; y++) { // Calculate the subset dimensions uint32_t subsetWidth = width / divisor; uint32_t subsetHeight = height / divisor; const int left = x * subsetWidth; const int top = y * subsetHeight; // Increase the size of the last subset in each row or column, when the // divisor does not divide evenly into the image dimensions subsetWidth += (x + 1 == divisor) ? (width % divisor) : 0; subsetHeight += (y + 1 == divisor) ? (height % divisor) : 0; // Increase the size of the subset in order to have a border on each side const int decodeLeft = left - unscaledBorder; const int decodeTop = top - unscaledBorder; const uint32_t decodeWidth = subsetWidth + unscaledBorder * 2; const uint32_t decodeHeight = subsetHeight + unscaledBorder * 2; SkBitmap bitmap; if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(decodeLeft, decodeTop, decodeWidth, decodeHeight), fSampleSize, colorType, false, colorSpace)) { return Result::Fatal("Cannot decode region."); } alpha8_to_gray8(&bitmap); canvas->drawImageRect(bitmap.asImage().get(), SkRect::MakeXYWH((SkScalar) scaledBorder, (SkScalar) scaledBorder, (SkScalar) (subsetWidth / fSampleSize), (SkScalar) (subsetHeight / fSampleSize)), SkRect::MakeXYWH((SkScalar) (left / fSampleSize), (SkScalar) (top / fSampleSize), (SkScalar) (subsetWidth / fSampleSize), (SkScalar) (subsetHeight / fSampleSize)), SkSamplingOptions(), nullptr, SkCanvas::kStrict_SrcRectConstraint); } } return Result::Ok(); } default: SkASSERT(false); return Result::Fatal("Error: Should not be reached."); } } SkISize BRDSrc::size() const { auto brd = create_brd(fPath); if (brd) { return {std::max(1, brd->width() / (int)fSampleSize), std::max(1, brd->height() / (int)fSampleSize)}; } return {0, 0}; } Name BRDSrc::name() const { // We will replicate the names used by CodecSrc so that images can // be compared in Gold. if (1 == fSampleSize) { return SkOSPath::Basename(fPath.c_str()); } return get_scaled_name(fPath, 1.0f / (float) fSampleSize); } #endif // SK_ENABLE_ANDROID_UTILS /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static bool serial_from_path_name(const SkString& path) { if (!FLAGS_RAW_threading) { static const char* const exts[] = { "arw", "cr2", "dng", "nef", "nrw", "orf", "raf", "rw2", "pef", "srw", "ARW", "CR2", "DNG", "NEF", "NRW", "ORF", "RAF", "RW2", "PEF", "SRW", }; const char* actualExt = strrchr(path.c_str(), '.'); if (actualExt) { actualExt++; for (auto* ext : exts) { if (0 == strcmp(ext, actualExt)) { return true; } } } } return false; } CodecSrc::CodecSrc(Path path, Mode mode, DstColorType dstColorType, SkAlphaType dstAlphaType, float scale) : fPath(path) , fMode(mode) , fDstColorType(dstColorType) , fDstAlphaType(dstAlphaType) , fScale(scale) , fRunSerially(serial_from_path_name(path)) {} bool CodecSrc::veto(SinkFlags flags) const { // Test to direct raster backends (8888 and 565). return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; } // Allows us to test decodes to non-native 8888. static void swap_rb_if_necessary(SkBitmap& bitmap, CodecSrc::DstColorType dstColorType) { if (CodecSrc::kNonNative8888_Always_DstColorType != dstColorType) { return; } for (int y = 0; y < bitmap.height(); y++) { uint32_t* row = (uint32_t*) bitmap.getAddr(0, y); SkOpts::RGBA_to_BGRA(row, row, bitmap.width()); } } static bool get_decode_info(SkImageInfo* decodeInfo, SkColorType canvasColorType, CodecSrc::DstColorType dstColorType, SkAlphaType dstAlphaType) { switch (dstColorType) { case CodecSrc::kGrayscale_Always_DstColorType: if (kRGB_565_SkColorType == canvasColorType) { return false; } *decodeInfo = decodeInfo->makeColorType(kGray_8_SkColorType); break; case CodecSrc::kNonNative8888_Always_DstColorType: if (kRGB_565_SkColorType == canvasColorType || kRGBA_F16_SkColorType == canvasColorType) { return false; } #ifdef SK_PMCOLOR_IS_RGBA *decodeInfo = decodeInfo->makeColorType(kBGRA_8888_SkColorType); #else *decodeInfo = decodeInfo->makeColorType(kRGBA_8888_SkColorType); #endif break; default: if (kRGB_565_SkColorType == canvasColorType && kOpaque_SkAlphaType != decodeInfo->alphaType()) { return false; } *decodeInfo = decodeInfo->makeColorType(canvasColorType); break; } *decodeInfo = decodeInfo->makeAlphaType(dstAlphaType); return true; } static void draw_to_canvas(SkCanvas* canvas, const SkImageInfo& info, void* pixels, size_t rowBytes, CodecSrc::DstColorType dstColorType, SkScalar left = 0, SkScalar top = 0) { SkBitmap bitmap; bitmap.installPixels(info, pixels, rowBytes); swap_rb_if_necessary(bitmap, dstColorType); canvas->drawImage(bitmap.asImage(), left, top); } // For codec srcs, we want the "draw" step to be a memcpy. Any interesting color space or // color format conversions should be performed by the codec. Sometimes the output of the // decode will be in an interesting color space. On our srgb and f16 backends, we need to // "pretend" that the color space is standard sRGB to avoid triggering color conversion // at draw time. static void set_bitmap_color_space(SkImageInfo* info) { *info = info->makeColorSpace(SkColorSpace::MakeSRGB()); } Result CodecSrc::draw(GrDirectContext*, SkCanvas* canvas) const { sk_sp encoded(SkData::MakeFromFileName(fPath.c_str())); if (!encoded) { return Result::Fatal("Couldn't read %s.", fPath.c_str()); } std::unique_ptr codec(SkCodec::MakeFromData(encoded)); if (nullptr == codec) { return Result::Fatal("Couldn't create codec for %s.", fPath.c_str()); } SkImageInfo decodeInfo = codec->getInfo(); if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType, fDstAlphaType)) { return Result::Skip("Skipping uninteresting test."); } // Try to scale the image if it is desired SkISize size = codec->getScaledDimensions(fScale); std::unique_ptr androidCodec; if (1.0f != fScale && fMode == kAnimated_Mode) { androidCodec = SkAndroidCodec::MakeFromData(encoded); size = androidCodec->getSampledDimensions(1 / fScale); } if (size == decodeInfo.dimensions() && 1.0f != fScale) { return Result::Skip("Test without scaling is uninteresting."); } // Visually inspecting very small output images is not necessary. We will // cover these cases in unit testing. if ((size.width() <= 10 || size.height() <= 10) && 1.0f != fScale) { return Result::Skip("Scaling very small images is uninteresting."); } decodeInfo = decodeInfo.makeDimensions(size); const int bpp = decodeInfo.bytesPerPixel(); const size_t rowBytes = size.width() * bpp; const size_t safeSize = decodeInfo.computeByteSize(rowBytes); SkAutoMalloc pixels(safeSize); SkCodec::Options options; if (kCodecZeroInit_Mode == fMode) { memset(pixels.get(), 0, size.height() * rowBytes); options.fZeroInitialized = SkCodec::kYes_ZeroInitialized; } SkImageInfo bitmapInfo = decodeInfo; set_bitmap_color_space(&bitmapInfo); if (kRGBA_8888_SkColorType == decodeInfo.colorType() || kBGRA_8888_SkColorType == decodeInfo.colorType()) { bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType); } switch (fMode) { case kAnimated_Mode: { SkAndroidCodec::AndroidOptions androidOptions; if (fScale != 1.0f) { SkASSERT(androidCodec); androidOptions.fSampleSize = 1 / fScale; auto dims = androidCodec->getSampledDimensions(androidOptions.fSampleSize); decodeInfo = decodeInfo.makeDimensions(dims); } std::vector frameInfos = androidCodec ? androidCodec->codec()->getFrameInfo() : codec->getFrameInfo(); if (frameInfos.size() <= 1) { return Result::Fatal("%s is not an animated image.", fPath.c_str()); } // As in CodecSrc::size(), compute a roughly square grid to draw the frames // into. "factor" is the number of frames to draw on one row. There will be // up to "factor" rows as well. const float root = sqrt((float) frameInfos.size()); const int factor = sk_float_ceil2int(root); // Used to cache a frame that future frames will depend on. SkAutoMalloc priorFramePixels; int cachedFrame = SkCodec::kNoFrame; for (int i = 0; static_cast(i) < frameInfos.size(); i++) { androidOptions.fFrameIndex = i; // Check for a prior frame const int reqFrame = frameInfos[i].fRequiredFrame; if (reqFrame != SkCodec::kNoFrame && reqFrame == cachedFrame && priorFramePixels.get()) { // Copy into pixels memcpy(pixels.get(), priorFramePixels.get(), safeSize); androidOptions.fPriorFrame = reqFrame; } else { androidOptions.fPriorFrame = SkCodec::kNoFrame; } SkCodec::Result result = androidCodec ? androidCodec->getAndroidPixels(decodeInfo, pixels.get(), rowBytes, &androidOptions) : codec->getPixels(decodeInfo, pixels.get(), rowBytes, &androidOptions); if (SkCodec::kInvalidInput == result && i > 0) { // Some of our test images have truncated later frames. Treat that // the same as incomplete. result = SkCodec::kIncompleteInput; } switch (result) { case SkCodec::kSuccess: case SkCodec::kErrorInInput: case SkCodec::kIncompleteInput: { // If the next frame depends on this one, store it in priorFrame. // It is possible that we may discard a frame that future frames depend on, // but the codec will simply redecode the discarded frame. // Do this before calling draw_to_canvas, which premultiplies in place. If // we're decoding to unpremul, we want to pass the unmodified frame to the // codec for decoding the next frame. if (static_cast(i+1) < frameInfos.size() && frameInfos[i+1].fRequiredFrame == i) { memcpy(priorFramePixels.reset(safeSize), pixels.get(), safeSize); cachedFrame = i; } SkAutoCanvasRestore acr(canvas, true); const int xTranslate = (i % factor) * decodeInfo.width(); const int yTranslate = (i / factor) * decodeInfo.height(); canvas->translate(SkIntToScalar(xTranslate), SkIntToScalar(yTranslate)); draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType); if (result != SkCodec::kSuccess) { return Result::Ok(); } break; } case SkCodec::kInvalidConversion: if (i > 0 && (decodeInfo.colorType() == kRGB_565_SkColorType)) { return Result::Skip( "Cannot decode frame %i to 565 (%s).", i, fPath.c_str()); } [[fallthrough]]; default: return Result::Fatal( "Couldn't getPixels for frame %i in %s.", i, fPath.c_str()); } } break; } case kCodecZeroInit_Mode: case kCodec_Mode: { switch (codec->getPixels(decodeInfo, pixels.get(), rowBytes, &options)) { case SkCodec::kSuccess: // We consider these to be valid, since we should still decode what is // available. case SkCodec::kErrorInInput: case SkCodec::kIncompleteInput: break; default: // Everything else is considered a failure. return Result::Fatal("Couldn't getPixels %s.", fPath.c_str()); } draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType); break; } case kScanline_Mode: { void* dst = pixels.get(); uint32_t height = decodeInfo.height(); const bool useIncremental = [this]() { auto exts = { "png", "PNG", "gif", "GIF" }; for (auto ext : exts) { if (fPath.endsWith(ext)) { return true; } } return false; }(); // ico may use the old scanline method or the new one, depending on whether it // internally holds a bmp or a png. const bool ico = fPath.endsWith("ico"); bool useOldScanlineMethod = !useIncremental && !ico; if (useIncremental || ico) { if (SkCodec::kSuccess == codec->startIncrementalDecode(decodeInfo, dst, rowBytes, &options)) { int rowsDecoded; auto result = codec->incrementalDecode(&rowsDecoded); if (SkCodec::kIncompleteInput == result || SkCodec::kErrorInInput == result) { codec->fillIncompleteImage(decodeInfo, dst, rowBytes, SkCodec::kNo_ZeroInitialized, height, rowsDecoded); } } else { if (useIncremental) { // Error: These should support incremental decode. return Result::Fatal("Could not start incremental decode"); } // Otherwise, this is an ICO. Since incremental failed, it must contain a BMP, // which should work via startScanlineDecode useOldScanlineMethod = true; } } if (useOldScanlineMethod) { if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo)) { return Result::Fatal("Could not start scanline decoder"); } // We do not need to check the return value. On an incomplete // image, memory will be filled with a default value. codec->getScanlines(dst, height, rowBytes); } draw_to_canvas(canvas, bitmapInfo, dst, rowBytes, fDstColorType); break; } case kStripe_Mode: { const int height = decodeInfo.height(); // This value is chosen arbitrarily. We exercise more cases by choosing a value that // does not align with image blocks. const int stripeHeight = 37; const int numStripes = (height + stripeHeight - 1) / stripeHeight; void* dst = pixels.get(); // Decode odd stripes if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, &options)) { return Result::Fatal("Could not start scanline decoder"); } // This mode was designed to test the new skip scanlines API in libjpeg-turbo. // Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting // to run this test for image types that do not have this scanline ordering. // We only run this on Jpeg, which is always kTopDown. SkASSERT(SkCodec::kTopDown_SkScanlineOrder == codec->getScanlineOrder()); for (int i = 0; i < numStripes; i += 2) { // Skip a stripe const int linesToSkip = std::min(stripeHeight, height - i * stripeHeight); codec->skipScanlines(linesToSkip); // Read a stripe const int startY = (i + 1) * stripeHeight; const int linesToRead = std::min(stripeHeight, height - startY); if (linesToRead > 0) { codec->getScanlines(SkTAddOffset(dst, rowBytes * startY), linesToRead, rowBytes); } } // Decode even stripes const SkCodec::Result startResult = codec->startScanlineDecode(decodeInfo); if (SkCodec::kSuccess != startResult) { return Result::Fatal("Failed to restart scanline decoder with same parameters."); } for (int i = 0; i < numStripes; i += 2) { // Read a stripe const int startY = i * stripeHeight; const int linesToRead = std::min(stripeHeight, height - startY); codec->getScanlines(SkTAddOffset(dst, rowBytes * startY), linesToRead, rowBytes); // Skip a stripe const int linesToSkip = std::min(stripeHeight, height - (i + 1) * stripeHeight); if (linesToSkip > 0) { codec->skipScanlines(linesToSkip); } } draw_to_canvas(canvas, bitmapInfo, dst, rowBytes, fDstColorType); break; } case kCroppedScanline_Mode: { const int width = decodeInfo.width(); const int height = decodeInfo.height(); // This value is chosen because, as we move across the image, it will sometimes // align with the jpeg block sizes and it will sometimes not. This allows us // to test interestingly different code paths in the implementation. const int tileSize = 36; SkIRect subset; for (int x = 0; x < width; x += tileSize) { subset = SkIRect::MakeXYWH(x, 0, std::min(tileSize, width - x), height); options.fSubset = ⊂ if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, &options)) { return Result::Fatal("Could not start scanline decoder."); } codec->getScanlines(SkTAddOffset(pixels.get(), x * bpp), height, rowBytes); } draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType); break; } case kSubset_Mode: { // Arbitrarily choose a divisor. int divisor = 2; // Total width/height of the image. const int W = codec->getInfo().width(); const int H = codec->getInfo().height(); if (divisor > W || divisor > H) { return Result::Skip("Cannot codec subset: divisor %d is too big " "for %s with dimensions (%d x %d)", divisor, fPath.c_str(), W, H); } // subset dimensions // SkWebpCodec, the only one that supports subsets, requires even top/left boundaries. const int w = SkAlign2(W / divisor); const int h = SkAlign2(H / divisor); SkIRect subset; options.fSubset = ⊂ SkBitmap subsetBm; // We will reuse pixel memory from bitmap. void* dst = pixels.get(); // Keep track of left and top (for drawing subsetBm into canvas). We could use // fScale * x and fScale * y, but we want integers such that the next subset will start // where the last one ended. So we'll add decodeInfo.width() and height(). int left = 0; for (int x = 0; x < W; x += w) { int top = 0; for (int y = 0; y < H; y+= h) { // Do not make the subset go off the edge of the image. const int preScaleW = std::min(w, W - x); const int preScaleH = std::min(h, H - y); subset.setXYWH(x, y, preScaleW, preScaleH); // And scale // FIXME: Should we have a version of getScaledDimensions that takes a subset // into account? const int scaledW = std::max(1, SkScalarRoundToInt(preScaleW * fScale)); const int scaledH = std::max(1, SkScalarRoundToInt(preScaleH * fScale)); decodeInfo = decodeInfo.makeWH(scaledW, scaledH); SkImageInfo subsetBitmapInfo = bitmapInfo.makeWH(scaledW, scaledH); size_t subsetRowBytes = subsetBitmapInfo.minRowBytes(); const SkCodec::Result result = codec->getPixels(decodeInfo, dst, subsetRowBytes, &options); switch (result) { case SkCodec::kSuccess: case SkCodec::kErrorInInput: case SkCodec::kIncompleteInput: break; default: return Result::Fatal("subset codec failed to decode (%d, %d, %d, %d) " "from %s with dimensions (%d x %d)\t error %d", x, y, decodeInfo.width(), decodeInfo.height(), fPath.c_str(), W, H, result); } draw_to_canvas(canvas, subsetBitmapInfo, dst, subsetRowBytes, fDstColorType, SkIntToScalar(left), SkIntToScalar(top)); // translate by the scaled height. top += decodeInfo.height(); } // translate by the scaled width. left += decodeInfo.width(); } return Result::Ok(); } default: SkASSERT(false); return Result::Fatal("Invalid fMode"); } return Result::Ok(); } SkISize CodecSrc::size() const { sk_sp encoded(SkData::MakeFromFileName(fPath.c_str())); std::unique_ptr codec(SkCodec::MakeFromData(encoded)); if (nullptr == codec) { return {0, 0}; } if (fMode != kAnimated_Mode) { return codec->getScaledDimensions(fScale); } // We'll draw one of each frame, so make it big enough to hold them all // in a grid. The grid will be roughly square, with "factor" frames per // row and up to "factor" rows. const size_t count = codec->getFrameInfo().size(); const float root = sqrt((float) count); const int factor = sk_float_ceil2int(root); auto androidCodec = SkAndroidCodec::MakeFromCodec(std::move(codec)); auto imageSize = androidCodec->getSampledDimensions(1 / fScale); imageSize.fWidth = imageSize.fWidth * factor; imageSize.fHeight = imageSize.fHeight * sk_float_ceil2int((float) count / (float) factor); return imageSize; } Name CodecSrc::name() const { Name name = SkOSPath::Basename(fPath.c_str()); if (fMode == kAnimated_Mode) { name.append("_animated"); } if (1.0f == fScale) { return name; } return get_scaled_name(name.c_str(), fScale); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ AndroidCodecSrc::AndroidCodecSrc(Path path, CodecSrc::DstColorType dstColorType, SkAlphaType dstAlphaType, int sampleSize) : fPath(path) , fDstColorType(dstColorType) , fDstAlphaType(dstAlphaType) , fSampleSize(sampleSize) , fRunSerially(serial_from_path_name(path)) {} bool AndroidCodecSrc::veto(SinkFlags flags) const { // No need to test decoding to non-raster or indirect backend. return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; } Result AndroidCodecSrc::draw(GrDirectContext*, SkCanvas* canvas) const { sk_sp encoded(SkData::MakeFromFileName(fPath.c_str())); if (!encoded) { return Result::Fatal("Couldn't read %s.", fPath.c_str()); } std::unique_ptr codec(SkAndroidCodec::MakeFromData(encoded)); if (nullptr == codec) { return Result::Fatal("Couldn't create android codec for %s.", fPath.c_str()); } SkImageInfo decodeInfo = codec->getInfo(); if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType, fDstAlphaType)) { return Result::Skip("Skipping uninteresting test."); } // Scale the image if it is desired. SkISize size = codec->getSampledDimensions(fSampleSize); // Visually inspecting very small output images is not necessary. We will // cover these cases in unit testing. if ((size.width() <= 10 || size.height() <= 10) && 1 != fSampleSize) { return Result::Skip("Scaling very small images is uninteresting."); } decodeInfo = decodeInfo.makeDimensions(size); int bpp = decodeInfo.bytesPerPixel(); size_t rowBytes = size.width() * bpp; SkAutoMalloc pixels(size.height() * rowBytes); SkBitmap bitmap; SkImageInfo bitmapInfo = decodeInfo; set_bitmap_color_space(&bitmapInfo); if (kRGBA_8888_SkColorType == decodeInfo.colorType() || kBGRA_8888_SkColorType == decodeInfo.colorType()) { bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType); } // Create options for the codec. SkAndroidCodec::AndroidOptions options; options.fSampleSize = fSampleSize; switch (codec->getAndroidPixels(decodeInfo, pixels.get(), rowBytes, &options)) { case SkCodec::kSuccess: case SkCodec::kErrorInInput: case SkCodec::kIncompleteInput: break; default: return Result::Fatal("Couldn't getPixels %s.", fPath.c_str()); } draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType); return Result::Ok(); } SkISize AndroidCodecSrc::size() const { sk_sp encoded(SkData::MakeFromFileName(fPath.c_str())); std::unique_ptr codec(SkAndroidCodec::MakeFromData(encoded)); if (nullptr == codec) { return {0, 0}; } return codec->getSampledDimensions(fSampleSize); } Name AndroidCodecSrc::name() const { // We will replicate the names used by CodecSrc so that images can // be compared in Gold. if (1 == fSampleSize) { return SkOSPath::Basename(fPath.c_str()); } return get_scaled_name(fPath, 1.0f / (float) fSampleSize); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ImageGenSrc::ImageGenSrc(Path path, Mode mode, SkAlphaType alphaType, bool isGpu) : fPath(path) , fMode(mode) , fDstAlphaType(alphaType) , fIsGpu(isGpu) , fRunSerially(serial_from_path_name(path)) {} bool ImageGenSrc::veto(SinkFlags flags) const { if (fIsGpu) { // MSAA runs tend to run out of memory and tests the same code paths as regular gpu configs. return flags.type != SinkFlags::kGPU || flags.approach != SinkFlags::kDirect || flags.multisampled == SinkFlags::kMultisampled; } return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; } Result ImageGenSrc::draw(GrDirectContext*, SkCanvas* canvas) const { if (kRGB_565_SkColorType == canvas->imageInfo().colorType()) { return Result::Skip("Uninteresting to test image generator to 565."); } sk_sp encoded(SkData::MakeFromFileName(fPath.c_str())); if (!encoded) { return Result::Fatal("Couldn't read %s.", fPath.c_str()); } #if defined(SK_BUILD_FOR_WIN) // Initialize COM in order to test with WIC. SkAutoCoInitialize com; if (!com.succeeded()) { return Result::Fatal("Could not initialize COM."); } #endif std::unique_ptr gen(nullptr); switch (fMode) { case kCodec_Mode: gen = SkCodecImageGenerator::MakeFromEncodedCodec(encoded); if (!gen) { return Result::Fatal("Could not create codec image generator."); } break; case kPlatform_Mode: { #if defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS) gen = SkImageGeneratorCG::MakeFromEncodedCG(encoded); #elif defined(SK_BUILD_FOR_WIN) gen = SkImageGeneratorWIC::MakeFromEncodedWIC(encoded); #elif defined(SK_ENABLE_NDK_IMAGES) gen = SkImageGeneratorNDK::MakeFromEncodedNDK(encoded); #endif if (!gen) { return Result::Fatal("Could not create platform image generator."); } break; } default: SkASSERT(false); return Result::Fatal("Invalid image generator mode"); } // Test deferred decoding path on GPU if (fIsGpu) { sk_sp image(SkImage::MakeFromGenerator(std::move(gen))); if (!image) { return Result::Fatal("Could not create image from codec image generator."); } canvas->drawImage(image, 0, 0); return Result::Ok(); } // Test various color and alpha types on CPU SkImageInfo decodeInfo = gen->getInfo().makeAlphaType(fDstAlphaType); int bpp = decodeInfo.bytesPerPixel(); size_t rowBytes = decodeInfo.width() * bpp; SkAutoMalloc pixels(decodeInfo.height() * rowBytes); if (!gen->getPixels(decodeInfo, pixels.get(), rowBytes)) { Result::Status status = Result::Status::Fatal; #if defined(SK_BUILD_FOR_WIN) if (kPlatform_Mode == fMode) { // Do not issue a fatal error for WIC flakiness. status = Result::Status::Skip; } #endif return Result(status, "Image generator could not getPixels() for %s\n", fPath.c_str()); } set_bitmap_color_space(&decodeInfo); draw_to_canvas(canvas, decodeInfo, pixels.get(), rowBytes, CodecSrc::kGetFromCanvas_DstColorType); return Result::Ok(); } SkISize ImageGenSrc::size() const { sk_sp encoded(SkData::MakeFromFileName(fPath.c_str())); std::unique_ptr codec(SkCodec::MakeFromData(encoded)); if (nullptr == codec) { return {0, 0}; } return codec->getInfo().dimensions(); } Name ImageGenSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ColorCodecSrc::ColorCodecSrc(Path path, bool decode_to_dst) : fPath(path) , fDecodeToDst(decode_to_dst) {} bool ColorCodecSrc::veto(SinkFlags flags) const { // Test to direct raster backends (8888 and 565). return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; } Result ColorCodecSrc::draw(GrDirectContext*, SkCanvas* canvas) const { sk_sp encoded(SkData::MakeFromFileName(fPath.c_str())); if (!encoded) { return Result::Fatal("Couldn't read %s.", fPath.c_str()); } std::unique_ptr codec(SkCodec::MakeFromData(encoded)); if (nullptr == codec) { return Result::Fatal("Couldn't create codec for %s.", fPath.c_str()); } SkImageInfo info = codec->getInfo(); if (fDecodeToDst) { SkImageInfo canvasInfo = canvas->imageInfo(); if (!canvasInfo.colorSpace()) { // This will skip color conversion, and the resulting images will // look different from images they are compared against in Gold, but // that doesn't mean they are wrong. We have a test verifying that // passing a null SkColorSpace skips conversion, so skip this // misleading test. return Result::Skip("Skipping decoding without color transform."); } info = canvasInfo.makeDimensions(info.dimensions()); } auto [image, result] = codec->getImage(info); switch (result) { case SkCodec::kSuccess: case SkCodec::kErrorInInput: case SkCodec::kIncompleteInput: canvas->drawImage(image, 0,0); return Result::Ok(); case SkCodec::kInvalidConversion: // TODO(mtklein): why are there formats we can't decode to? return Result::Skip("SkCodec can't decode to this format."); default: return Result::Fatal("Couldn't getPixels %s. Error code %d", fPath.c_str(), result); } } SkISize ColorCodecSrc::size() const { sk_sp encoded(SkData::MakeFromFileName(fPath.c_str())); std::unique_ptr codec(SkCodec::MakeFromData(encoded)); if (nullptr == codec) { return {0, 0}; } return {codec->getInfo().width(), codec->getInfo().height()}; } Name ColorCodecSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static DEFINE_int(skpViewportSize, 1000, "Width & height of the viewport used to crop skp rendering."); SKPSrc::SKPSrc(Path path) : fPath(path) { } Result SKPSrc::draw(GrDirectContext*, SkCanvas* canvas) const { std::unique_ptr stream = SkStream::MakeFromFile(fPath.c_str()); if (!stream) { return Result::Fatal("Couldn't read %s.", fPath.c_str()); } sk_sp pic(SkPicture::MakeFromStream(stream.get())); if (!pic) { return Result::Fatal("Couldn't parse file %s.", fPath.c_str()); } stream = nullptr; // Might as well drop this when we're done with it. canvas->clipRect(SkRect::MakeWH(FLAGS_skpViewportSize, FLAGS_skpViewportSize)); canvas->drawPicture(pic); return Result::Ok(); } static SkRect get_cull_rect_for_skp(const char* path) { std::unique_ptr stream = SkStream::MakeFromFile(path); if (!stream) { return SkRect::MakeEmpty(); } SkPictInfo info; if (!SkPicture_StreamIsSKP(stream.get(), &info)) { return SkRect::MakeEmpty(); } return info.fCullRect; } SkISize SKPSrc::size() const { SkRect viewport = get_cull_rect_for_skp(fPath.c_str()); if (!viewport.intersect((SkRect::MakeWH(FLAGS_skpViewportSize, FLAGS_skpViewportSize)))) { return {0, 0}; } return viewport.roundOut().size(); } Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ BisectSrc::BisectSrc(Path path, const char* trail) : INHERITED(path), fTrail(trail) {} Result BisectSrc::draw(GrDirectContext* context, SkCanvas* canvas) const { struct FoundPath { SkPath fPath; SkPaint fPaint; SkMatrix fViewMatrix; }; // This subclass of SkCanvas just extracts all the SkPaths (drawn via drawPath) from an SKP. class PathFindingCanvas : public SkCanvas { public: PathFindingCanvas(int width, int height) : SkCanvas(width, height, nullptr) {} const SkTArray& foundPaths() const { return fFoundPaths; } private: void onDrawPath(const SkPath& path, const SkPaint& paint) override { fFoundPaths.push_back() = {path, paint, this->getTotalMatrix()}; } SkTArray fFoundPaths; }; PathFindingCanvas pathFinder(canvas->getBaseLayerSize().width(), canvas->getBaseLayerSize().height()); Result result = this->INHERITED::draw(context, &pathFinder); if (!result.isOk()) { return result; } int start = 0, end = pathFinder.foundPaths().count(); for (const char* ch = fTrail.c_str(); *ch; ++ch) { int midpt = (start + end) / 2; if ('l' == *ch) { start = midpt; } else if ('r' == *ch) { end = midpt; } } for (int i = start; i < end; ++i) { const FoundPath& path = pathFinder.foundPaths()[i]; SkAutoCanvasRestore acr(canvas, true); canvas->concat(path.fViewMatrix); canvas->drawPath(path.fPath, path.fPaint); } return Result::Ok(); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ #if defined(SK_ENABLE_SKOTTIE) static DEFINE_bool(useLottieGlyphPaths, false, "Prioritize embedded glyph paths over native fonts."); SkottieSrc::SkottieSrc(Path path) : fPath(std::move(path)) {} Result SkottieSrc::draw(GrDirectContext*, SkCanvas* canvas) const { auto resource_provider = skresources::DataURIResourceProviderProxy::Make( skresources::FileResourceProvider::Make(SkOSPath::Dirname(fPath.c_str()), /*predecode=*/true), /*predecode=*/true); static constexpr char kInterceptPrefix[] = "__"; auto precomp_interceptor = sk_make_sp(resource_provider, kInterceptPrefix); uint32_t flags = 0; if (FLAGS_useLottieGlyphPaths) { flags |= skottie::Animation::Builder::kPreferEmbeddedFonts; } auto animation = skottie::Animation::Builder(flags) .setResourceProvider(std::move(resource_provider)) .setPrecompInterceptor(std::move(precomp_interceptor)) .makeFromFile(fPath.c_str()); if (!animation) { return Result::Fatal("Unable to parse file: %s", fPath.c_str()); } canvas->drawColor(SK_ColorWHITE); const auto t_rate = 1.0f / (kTileCount * kTileCount - 1); // Draw the frames in a shuffled order to exercise non-linear // frame progression. The film strip will still be in order left-to-right, // top-down, just not drawn in that order. static constexpr int frameOrder[] = { 4, 0, 3, 1, 2 }; static_assert(SK_ARRAY_COUNT(frameOrder) == kTileCount, ""); for (int i = 0; i < kTileCount; ++i) { const SkScalar y = frameOrder[i] * kTileSize; for (int j = 0; j < kTileCount; ++j) { const SkScalar x = frameOrder[j] * kTileSize; SkRect dest = SkRect::MakeXYWH(x, y, kTileSize, kTileSize); const auto t = t_rate * (frameOrder[i] * kTileCount + frameOrder[j]); { SkAutoCanvasRestore acr(canvas, true); canvas->clipRect(dest, true); canvas->concat(SkMatrix::RectToRect(SkRect::MakeSize(animation->size()), dest, SkMatrix::kCenter_ScaleToFit)); animation->seek(t); animation->render(canvas); } } } return Result::Ok(); } SkISize SkottieSrc::size() const { return SkISize::Make(kTargetSize, kTargetSize); } Name SkottieSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } bool SkottieSrc::veto(SinkFlags flags) const { // No need to test to non-(raster||gpu||vector) or indirect backends. bool type_ok = flags.type == SinkFlags::kRaster || flags.type == SinkFlags::kGPU || flags.type == SinkFlags::kVector; return !type_ok || flags.approach != SinkFlags::kDirect; } #endif /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ #if defined(SK_ENABLE_SKRIVE) SkRiveSrc::SkRiveSrc(Path path) : fPath(std::move(path)) {} Result SkRiveSrc::draw(GrDirectContext*, SkCanvas* canvas) const { auto fileStream = SkFILEStream::Make(fPath.c_str()); if (!fileStream) { return Result::Fatal("Unable to open file: %s", fPath.c_str()); } const auto skrive = skrive::SkRive::Builder().make(std::move(fileStream)); if (!skrive) { return Result::Fatal("Unable to parse file: %s", fPath.c_str()); } auto bounds = SkRect::MakeEmpty(); for (const auto& ab : skrive->artboards()) { const auto& pos = ab->getTranslation(); const auto& size = ab->getSize(); bounds.join(SkRect::MakeXYWH(pos.x, pos.y, size.x, size.y)); } canvas->drawColor(SK_ColorWHITE); if (!bounds.isEmpty()) { // TODO: tiled frames when we add animation support SkAutoCanvasRestore acr(canvas, true); canvas->concat(SkMatrix::RectToRect(bounds, SkRect::MakeWH(kTargetSize, kTargetSize), SkMatrix::kCenter_ScaleToFit)); for (const auto& ab : skrive->artboards()) { ab->render(canvas); } } return Result::Ok(); } SkISize SkRiveSrc::size() const { return SkISize::Make(kTargetSize, kTargetSize); } Name SkRiveSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } bool SkRiveSrc::veto(SinkFlags flags) const { // No need to test to non-(raster||gpu||vector) or indirect backends. bool type_ok = flags.type == SinkFlags::kRaster || flags.type == SinkFlags::kGPU || flags.type == SinkFlags::kVector; return !type_ok || flags.approach != SinkFlags::kDirect; } #endif /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ #if defined(SK_ENABLE_SVG) // Used when the image doesn't have an intrinsic size. static const SkSize kDefaultSVGSize = {1000, 1000}; // Used to force-scale tiny fixed-size images. static const SkSize kMinimumSVGSize = {128, 128}; SVGSrc::SVGSrc(Path path) : fName(SkOSPath::Basename(path.c_str())) , fScale(1) { auto stream = SkStream::MakeFromFile(path.c_str()); if (!stream) { return; } auto rp = skresources::DataURIResourceProviderProxy::Make( skresources::FileResourceProvider::Make(SkOSPath::Dirname(path.c_str()), /*predecode=*/true), /*predecode=*/true); fDom = SkSVGDOM::Builder().setResourceProvider(std::move(rp)) .make(*stream); if (!fDom) { return; } const SkSize& sz = fDom->containerSize(); if (sz.isEmpty()) { // no intrinsic size fDom->setContainerSize(kDefaultSVGSize); } else { fScale = std::max(1.f, std::max(kMinimumSVGSize.width() / sz.width(), kMinimumSVGSize.height() / sz.height())); } } Result SVGSrc::draw(GrDirectContext*, SkCanvas* canvas) const { if (!fDom) { return Result::Fatal("Unable to parse file: %s", fName.c_str()); } SkAutoCanvasRestore acr(canvas, true); canvas->scale(fScale, fScale); canvas->drawColor(SK_ColorWHITE); fDom->render(canvas); return Result::Ok(); } SkISize SVGSrc::size() const { if (!fDom) { return {0, 0}; } return SkSize{fDom->containerSize().width() * fScale, fDom->containerSize().height() * fScale} .toRound(); } Name SVGSrc::name() const { return fName; } bool SVGSrc::veto(SinkFlags flags) const { // No need to test to non-(raster||gpu||vector) or indirect backends. bool type_ok = flags.type == SinkFlags::kRaster || flags.type == SinkFlags::kGPU || flags.type == SinkFlags::kVector; return !type_ok || flags.approach != SinkFlags::kDirect; } #endif // defined(SK_ENABLE_SVG) /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ MSKPSrc::MSKPSrc(Path path) : fPath(path) { std::unique_ptr stream = SkStream::MakeFromFile(fPath.c_str()); int count = SkMultiPictureDocumentReadPageCount(stream.get()); if (count > 0) { fPages.reset(count); (void)SkMultiPictureDocumentReadPageSizes(stream.get(), &fPages[0], fPages.count()); } } int MSKPSrc::pageCount() const { return fPages.count(); } SkISize MSKPSrc::size() const { return this->size(0); } SkISize MSKPSrc::size(int i) const { return i >= 0 && i < fPages.count() ? fPages[i].fSize.toCeil() : SkISize{0, 0}; } Result MSKPSrc::draw(GrDirectContext* context, SkCanvas* c) const { return this->draw(0, context, c); } Result MSKPSrc::draw(int i, GrDirectContext*, SkCanvas* canvas) const { if (this->pageCount() == 0) { return Result::Fatal("Unable to parse MultiPictureDocument file: %s", fPath.c_str()); } if (i >= fPages.count() || i < 0) { return Result::Fatal("MultiPictureDocument page number out of range: %d", i); } SkPicture* page = fPages[i].fPicture.get(); if (!page) { std::unique_ptr stream = SkStream::MakeFromFile(fPath.c_str()); if (!stream) { return Result::Fatal("Unable to open file: %s", fPath.c_str()); } if (!SkMultiPictureDocumentRead(stream.get(), &fPages[0], fPages.count())) { return Result::Fatal("SkMultiPictureDocument reader failed on page %d: %s", i, fPath.c_str()); } page = fPages[i].fPicture.get(); } canvas->drawPicture(page); return Result::Ok(); } Name MSKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Result NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const { return src.draw(nullptr, SkMakeNullCanvas().get()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static Result compare_bitmaps(const SkBitmap& reference, const SkBitmap& bitmap) { // The dimensions are a property of the Src only, and so should be identical. SkASSERT(reference.computeByteSize() == bitmap.computeByteSize()); if (reference.computeByteSize() != bitmap.computeByteSize()) { return Result::Fatal("Dimensions don't match reference"); } // All SkBitmaps in DM are tight, so this comparison is easy. if (0 != memcmp(reference.getPixels(), bitmap.getPixels(), reference.computeByteSize())) { SkString encoded; SkString errString("Pixels don't match reference"); if (BipmapToBase64DataURI(reference, &encoded)) { errString.append("\nExpected: "); errString.append(encoded); } else { errString.append("\nExpected image failed to encode: "); errString.append(encoded); } if (BipmapToBase64DataURI(bitmap, &encoded)) { errString.append("\nActual: "); errString.append(encoded); } else { errString.append("\nActual image failed to encode: "); errString.append(encoded); } return Result::Fatal(errString); } return Result::Ok(); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?"); static DEFINE_bool(preAbandonGpuContext, false, "Test abandoning the GrContext before running the test."); static DEFINE_bool(abandonGpuContext, false, "Test abandoning the GrContext after running each test."); static DEFINE_bool(releaseAndAbandonGpuContext, false, "Test releasing all gpu resources and abandoning the GrContext " "after running each test"); static DEFINE_bool(drawOpClip, false, "Clip each GrDrawOp to its device bounds for testing."); static DEFINE_bool(programBinaryCache, true, "Use in-memory program binary cache"); GPUSink::GPUSink(const SkCommandLineConfigGpu* config, const GrContextOptions& grCtxOptions) : fContextType(config->getContextType()) , fContextOverrides(config->getContextOverrides()) , fSurfType(config->getSurfType()) , fSampleCount(config->getSamples()) , fSurfaceFlags(config->getSurfaceFlags()) , fColorType(config->getColorType()) , fAlphaType(config->getAlphaType()) , fBaseContextOptions(grCtxOptions) { if (FLAGS_programBinaryCache) { fBaseContextOptions.fPersistentCache = &fMemoryCache; } } Result GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream* dstStream, SkString* log) const { return this->onDraw(src, dst, dstStream, log, fBaseContextOptions); } sk_sp GPUSink::createDstSurface(GrDirectContext* context, SkISize size) const { sk_sp surface; SkImageInfo info = SkImageInfo::Make(size, fColorType, fAlphaType, fColorSpace); SkSurfaceProps props(fSurfaceFlags, kRGB_H_SkPixelGeometry); switch (fSurfType) { case SkCommandLineConfigGpu::SurfType::kDefault: surface = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, info, fSampleCount, &props); break; case SkCommandLineConfigGpu::SurfType::kBackendTexture: surface = sk_gpu_test::MakeBackendTextureSurface(context, info, kTopLeft_GrSurfaceOrigin, fSampleCount, GrMipmapped::kNo, GrProtected::kNo, &props); break; case SkCommandLineConfigGpu::SurfType::kBackendRenderTarget: surface = sk_gpu_test::MakeBackendRenderTargetSurface(context, info, kBottomLeft_GrSurfaceOrigin, fSampleCount, GrProtected::kNo, &props); break; } return surface; } bool GPUSink::readBack(SkSurface* surface, SkBitmap* dst) const { SkCanvas* canvas = surface->getCanvas(); SkISize size = surface->imageInfo().dimensions(); SkImageInfo info = SkImageInfo::Make(size, fColorType, fAlphaType, fColorSpace); dst->allocPixels(info); return canvas->readPixels(*dst, 0, 0); } Result GPUSink::onDraw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log, const GrContextOptions& baseOptions, std::function initContext) const { GrContextOptions grOptions = baseOptions; // We don't expect the src to mess with the persistent cache or the executor. SkDEBUGCODE(auto cache = grOptions.fPersistentCache); SkDEBUGCODE(auto exec = grOptions.fExecutor); src.modifyGrContextOptions(&grOptions); SkASSERT(cache == grOptions.fPersistentCache); SkASSERT(exec == grOptions.fExecutor); GrContextFactory factory(grOptions); auto direct = factory.getContextInfo(fContextType, fContextOverrides).directContext(); if (initContext) { initContext(direct); } const int maxDimension = direct->priv().caps()->maxTextureSize(); if (maxDimension < std::max(src.size().width(), src.size().height())) { return Result::Skip("Src too large to create a texture.\n"); } sk_sp surface = this->createDstSurface(direct, src.size()); if (!surface) { return Result::Fatal("Could not create a surface."); } if (FLAGS_preAbandonGpuContext) { factory.abandonContexts(); } Result result = src.draw(direct, surface->getCanvas()); if (!result.isOk()) { return result; } surface->flushAndSubmit(); if (FLAGS_gpuStats) { direct->priv().dumpCacheStats(log); direct->priv().dumpGpuStats(log); direct->priv().dumpContextStats(log); } this->readBack(surface.get(), dst); if (FLAGS_abandonGpuContext) { factory.abandonContexts(); } else if (FLAGS_releaseAndAbandonGpuContext) { factory.releaseResourcesAndAbandonContexts(); } if (grOptions.fPersistentCache) { direct->storeVkPipelineCacheData(); } return Result::Ok(); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ GPUThreadTestingSink::GPUThreadTestingSink(const SkCommandLineConfigGpu* config, const GrContextOptions& grCtxOptions) : INHERITED(config, grCtxOptions) , fExecutor(SkExecutor::MakeFIFOThreadPool(FLAGS_gpuThreads)) { SkASSERT(fExecutor); } Result GPUThreadTestingSink::draw(const Src& src, SkBitmap* dst, SkWStream* wStream, SkString* log) const { // Draw twice, once with worker threads, and once without. Verify that we get the same result. // Also, force us to only use the software path renderer, so we really stress-test the threaded // version of that code. GrContextOptions contextOptions = this->baseContextOptions(); contextOptions.fGpuPathRenderers = GpuPathRenderers::kNone; contextOptions.fExecutor = fExecutor.get(); Result result = this->onDraw(src, dst, wStream, log, contextOptions); if (!result.isOk() || !dst) { return result; } SkBitmap reference; SkString refLog; SkDynamicMemoryWStream refStream; contextOptions.fExecutor = nullptr; Result refResult = this->onDraw(src, &reference, &refStream, &refLog, contextOptions); if (!refResult.isOk()) { return refResult; } return compare_bitmaps(reference, *dst); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ GPUPersistentCacheTestingSink::GPUPersistentCacheTestingSink(const SkCommandLineConfigGpu* config, const GrContextOptions& grCtxOptions) : INHERITED(config, grCtxOptions) , fCacheType(config->getTestPersistentCache()) {} Result GPUPersistentCacheTestingSink::draw(const Src& src, SkBitmap* dst, SkWStream* wStream, SkString* log) const { // Draw twice, once with a cold cache, and again with a warm cache. Verify that we get the same // result. sk_gpu_test::MemoryCache memoryCache; GrContextOptions contextOptions = this->baseContextOptions(); contextOptions.fPersistentCache = &memoryCache; if (fCacheType == 2) { contextOptions.fShaderCacheStrategy = GrContextOptions::ShaderCacheStrategy::kBackendSource; } Result result = this->onDraw(src, dst, wStream, log, contextOptions); if (!result.isOk() || !dst) { return result; } SkBitmap reference; SkString refLog; SkDynamicMemoryWStream refStream; memoryCache.resetCacheStats(); Result refResult = this->onDraw(src, &reference, &refStream, &refLog, contextOptions); if (!refResult.isOk()) { return refResult; } SkASSERT(!memoryCache.numCacheMisses()); SkASSERT(!memoryCache.numCacheStores()); return compare_bitmaps(reference, *dst); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ GPUPrecompileTestingSink::GPUPrecompileTestingSink(const SkCommandLineConfigGpu* config, const GrContextOptions& grCtxOptions) : INHERITED(config, grCtxOptions) {} Result GPUPrecompileTestingSink::draw(const Src& src, SkBitmap* dst, SkWStream* wStream, SkString* log) const { // Three step process: // 1) Draw once with an SkSL cache, and store off the shader blobs. // 2) For the second context, pre-compile the shaders to warm the cache. // 3) Draw with the second context, ensuring that we get the same result, and no cache misses. sk_gpu_test::MemoryCache memoryCache; GrContextOptions contextOptions = this->baseContextOptions(); contextOptions.fPersistentCache = &memoryCache; contextOptions.fShaderCacheStrategy = GrContextOptions::ShaderCacheStrategy::kSkSL; Result result = this->onDraw(src, dst, wStream, log, contextOptions); if (!result.isOk() || !dst) { return result; } auto precompileShaders = [&memoryCache](GrDirectContext* dContext) { memoryCache.foreach([dContext](sk_sp key, sk_sp data, const SkString& /*description*/, int /*count*/) { SkAssertResult(dContext->precompileShader(*key, *data)); }); }; sk_gpu_test::MemoryCache replayCache; GrContextOptions replayOptions = this->baseContextOptions(); // Ensure that the runtime cache is large enough to hold all of the shaders we pre-compile replayOptions.fRuntimeProgramCacheSize = memoryCache.numCacheMisses(); replayOptions.fPersistentCache = &replayCache; SkBitmap reference; SkString refLog; SkDynamicMemoryWStream refStream; Result refResult = this->onDraw(src, &reference, &refStream, &refLog, replayOptions, precompileShaders); if (!refResult.isOk()) { return refResult; } SkASSERT(!replayCache.numCacheMisses()); return compare_bitmaps(reference, *dst); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ GPUOOPRSink::GPUOOPRSink(const SkCommandLineConfigGpu* config, const GrContextOptions& ctxOptions) : INHERITED(config, ctxOptions) { } Result GPUOOPRSink::ooprDraw(const Src& src, sk_sp dstSurface, GrDirectContext* context) const { SkSurfaceCharacterization dstCharacterization; SkAssertResult(dstSurface->characterize(&dstCharacterization)); SkDeferredDisplayListRecorder recorder(dstCharacterization); Result result = src.draw(context, recorder.getCanvas()); if (!result.isOk()) { return result; } auto ddl = recorder.detach(); SkDeferredDisplayList::ProgramIterator iter(context, ddl.get()); for (; !iter.done(); iter.next()) { iter.compile(); } SkAssertResult(dstSurface->draw(std::move(ddl))); return Result::Ok(); } Result GPUOOPRSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const { GrContextOptions contextOptions = this->baseContextOptions(); src.modifyGrContextOptions(&contextOptions); contextOptions.fPersistentCache = nullptr; contextOptions.fExecutor = nullptr; GrContextFactory factory(contextOptions); ContextInfo ctxInfo = factory.getContextInfo(this->contextType(), this->contextOverrides()); auto context = ctxInfo.directContext(); if (!context) { return Result::Fatal("Could not create context."); } SkASSERT(context->priv().getGpu()); sk_sp surface = this->createDstSurface(context, src.size()); if (!surface) { return Result::Fatal("Could not create a surface."); } Result result = this->ooprDraw(src, surface, context); if (!result.isOk()) { return result; } if (FLAGS_gpuStats) { context->priv().dumpCacheStats(log); context->priv().dumpGpuStats(log); context->priv().dumpContextStats(log); } if (!this->readBack(surface.get(), dst)) { return Result::Fatal("Could not readback from surface."); } return Result::Ok(); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ GPUDDLSink::GPUDDLSink(const SkCommandLineConfigGpu* config, const GrContextOptions& ctxOptions) : INHERITED(config, ctxOptions) , fRecordingExecutor(SkExecutor::MakeLIFOThreadPool(1)) , fGPUExecutor(SkExecutor::MakeFIFOThreadPool(1, false)) { } Result GPUDDLSink::ddlDraw(const Src& src, sk_sp dstSurface, SkTaskGroup* recordingTaskGroup, SkTaskGroup* gpuTaskGroup, sk_gpu_test::TestContext* gpuTestCtx, GrDirectContext* dContext) const { // We have to do this here bc characterization can hit the SkGpuDevice's thread guard (i.e., // leaving it until the DDLTileHelper ctor will result in multiple threads trying to use the // same context (this thread and the gpuThread - which will be uploading textures)). SkSurfaceCharacterization dstCharacterization; SkAssertResult(dstSurface->characterize(&dstCharacterization)); auto size = src.size(); SkPictureRecorder recorder; Result result = src.draw(dContext, recorder.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height()))); if (!result.isOk()) { return result; } sk_sp inputPicture(recorder.finishRecordingAsPicture()); // this is our ultimate final drawing area/rect SkIRect viewport = SkIRect::MakeWH(size.fWidth, size.fHeight); SkYUVAPixmapInfo::SupportedDataTypes supportedYUVADataTypes(*dContext); DDLPromiseImageHelper promiseImageHelper(supportedYUVADataTypes); sk_sp newSKP = promiseImageHelper.recreateSKP(dContext, inputPicture.get()); if (!newSKP) { return Result::Fatal("GPUDDLSink: Couldn't recreate the SKP"); } // 'gpuTestCtx/gpuThreadCtx' is being shifted to the gpuThread. Leave the main (this) // thread w/o a context. gpuTestCtx->makeNotCurrent(); // Job one for the GPU thread is to make 'gpuTestCtx' current! gpuTaskGroup->add([gpuTestCtx] { gpuTestCtx->makeCurrent(); }); // TODO: move the image upload to the utility thread promiseImageHelper.uploadAllToGPU(gpuTaskGroup, dContext); // Care must be taken when using 'gpuThreadCtx' bc it moves between the gpu-thread and this // one. About all it can be consistently used for is GrCaps access and 'defaultBackendFormat' // calls. constexpr int kNumDivisions = 3; DDLTileHelper tiles(dContext, dstCharacterization, viewport, kNumDivisions, kNumDivisions, /* addRandomPaddingToDst */ false); tiles.createBackendTextures(gpuTaskGroup, dContext); tiles.kickOffThreadedWork(recordingTaskGroup, gpuTaskGroup, dContext, newSKP.get()); // We have to wait for the recording threads to schedule all their work on the gpu thread // before we can schedule the composition draw and the flush. Note that the gpu thread // is not blocked at this point and this thread is borrowing recording work. recordingTaskGroup->wait(); // Note: at this point the recording thread(s) are stalled out w/ nothing to do. // The recording threads have already scheduled the drawing of each tile's DDL on the gpu // thread. The composition DDL must be scheduled last bc it relies on the result of all // the tiles' rendering. Additionally, bc we're aliasing the tiles' backend textures, // there is nothing in the DAG to automatically force the required order. gpuTaskGroup->add([dstSurface, ddl = tiles.composeDDL()]() { dstSurface->draw(ddl); }); // This should be the only explicit flush for the entire DDL draw. gpuTaskGroup->add([dContext]() { // We need to ensure all the GPU work is finished so // the following 'deleteAllFromGPU' call will work // on Vulkan. // TODO: switch over to using the promiseImage callbacks // to free the backendTextures. This is complicated a // bit by which thread possesses the direct context. dContext->flush(); dContext->submit(true); }); // The backend textures are created on the gpuThread by the 'uploadAllToGPU' call. // It is simpler to also delete them at this point on the gpuThread. promiseImageHelper.deleteAllFromGPU(gpuTaskGroup, dContext); tiles.deleteBackendTextures(gpuTaskGroup, dContext); // A flush has already been scheduled on the gpu thread along with the clean up of the backend // textures so it is safe to schedule making 'gpuTestCtx' not current on the gpuThread. gpuTaskGroup->add([gpuTestCtx] { gpuTestCtx->makeNotCurrent(); }); // All the work is scheduled on the gpu thread, we just need to wait gpuTaskGroup->wait(); return Result::Ok(); } Result GPUDDLSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const { GrContextOptions contextOptions = this->baseContextOptions(); src.modifyGrContextOptions(&contextOptions); contextOptions.fPersistentCache = nullptr; contextOptions.fExecutor = nullptr; GrContextFactory factory(contextOptions); // This captures the context destined to be the main gpu context ContextInfo mainCtxInfo = factory.getContextInfo(this->contextType(), this->contextOverrides()); sk_gpu_test::TestContext* mainTestCtx = mainCtxInfo.testContext(); auto mainCtx = mainCtxInfo.directContext(); if (!mainCtx) { return Result::Fatal("Could not create context."); } SkASSERT(mainCtx->priv().getGpu()); // TODO: make use of 'otherCtx' for uploads & compilation #if 0 // This captures the context destined to be the utility context. It is in a share group // with the main context ContextInfo otherCtxInfo = factory.getSharedContextInfo(mainCtx); sk_gpu_test::TestContext* otherTestCtx = otherCtxInfo.testContext(); auto otherCtx = otherCtxInfo.directContext(); if (!otherCtx) { return Result::Fatal("Cound not create shared context."); } SkASSERT(otherCtx->priv().getGpu()); #endif SkTaskGroup recordingTaskGroup(*fRecordingExecutor); SkTaskGroup gpuTaskGroup(*fGPUExecutor); // Make sure 'mainCtx' is current mainTestCtx->makeCurrent(); sk_sp surface = this->createDstSurface(mainCtx, src.size()); if (!surface) { return Result::Fatal("Could not create a surface."); } Result result = this->ddlDraw(src, surface, &recordingTaskGroup, &gpuTaskGroup, mainTestCtx, mainCtx); if (!result.isOk()) { return result; } // 'ddlDraw' will have made 'mainCtx' not current on the gpuThread mainTestCtx->makeCurrent(); if (FLAGS_gpuStats) { mainCtx->priv().dumpCacheStats(log); mainCtx->priv().dumpGpuStats(log); mainCtx->priv().dumpContextStats(log); #if 0 otherCtx->priv().dumpCacheStats(log); otherCtx->priv().dumpGpuStats(log); otherCtx->priv().dumpContextStats(log); #endif } if (!this->readBack(surface.get(), dst)) { return Result::Fatal("Could not readback from surface."); } return Result::Ok(); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static Result draw_skdocument(const Src& src, SkDocument* doc, SkWStream* dst) { if (src.size().isEmpty()) { return Result::Fatal("Source has empty dimensions"); } SkASSERT(doc); int pageCount = src.pageCount(); for (int i = 0; i < pageCount; ++i) { int width = src.size(i).width(), height = src.size(i).height(); SkCanvas* canvas = doc->beginPage(SkIntToScalar(width), SkIntToScalar(height)); if (!canvas) { return Result::Fatal("SkDocument::beginPage(w,h) returned nullptr"); } Result result = src.draw(i, nullptr, canvas); if (!result.isOk()) { return result; } doc->endPage(); } doc->close(); dst->flush(); return Result::Ok(); } Result PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkPDF::Metadata metadata; metadata.fTitle = src.name(); metadata.fSubject = "rendering correctness test"; metadata.fCreator = "Skia/DM"; metadata.fRasterDPI = fRasterDpi; metadata.fPDFA = fPDFA; #if SK_PDF_TEST_EXECUTOR std::unique_ptr executor = SkExecutor::MakeFIFOThreadPool(); metadata.fExecutor = executor.get(); #endif auto doc = SkPDF::MakeDocument(dst, metadata); if (!doc) { return Result::Fatal("SkPDF::MakeDocument() returned nullptr"); } return draw_skdocument(src, doc.get(), dst); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ XPSSink::XPSSink() {} #if defined(SK_SUPPORT_XPS) static SkTScopedComPtr make_xps_factory() { IXpsOMObjectFactory* factory; HRN(CoCreateInstance(CLSID_XpsOMObjectFactory, nullptr, CLSCTX_INPROC_SERVER, IID_PPV_ARGS(&factory))); return SkTScopedComPtr(factory); } Result XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkAutoCoInitialize com; if (!com.succeeded()) { return Result::Fatal("Could not initialize COM."); } SkTScopedComPtr factory = make_xps_factory(); if (!factory) { return Result::Fatal("Failed to create XPS Factory."); } auto doc = SkXPS::MakeDocument(dst, factory.get()); if (!doc) { return Result::Fatal("SkXPS::MakeDocument() returned nullptr"); } return draw_skdocument(src, doc.get(), dst); } #else Result XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { return Result::Fatal("XPS not supported on this platform."); } #endif /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ SKPSink::SKPSink() {} Result SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { auto size = SkSize::Make(src.size()); SkPictureRecorder recorder; Result result = src.draw(nullptr, recorder.beginRecording(size.width(), size.height())); if (!result.isOk()) { return result; } recorder.finishRecordingAsPicture()->serialize(dst); return Result::Ok(); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Result DebugSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { DebugCanvas debugCanvas(src.size().width(), src.size().height()); Result result = src.draw(nullptr, &debugCanvas); if (!result.isOk()) { return result; } std::unique_ptr nullCanvas = SkMakeNullCanvas(); UrlDataManager dataManager(SkString("data")); SkJSONWriter writer(dst, SkJSONWriter::Mode::kPretty); writer.beginObject(); // root debugCanvas.toJSON(writer, dataManager, nullCanvas.get()); writer.endObject(); // root writer.flush(); return Result::Ok(); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ SVGSink::SVGSink(int pageIndex) : fPageIndex(pageIndex) {} Result SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { #if defined(SK_ENABLE_SVG) if (src.pageCount() > 1) { int pageCount = src.pageCount(); if (fPageIndex > pageCount - 1) { return Result::Fatal("Page index %d too high for document with only %d pages.", fPageIndex, pageCount); } } return src.draw(fPageIndex, nullptr, SkSVGCanvas::Make(SkRect::MakeWH(SkIntToScalar(src.size().width()), SkIntToScalar(src.size().height())), dst) .get()); #else (void)fPageIndex; return Result::Fatal("SVG sink is disabled."); #endif // SK_ENABLE_SVG } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ RasterSink::RasterSink(SkColorType colorType) : fColorType(colorType) {} Result RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const { const SkISize size = src.size(); // If there's an appropriate alpha type for this color type, use it, otherwise use premul. SkAlphaType alphaType = kPremul_SkAlphaType; (void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType); dst->allocPixelsFlags(SkImageInfo::Make(size, fColorType, alphaType, fColorSpace), SkBitmap::kZeroPixels_AllocFlag); SkCanvas canvas(*dst, SkSurfaceProps(0, kRGB_H_SkPixelGeometry)); return src.draw(nullptr, &canvas); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ #ifdef SK_GRAPHITE_ENABLED namespace { // For the sprint Graphite only handles: // solid colors with src or srcOver // repeated or clamped linear gradients with src or srcOver void precompile(skgpu::Context* context) { using ShaderType = skgpu::ShaderCombo::ShaderType; skgpu::PaintCombo c1 { { skgpu::ShaderCombo({ ShaderType::kNone }, { SkTileMode::kRepeat }) }, { SkBlendMode::kSrcOver, SkBlendMode::kSrc } }; context->preCompile(c1); skgpu::PaintCombo c2 { { skgpu::ShaderCombo({ ShaderType::kLinearGradient }, { SkTileMode::kRepeat, SkTileMode::kClamp }) }, { SkBlendMode::kSrcOver, SkBlendMode::kSrc } }; context->preCompile(c2); } } // anonymous namespace GraphiteSink::GraphiteSink(const SkCommandLineConfigGraphite* config) : fContextType(config->getContextType()) , fColorType(config->getColorType()) , fAlphaType(config->getAlphaType()) , fTestPrecompile(config->getTestPrecompile()) { } Result GraphiteSink::draw(const Src& src, SkBitmap* dst, SkWStream* dstStream, SkString* log) const { SkImageInfo ii = SkImageInfo::Make(src.size(), fColorType, fAlphaType); skiatest::graphite::ContextFactory factory; auto [_, context] = factory.getContextInfo(fContextType); if (fTestPrecompile) { precompile(context.get()); } sk_sp surface = MakeGraphite(std::move(context), ii); if (!surface) { return Result::Fatal("Could not create a surface."); } Result result = src.draw(/* dContext */ nullptr, surface->getCanvas()); if (!result.isOk()) { return result; } surface->flushAndSubmit(); dst->allocPixels(surface->imageInfo()); if (!surface->readPixels(*dst, 0, 0)) { return Result::Fatal("Could not readback from surface."); } return Result::Ok(); } #endif /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ // Handy for front-patching a Src. Do whatever up-front work you need, then call draw_to_canvas(), // passing the Sink draw() arguments, a size, and a function draws into an SkCanvas. // Several examples below. using DrawToCanvasFn = std::function; static Result draw_to_canvas(Sink* sink, SkBitmap* bitmap, SkWStream* stream, SkString* log, SkISize size, const DrawToCanvasFn& draw) { class ProxySrc : public Src { public: ProxySrc(SkISize size, const DrawToCanvasFn& draw) : fSize(size), fDraw(draw) {} Result draw(GrDirectContext* context, SkCanvas* canvas) const override { return fDraw(context, canvas); } Name name() const override { return "ProxySrc"; } SkISize size() const override { return fSize; } private: SkISize fSize; const DrawToCanvasFn& fDraw; }; return sink->draw(ProxySrc(size, draw), bitmap, stream, log); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static DEFINE_bool(check, true, "If true, have most Via- modes fail if they affect the output."); // Is *bitmap identical to what you get drawing src into sink? static Result check_against_reference(const SkBitmap* bitmap, const Src& src, Sink* sink) { // We can only check raster outputs. // (Non-raster outputs like .pdf, .skp, .svg may differ but still draw identically.) if (FLAGS_check && bitmap) { SkBitmap reference; SkString log; SkDynamicMemoryWStream wStream; Result result = sink->draw(src, &reference, &wStream, &log); // If we can draw into this Sink via some pipeline, we should be able to draw directly. SkASSERT(result.isOk()); if (!result.isOk()) { return result; } return compare_bitmaps(reference, *bitmap); } return Result::Ok(); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) { SkRect bounds = SkRect::MakeIWH(srcW, srcH); matrix->mapRect(&bounds); matrix->postTranslate(-bounds.x(), -bounds.y()); return {SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height())}; } ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {} Result ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { SkMatrix matrix = fMatrix; SkISize size = auto_compute_translate(&matrix, src.size().width(), src.size().height()); return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](GrDirectContext* context, SkCanvas* canvas) { canvas->concat(matrix); return src.draw(context, canvas); }); } // Undoes any flip or 90 degree rotate without changing the scale of the bitmap. // This should be pixel-preserving. ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {} Result ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { Result result = fSink->draw(src, bitmap, stream, log); if (!result.isOk()) { return result; } SkMatrix inverse; if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) { return Result::Fatal("Cannot upright --matrix."); } SkMatrix upright = SkMatrix::I(); upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX())); upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY())); upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX())); upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY())); SkBitmap uprighted; SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height()); uprighted.allocPixels(bitmap->info().makeDimensions(size)); SkCanvas canvas(uprighted); canvas.concat(upright); SkPaint paint; paint.setBlendMode(SkBlendMode::kSrc); canvas.drawImage(bitmap->asImage(), 0, 0, SkSamplingOptions(), &paint); *bitmap = uprighted; return Result::Ok(); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Result ViaSerialization::draw( const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { // Record our Src into a picture. auto size = src.size(); SkPictureRecorder recorder; Result result = src.draw(nullptr, recorder.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height()))); if (!result.isOk()) { return result; } sk_sp pic(recorder.finishRecordingAsPicture()); // Serialize it and then deserialize it. sk_sp deserialized(SkPicture::MakeFromData(pic->serialize().get())); result = draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](GrDirectContext*, SkCanvas* canvas) { canvas->drawPicture(deserialized); return Result::Ok(); }); if (!result.isOk()) { return result; } return check_against_reference(bitmap, src, fSink.get()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Result ViaPicture::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); Result result = draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](GrDirectContext* context, SkCanvas* canvas) { SkPictureRecorder recorder; sk_sp pic; Result result = src.draw(context, recorder.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height()))); if (!result.isOk()) { return result; } pic = recorder.finishRecordingAsPicture(); canvas->drawPicture(pic); return result; }); if (!result.isOk()) { return result; } return check_against_reference(bitmap, src, fSink.get()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Result ViaRuntimeBlend::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { class RuntimeBlendFilterCanvas : public SkPaintFilterCanvas { public: RuntimeBlendFilterCanvas(SkCanvas* canvas) : INHERITED(canvas) { } protected: bool onFilter(SkPaint& paint) const override { if (skstd::optional mode = paint.asBlendMode()) { paint.setBlender(GetRuntimeBlendForBlendMode(*mode)); } return true; } private: using INHERITED = SkPaintFilterCanvas; }; return draw_to_canvas(fSink.get(), bitmap, stream, log, src.size(), [&](GrDirectContext* context, SkCanvas* canvas) { RuntimeBlendFilterCanvas runtimeBlendCanvas{canvas}; return src.draw(context, &runtimeBlendCanvas); }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ #ifdef TEST_VIA_SVG #include "include/svg/SkSVGCanvas.h" #include "modules/svg/include/SkSVGDOM.h" #include "src/xml/SkXMLWriter.h" Result ViaSVG::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](GrDirectContext*, SkCanvas* canvas) -> Result { SkDynamicMemoryWStream wstream; SkXMLStreamWriter writer(&wstream); Result result = src.draw(SkSVGCanvas::Make(SkRect::Make(size), &writer).get()); if (!result.isOk()) { return result; } std::unique_ptr rstream(wstream.detachAsStream()); auto dom = SkSVGDOM::MakeFromStream(*rstream); if (dom) { dom->setContainerSize(SkSize::Make(size)); dom->render(canvas); } return Result::Ok(); }); } #endif } // namespace DM