/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ // This test only works with the GPU backend. #include "gm.h" #if SK_SUPPORT_GPU #include "GrBatchTarget.h" #include "GrBufferAllocPool.h" #include "GrContext.h" #include "GrPathUtils.h" #include "GrTest.h" #include "GrTestBatch.h" #include "SkColorPriv.h" #include "SkDevice.h" #include "SkGeometry.h" #include "effects/GrBezierEffect.h" static inline SkScalar eval_line(const SkPoint& p, const SkScalar lineEq[3], SkScalar sign) { return sign * (lineEq[0] * p.fX + lineEq[1] * p.fY + lineEq[2]); } namespace skiagm { class BezierCubicOrConicTestBatch : public GrTestBatch { public: struct Geometry : public GrTestBatch::Geometry { SkRect fBounds; }; const char* name() const SK_OVERRIDE { return "BezierCubicOrConicTestBatch"; } static GrBatch* Create(const GrGeometryProcessor* gp, const Geometry& geo, const SkScalar klmEqs[9], SkScalar sign) { return SkNEW_ARGS(BezierCubicOrConicTestBatch, (gp, geo, klmEqs, sign)); } private: BezierCubicOrConicTestBatch(const GrGeometryProcessor* gp, const Geometry& geo, const SkScalar klmEqs[9], SkScalar sign) : INHERITED(gp) { for (int i = 0; i < 9; i++) { fKlmEqs[i] = klmEqs[i]; } fGeometry = geo; fSign = sign; } struct Vertex { SkPoint fPosition; float fKLM[4]; // The last value is ignored. The effect expects a vec4f. }; Geometry* geoData(int index) SK_OVERRIDE { SkASSERT(0 == index); return &fGeometry; } void onGenerateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) SK_OVERRIDE { size_t vertexStride = this->geometryProcessor()->getVertexStride(); const GrVertexBuffer* vertexBuffer; int firstVertex; void* vertices = batchTarget->vertexPool()->makeSpace(vertexStride, kVertsPerCubic, &vertexBuffer, &firstVertex); SkASSERT(vertexStride == sizeof(Vertex)); Vertex* verts = reinterpret_cast(vertices); verts[0].fPosition.setRectFan(fGeometry.fBounds.fLeft, fGeometry.fBounds.fTop, fGeometry.fBounds.fRight, fGeometry.fBounds.fBottom, sizeof(Vertex)); for (int v = 0; v < 4; ++v) { verts[v].fKLM[0] = eval_line(verts[v].fPosition, fKlmEqs + 0, fSign); verts[v].fKLM[1] = eval_line(verts[v].fPosition, fKlmEqs + 3, fSign); verts[v].fKLM[2] = eval_line(verts[v].fPosition, fKlmEqs + 6, 1.f); } GrDrawTarget::DrawInfo drawInfo; drawInfo.setPrimitiveType(kTriangleFan_GrPrimitiveType); drawInfo.setVertexBuffer(vertexBuffer); drawInfo.setStartVertex(firstVertex); drawInfo.setVertexCount(kVertsPerCubic); drawInfo.setStartIndex(0); drawInfo.setIndexCount(kIndicesPerCubic); drawInfo.setIndexBuffer(batchTarget->quadIndexBuffer()); batchTarget->draw(drawInfo); } Geometry fGeometry; SkScalar fKlmEqs[9]; SkScalar fSign; static const int kVertsPerCubic = 4; static const int kIndicesPerCubic = 6; typedef GrTestBatch INHERITED; }; /** * This GM directly exercises effects that draw Bezier curves in the GPU backend. */ class BezierCubicEffects : public GM { public: BezierCubicEffects() { this->setBGColor(0xFFFFFFFF); } protected: SkString onShortName() SK_OVERRIDE { return SkString("bezier_cubic_effects"); } SkISize onISize() SK_OVERRIDE { return SkISize::Make(800, 800); } void onDraw(SkCanvas* canvas) SK_OVERRIDE { GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget(); if (NULL == rt) { this->drawGpuOnlyMessage(canvas); return; } GrContext* context = rt->getContext(); if (NULL == context) { return; } struct Vertex { SkPoint fPosition; float fKLM[4]; // The last value is ignored. The effect expects a vec4f. }; static const int kNumCubics = 15; SkRandom rand; // Mult by 3 for each edge effect type int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumCubics*3))); int numRows = SkScalarCeilToInt(SkIntToScalar(kNumCubics*3) / numCols); SkScalar w = SkIntToScalar(rt->width()) / numCols; SkScalar h = SkIntToScalar(rt->height()) / numRows; int row = 0; int col = 0; for (int i = 0; i < kNumCubics; ++i) { SkPoint baseControlPts[] = { {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)} }; for(int edgeType = 0; edgeType < kGrProcessorEdgeTypeCnt; ++edgeType) { SkAutoTUnref gp; { // scope to contain GrTestTarget GrTestTarget tt; context->getTestTarget(&tt); if (NULL == tt.target()) { continue; } GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)edgeType; gp.reset(GrCubicEffect::Create(0xff000000, SkMatrix::I(), et, *tt.target()->caps())); if (!gp) { continue; } } SkScalar x = SkScalarMul(col, w); SkScalar y = SkScalarMul(row, h); SkPoint controlPts[] = { {x + baseControlPts[0].fX, y + baseControlPts[0].fY}, {x + baseControlPts[1].fX, y + baseControlPts[1].fY}, {x + baseControlPts[2].fX, y + baseControlPts[2].fY}, {x + baseControlPts[3].fX, y + baseControlPts[3].fY} }; SkPoint chopped[10]; SkScalar klmEqs[9]; SkScalar klmSigns[3]; int cnt = GrPathUtils::chopCubicAtLoopIntersection(controlPts, chopped, klmEqs, klmSigns); SkPaint ctrlPtPaint; ctrlPtPaint.setColor(rand.nextU() | 0xFF000000); for (int i = 0; i < 4; ++i) { canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint); } SkPaint polyPaint; polyPaint.setColor(0xffA0A0A0); polyPaint.setStrokeWidth(0); polyPaint.setStyle(SkPaint::kStroke_Style); canvas->drawPoints(SkCanvas::kPolygon_PointMode, 4, controlPts, polyPaint); SkPaint choppedPtPaint; choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000); for (int c = 0; c < cnt; ++c) { SkPoint* pts = chopped + 3 * c; for (int i = 0; i < 4; ++i) { canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint); } SkRect bounds; bounds.set(pts, 4); SkPaint boundsPaint; boundsPaint.setColor(0xff808080); boundsPaint.setStrokeWidth(0); boundsPaint.setStyle(SkPaint::kStroke_Style); canvas->drawRect(bounds, boundsPaint); GrTestTarget tt; context->getTestTarget(&tt); SkASSERT(tt.target()); GrPipelineBuilder pipelineBuilder; pipelineBuilder.setRenderTarget(rt); BezierCubicOrConicTestBatch::Geometry geometry; geometry.fColor = gp->color(); geometry.fBounds = bounds; SkAutoTUnref batch( BezierCubicOrConicTestBatch::Create(gp, geometry, klmEqs, klmSigns[c])); tt.target()->drawBatch(&pipelineBuilder, batch, NULL); } ++col; if (numCols == col) { col = 0; ++row; } } } } private: typedef GM INHERITED; }; ////////////////////////////////////////////////////////////////////////////// /** * This GM directly exercises effects that draw Bezier curves in the GPU backend. */ class BezierConicEffects : public GM { public: BezierConicEffects() { this->setBGColor(0xFFFFFFFF); } protected: SkString onShortName() SK_OVERRIDE { return SkString("bezier_conic_effects"); } SkISize onISize() SK_OVERRIDE { return SkISize::Make(800, 800); } void onDraw(SkCanvas* canvas) SK_OVERRIDE { GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget(); if (NULL == rt) { this->drawGpuOnlyMessage(canvas); return; } GrContext* context = rt->getContext(); if (NULL == context) { return; } struct Vertex { SkPoint fPosition; float fKLM[4]; // The last value is ignored. The effect expects a vec4f. }; static const int kNumConics = 10; SkRandom rand; // Mult by 3 for each edge effect type int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumConics*3))); int numRows = SkScalarCeilToInt(SkIntToScalar(kNumConics*3) / numCols); SkScalar w = SkIntToScalar(rt->width()) / numCols; SkScalar h = SkIntToScalar(rt->height()) / numRows; int row = 0; int col = 0; for (int i = 0; i < kNumConics; ++i) { SkPoint baseControlPts[] = { {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)} }; SkScalar weight = rand.nextRangeF(0.f, 2.f); for(int edgeType = 0; edgeType < kGrProcessorEdgeTypeCnt; ++edgeType) { SkAutoTUnref gp; { // scope to contain GrTestTarget GrTestTarget tt; context->getTestTarget(&tt); if (NULL == tt.target()) { continue; } GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)edgeType; gp.reset(GrConicEffect::Create(0xff000000, SkMatrix::I(), et, *tt.target()->caps(), SkMatrix::I())); if (!gp) { continue; } } SkScalar x = SkScalarMul(col, w); SkScalar y = SkScalarMul(row, h); SkPoint controlPts[] = { {x + baseControlPts[0].fX, y + baseControlPts[0].fY}, {x + baseControlPts[1].fX, y + baseControlPts[1].fY}, {x + baseControlPts[2].fX, y + baseControlPts[2].fY} }; SkConic dst[4]; SkScalar klmEqs[9]; int cnt = chop_conic(controlPts, dst, weight); GrPathUtils::getConicKLM(controlPts, weight, klmEqs); SkPaint ctrlPtPaint; ctrlPtPaint.setColor(rand.nextU() | 0xFF000000); for (int i = 0; i < 3; ++i) { canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint); } SkPaint polyPaint; polyPaint.setColor(0xffA0A0A0); polyPaint.setStrokeWidth(0); polyPaint.setStyle(SkPaint::kStroke_Style); canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint); SkPaint choppedPtPaint; choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000); for (int c = 0; c < cnt; ++c) { SkPoint* pts = dst[c].fPts; for (int i = 0; i < 3; ++i) { canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint); } SkRect bounds; //SkPoint bPts[] = {{0.f, 0.f}, {800.f, 800.f}}; //bounds.set(bPts, 2); bounds.set(pts, 3); SkPaint boundsPaint; boundsPaint.setColor(0xff808080); boundsPaint.setStrokeWidth(0); boundsPaint.setStyle(SkPaint::kStroke_Style); canvas->drawRect(bounds, boundsPaint); GrTestTarget tt; context->getTestTarget(&tt); SkASSERT(tt.target()); GrPipelineBuilder pipelineBuilder; pipelineBuilder.setRenderTarget(rt); BezierCubicOrConicTestBatch::Geometry geometry; geometry.fColor = gp->color(); geometry.fBounds = bounds; SkAutoTUnref batch( BezierCubicOrConicTestBatch::Create(gp, geometry, klmEqs, 1.f)); tt.target()->drawBatch(&pipelineBuilder, batch, NULL); } ++col; if (numCols == col) { col = 0; ++row; } } } } private: // Uses the max curvature function for quads to estimate // where to chop the conic. If the max curvature is not // found along the curve segment it will return 1 and // dst[0] is the original conic. If it returns 2 the dst[0] // and dst[1] are the two new conics. int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) { SkScalar t = SkFindQuadMaxCurvature(src); if (t == 0) { if (dst) { dst[0].set(src, weight); } return 1; } else { if (dst) { SkConic conic; conic.set(src, weight); conic.chopAt(t, dst); } return 2; } } // Calls split_conic on the entire conic and then once more on each subsection. // Most cases will result in either 1 conic (chop point is not within t range) // or 3 points (split once and then one subsection is split again). int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) { SkConic dstTemp[2]; int conicCnt = split_conic(src, dstTemp, weight); if (2 == conicCnt) { int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW); conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW); } else { dst[0] = dstTemp[0]; } return conicCnt; } typedef GM INHERITED; }; ////////////////////////////////////////////////////////////////////////////// class BezierQuadTestBatch : public GrTestBatch { public: struct Geometry : public GrTestBatch::Geometry { SkRect fBounds; }; const char* name() const SK_OVERRIDE { return "BezierQuadTestBatch"; } static GrBatch* Create(const GrGeometryProcessor* gp, const Geometry& geo, const GrPathUtils::QuadUVMatrix& devToUV) { return SkNEW_ARGS(BezierQuadTestBatch, (gp, geo, devToUV)); } private: BezierQuadTestBatch(const GrGeometryProcessor* gp, const Geometry& geo, const GrPathUtils::QuadUVMatrix& devToUV) : INHERITED(gp) , fGeometry(geo) , fDevToUV(devToUV) { } struct Vertex { SkPoint fPosition; float fKLM[4]; // The last value is ignored. The effect expects a vec4f. }; Geometry* geoData(int index) SK_OVERRIDE { SkASSERT(0 == index); return &fGeometry; } void onGenerateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) SK_OVERRIDE { size_t vertexStride = this->geometryProcessor()->getVertexStride(); const GrVertexBuffer* vertexBuffer; int firstVertex; void* vertices = batchTarget->vertexPool()->makeSpace(vertexStride, kVertsPerCubic, &vertexBuffer, &firstVertex); SkASSERT(vertexStride == sizeof(Vertex)); Vertex* verts = reinterpret_cast(vertices); verts[0].fPosition.setRectFan(fGeometry.fBounds.fLeft, fGeometry.fBounds.fTop, fGeometry.fBounds.fRight, fGeometry.fBounds.fBottom, sizeof(Vertex)); fDevToUV.apply<4, sizeof(Vertex), sizeof(SkPoint)>(verts); GrDrawTarget::DrawInfo drawInfo; drawInfo.setPrimitiveType(kTriangles_GrPrimitiveType); drawInfo.setVertexBuffer(vertexBuffer); drawInfo.setStartVertex(firstVertex); drawInfo.setVertexCount(kVertsPerCubic); drawInfo.setStartIndex(0); drawInfo.setIndexCount(kIndicesPerCubic); drawInfo.setIndexBuffer(batchTarget->quadIndexBuffer()); batchTarget->draw(drawInfo); } Geometry fGeometry; GrPathUtils::QuadUVMatrix fDevToUV; static const int kVertsPerCubic = 4; static const int kIndicesPerCubic = 6; typedef GrTestBatch INHERITED; }; /** * This GM directly exercises effects that draw Bezier quad curves in the GPU backend. */ class BezierQuadEffects : public GM { public: BezierQuadEffects() { this->setBGColor(0xFFFFFFFF); } protected: SkString onShortName() SK_OVERRIDE { return SkString("bezier_quad_effects"); } SkISize onISize() SK_OVERRIDE { return SkISize::Make(800, 800); } void onDraw(SkCanvas* canvas) SK_OVERRIDE { GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget(); if (NULL == rt) { this->drawGpuOnlyMessage(canvas); return; } GrContext* context = rt->getContext(); if (NULL == context) { return; } struct Vertex { SkPoint fPosition; float fUV[4]; // The last two values are ignored. The effect expects a vec4f. }; static const int kNumQuads = 5; SkRandom rand; int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumQuads*3))); int numRows = SkScalarCeilToInt(SkIntToScalar(kNumQuads*3) / numCols); SkScalar w = SkIntToScalar(rt->width()) / numCols; SkScalar h = SkIntToScalar(rt->height()) / numRows; int row = 0; int col = 0; for (int i = 0; i < kNumQuads; ++i) { SkPoint baseControlPts[] = { {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)} }; for(int edgeType = 0; edgeType < kGrProcessorEdgeTypeCnt; ++edgeType) { SkAutoTUnref gp; { // scope to contain GrTestTarget GrTestTarget tt; context->getTestTarget(&tt); if (NULL == tt.target()) { continue; } GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)edgeType; gp.reset(GrQuadEffect::Create(0xff000000, SkMatrix::I(), et, *tt.target()->caps(), SkMatrix::I())); if (!gp) { continue; } } SkScalar x = SkScalarMul(col, w); SkScalar y = SkScalarMul(row, h); SkPoint controlPts[] = { {x + baseControlPts[0].fX, y + baseControlPts[0].fY}, {x + baseControlPts[1].fX, y + baseControlPts[1].fY}, {x + baseControlPts[2].fX, y + baseControlPts[2].fY} }; SkPoint chopped[5]; int cnt = SkChopQuadAtMaxCurvature(controlPts, chopped); SkPaint ctrlPtPaint; ctrlPtPaint.setColor(rand.nextU() | 0xFF000000); for (int i = 0; i < 3; ++i) { canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint); } SkPaint polyPaint; polyPaint.setColor(0xffA0A0A0); polyPaint.setStrokeWidth(0); polyPaint.setStyle(SkPaint::kStroke_Style); canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint); SkPaint choppedPtPaint; choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000); for (int c = 0; c < cnt; ++c) { SkPoint* pts = chopped + 2 * c; for (int i = 0; i < 3; ++i) { canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint); } SkRect bounds; bounds.set(pts, 3); SkPaint boundsPaint; boundsPaint.setColor(0xff808080); boundsPaint.setStrokeWidth(0); boundsPaint.setStyle(SkPaint::kStroke_Style); canvas->drawRect(bounds, boundsPaint); GrTestTarget tt; context->getTestTarget(&tt); SkASSERT(tt.target()); GrPipelineBuilder pipelineBuilder; pipelineBuilder.setRenderTarget(rt); GrPathUtils::QuadUVMatrix DevToUV(pts); BezierQuadTestBatch::Geometry geometry; geometry.fColor = gp->color(); geometry.fBounds = bounds; SkAutoTUnref batch(BezierQuadTestBatch::Create(gp, geometry, DevToUV)); tt.target()->drawBatch(&pipelineBuilder, batch, NULL); } ++col; if (numCols == col) { col = 0; ++row; } } } } private: typedef GM INHERITED; }; DEF_GM( return SkNEW(BezierCubicEffects); ) DEF_GM( return SkNEW(BezierConicEffects); ) DEF_GM( return SkNEW(BezierQuadEffects); ) } #endif