/* * Copyright 2019 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gm/gm.h" #include "include/core/SkBitmap.h" #include "include/core/SkCanvas.h" #include "include/core/SkData.h" #include "include/core/SkFont.h" #include "include/core/SkPaint.h" #include "include/core/SkSize.h" #include "include/core/SkString.h" #include "include/core/SkSurface.h" #include "include/effects/SkGradientShader.h" #include "include/effects/SkImageFilters.h" #include "include/effects/SkRuntimeEffect.h" #include "include/utils/SkRandom.h" #include "src/core/SkRuntimeEffectPriv.h" #include "src/gpu/GrCaps.h" #include "src/gpu/GrRecordingContextPriv.h" #include "tools/Resources.h" #include "tools/ToolUtils.h" static constexpr int kBoxSize = 100; static constexpr int kPadding = 5; static constexpr int kLabelHeight = 15; static void next_column(SkCanvas* canvas) { canvas->translate(kBoxSize + kPadding, 0); } static void next_row(SkCanvas* canvas) { canvas->restore(); canvas->translate(0, kBoxSize + kPadding + kLabelHeight); canvas->save(); } static constexpr int columns_to_width(int columns) { return (kPadding + kBoxSize) * columns + kPadding; } static constexpr int rows_to_height(int rows) { return (kPadding + kLabelHeight + kBoxSize) * rows + kPadding; } static void draw_label(SkCanvas* canvas, const char* label) { SkFont font(ToolUtils::create_portable_typeface()); SkPaint p(SkColors::kBlack); SkRect bounds; font.measureText(label, strlen(label), SkTextEncoding::kUTF8, &bounds); canvas->drawSimpleText(label, strlen(label), SkTextEncoding::kUTF8, (kBoxSize - bounds.width()) * 0.5f, (kLabelHeight + bounds.height()) * 0.5f, font, p); canvas->translate(0, kLabelHeight); } static SkBitmap draw_shader(SkCanvas* canvas, sk_sp shader, bool allowRasterFallback = true) { SkPaint paint; paint.setShader(std::move(shader)); SkBitmap bitmap; SkImageInfo info = SkImageInfo::MakeN32Premul({kBoxSize, kBoxSize}); auto surface = canvas->makeSurface(info); if (allowRasterFallback && !surface) { surface = SkSurface::MakeRaster(info); } if (surface) { surface->getCanvas()->clear(SK_ColorWHITE); surface->getCanvas()->scale(kBoxSize, kBoxSize); surface->getCanvas()->drawRect({0, 0, 1, 1}, paint); bitmap.allocPixels(info); surface->readPixels(bitmap, 0, 0); canvas->drawImage(bitmap.asImage(), 0, 0); } return bitmap; } /* Test cases are inserted into the middle of this shader. The pasted expression is expected to produce a single float. It can reference: 'x' : float in [xMin, xMax] 'xi' : int in [xMin, xMax] 'p' : float2 in [xMin, xMax] Lerps from (xMax, xMin) to (xMin, xMax) 'pi' : int2 in [xMin, xMax] Lerps from (xMax, xMin) to (xMin, xMax) (helpful for intrinsics with a mix of scalar/vector params) 'v1' : float2(1) 'v2' : float2(2) */ static SkString make_unary_sksl_1d(const char* fn) { return SkStringPrintf( "uniform float xScale; uniform float xBias;" "uniform float yScale; uniform float yBias;" "half4 main(float2 p) {" " const float2 v1 = float2(1);" " const float2 v2 = float2(2);" " p = float2(p.x, 1 - p.x) * xScale + xBias;" " float x = p.x;" " int2 pi = int2(floor(p));" " int xi = pi.x;" " float y = float(%s) * yScale + yBias;" " return y.xxx1;" "}", fn); } // Draws one row of boxes, then advances the canvas translation vertically static void plot(SkCanvas* canvas, const char* fn, float xMin, float xMax, float yMin, float yMax, const char* label = nullptr, bool requireES3 = false) { canvas->save(); draw_label(canvas, label ? label : fn); auto [effect, error] = SkRuntimeEffect::MakeForShader( make_unary_sksl_1d(fn), requireES3 ? SkRuntimeEffectPriv::ES3Options() : SkRuntimeEffect::Options{}); if (!effect) { SkDebugf("Error: %s\n", error.c_str()); return; } SkRuntimeShaderBuilder builder(effect); builder.uniform("xScale") = xMax - xMin; builder.uniform("xBias") = xMin; builder.uniform("yScale") = 1.0f / (yMax - yMin); builder.uniform("yBias") = -yMin / (yMax - yMin); SkBitmap bitmap = draw_shader(canvas, builder.makeShader(), /*allowRasterFallback=*/!requireES3); if (!bitmap.empty()) { // Plot. SkPaint plotPaint({ 0.0f, 0.5f, 0.0f, 1.0f }); SkPoint pts[kBoxSize]; for (int x = 0; x < kBoxSize; ++x) { SkColor c = bitmap.getColor(x, 0); SkScalar y = (1 - (SkColorGetR(c) / 255.0f)) * kBoxSize; pts[x].set(x + 0.5f, y); } plotPaint.setAntiAlias(true); canvas->drawPoints(SkCanvas::kPolygon_PointMode, kBoxSize, pts, plotPaint); } canvas->restore(); next_column(canvas); } static void plot_es3(SkCanvas* canvas, const char* fn, float xMin, float xMax, float yMin, float yMax, const char* label = nullptr) { plot(canvas, fn, xMin, xMax, yMin, yMax, label, /*requireES3=*/true); } // The OpenGL ES Shading Language, Version 1.00, Section 8.1 DEF_SIMPLE_GM(runtime_intrinsics_trig, canvas, columns_to_width(3), rows_to_height(5)) { const float kPI = SK_FloatPI, kTwoPI = 2 * SK_FloatPI, kPIOverTwo = SK_FloatPI / 2; canvas->translate(kPadding, kPadding); canvas->save(); plot(canvas, "radians(x)", 0.0f, 360.0f, 0.0f, kTwoPI); plot(canvas, "degrees(x)", 0.0f, kTwoPI, 0.0f, 360.0f); next_row(canvas); plot(canvas, "sin(x)", 0.0f, kTwoPI, -1.0f, 1.0f); plot(canvas, "cos(x)", 0.0f, kTwoPI, -1.0f, 1.0f); plot(canvas, "tan(x)", 0.0f, kPI, -10.0f, 10.0f); next_row(canvas); plot(canvas, "asin(x)", -1.0f, 1.0f, -kPIOverTwo, kPIOverTwo); plot(canvas, "acos(x)", -1.0f, 1.0f, 0.0f, kPI); plot(canvas, "atan(x)", -10.0f, 10.0f, -kPIOverTwo, kPIOverTwo); next_row(canvas); plot(canvas, "atan(0.1, x)", -1.0f, 1.0f, 0.0f, kPI); plot(canvas, "atan(-0.1, x)", -1.0f, 1.0f, -kPI, 0.0f); next_row(canvas); plot(canvas, "atan(x, 0.1)", -1.0f, 1.0f, -kPIOverTwo, kPIOverTwo); plot(canvas, "atan(x, -0.1)", -1.0f, 1.0f, -kPI, kPI); next_row(canvas); } // The OpenGL ES Shading Language, Version 3.00, Section 8.1 DEF_SIMPLE_GPU_GM_CAN_FAIL(runtime_intrinsics_trig_es3, ctx, canvas, errorMsg, columns_to_width(3), rows_to_height(2)) { if (!ctx->priv().caps()->shaderCaps()->supportsSkSLES3()) { *errorMsg = "SkSL ES3 is not supported."; return skiagm::DrawResult::kSkip; } canvas->translate(kPadding, kPadding); canvas->save(); plot_es3(canvas, "sinh(x)", -2.0f, 2.0f, -4.0f, 4.0f); plot_es3(canvas, "cosh(x)", -2.0f, 2.0f, 0.0f, 4.0f); plot_es3(canvas, "tanh(x)", -2.0f, 2.0f, -1.0f, 1.0f); next_row(canvas); if (ctx->priv().caps()->shaderCaps()->inverseHyperbolicSupport()) { plot_es3(canvas, "asinh(x)", -2.0f, 2.0f, -2.0f, 2.0f); plot_es3(canvas, "acosh(x)", 0.0f, 5.0f, 0.0f, 3.0f); plot_es3(canvas, "atanh(x)", -1.0f, 1.0f, -4.0f, 4.0f); } next_row(canvas); return skiagm::DrawResult::kOk; } // The OpenGL ES Shading Language, Version 1.00, Section 8.2 DEF_SIMPLE_GM(runtime_intrinsics_exponential, canvas, columns_to_width(2), rows_to_height(5)) { canvas->translate(kPadding, kPadding); canvas->save(); plot(canvas, "pow(x, 3)", 0.0f, 8.0f, 0.0f, 500.0f); plot(canvas, "pow(x, -3)", 0.0f, 4.0f, 0.0f, 10.0f); next_row(canvas); plot(canvas, "pow(0.9, x)", -10.0f, 10.0f, 0.0f, 3.0f); plot(canvas, "pow(1.1, x)", -10.0f, 10.0f, 0.0f, 3.0f); next_row(canvas); plot(canvas, "exp(x)", -1.0f, 7.0f, 0.0f, 1000.0f); plot(canvas, "log(x)", 0.0f, 2.5f, -4.0f, 1.0f); next_row(canvas); plot(canvas, "exp2(x)", -1.0f, 7.0f, 0.0f, 130.0f); plot(canvas, "log2(x)", 0.0f, 4.0f, -4.0f, 2.0f); next_row(canvas); plot(canvas, "sqrt(x)", 0.0f, 25.0f, 0.0f, 5.0f); plot(canvas, "inversesqrt(x)", 0.0f, 25.0f, 0.2f, 4.0f); next_row(canvas); } // The OpenGL ES Shading Language, Version 1.00, Section 8.3 DEF_SIMPLE_GM(runtime_intrinsics_common, canvas, columns_to_width(6), rows_to_height(7)) { canvas->translate(kPadding, kPadding); canvas->save(); plot(canvas, "abs(x)", -10.0f, 10.0f, 0.0f, 10.0f); plot(canvas, "sign(x)", -1.0f, 1.0f, -1.5f, 1.5f); next_row(canvas); plot(canvas, "floor(x)", -3.0f, 3.0f, -4.0f, 4.0f); plot(canvas, "ceil(x)", -3.0f, 3.0f, -4.0f, 4.0f); plot(canvas, "fract(x)", -3.0f, 3.0f, 0.0f, 1.0f); plot(canvas, "mod(x, 2)", -4.0f, 4.0f, -2.0f, 2.0f, "mod(scalar)"); plot(canvas, "mod(p, -2).x", -4.0f, 4.0f, -2.0f, 2.0f, "mod(mixed)" ); plot(canvas, "mod(p, v2).x", -4.0f, 4.0f, -2.0f, 2.0f, "mod(vector)"); next_row(canvas); plot(canvas, "min(x, 1)", 0.0f, 2.0f, 0.0f, 2.0f, "min(scalar)"); plot(canvas, "min(p, 1).x", 0.0f, 2.0f, 0.0f, 2.0f, "min(mixed)" ); plot(canvas, "min(p, v1).x", 0.0f, 2.0f, 0.0f, 2.0f, "min(vector)"); plot(canvas, "max(x, 1)", 0.0f, 2.0f, 0.0f, 2.0f, "max(scalar)"); plot(canvas, "max(p, 1).x", 0.0f, 2.0f, 0.0f, 2.0f, "max(mixed)" ); plot(canvas, "max(p, v1).x", 0.0f, 2.0f, 0.0f, 2.0f, "max(vector)"); next_row(canvas); plot(canvas, "clamp(x, 1, 2)", 0.0f, 3.0f, 0.0f, 3.0f, "clamp(scalar)"); plot(canvas, "clamp(p, 1, 2).x", 0.0f, 3.0f, 0.0f, 3.0f, "clamp(mixed)" ); plot(canvas, "clamp(p, v1, v2).x", 0.0f, 3.0f, 0.0f, 3.0f, "clamp(vector)"); plot(canvas, "saturate(x)", -1.0f, 2.0f, -0.5f, 1.5f); next_row(canvas); plot(canvas, "mix(1, 2, x)", -1.0f, 2.0f, 0.0f, 3.0f, "mix(scalar)"); plot(canvas, "mix(v1, v2, x).x", -1.0f, 2.0f, 0.0f, 3.0f, "mix(mixed)" ); plot(canvas, "mix(v1, v2, p).x", -1.0f, 2.0f, 0.0f, 3.0f, "mix(vector)"); next_row(canvas); plot(canvas, "step(1, x)", 0.0f, 2.0f, -0.5f, 1.5f, "step(scalar)"); plot(canvas, "step(1, p).x", 0.0f, 2.0f, -0.5f, 1.5f, "step(mixed)" ); plot(canvas, "step(v1, p).x", 0.0f, 2.0f, -0.5f, 1.5f, "step(vector)"); plot(canvas, "smoothstep(1, 2, x)", 0.5f, 2.5f, -0.5f, 1.5f, "smooth(scalar)"); plot(canvas, "smoothstep(1, 2, p).x", 0.5f, 2.5f, -0.5f, 1.5f, "smooth(mixed)" ); plot(canvas, "smoothstep(v1, v2, p).x", 0.5f, 2.5f, -0.5f, 1.5f, "smooth(vector)"); next_row(canvas); plot(canvas, "floor(p).x", -3.0f, 3.0f, -4.0f, 4.0f); plot(canvas, "ceil(p).x", -3.0f, 3.0f, -4.0f, 4.0f); plot(canvas, "floor(p).y", -3.0f, 3.0f, -4.0f, 4.0f); plot(canvas, "ceil(p).y", -3.0f, 3.0f, -4.0f, 4.0f); next_row(canvas); } // The OpenGL ES Shading Language, Version 3.00, Section 8.1 DEF_SIMPLE_GPU_GM_CAN_FAIL(runtime_intrinsics_common_es3, ctx, canvas, errorMsg, columns_to_width(6), rows_to_height(5)) { if (!ctx->priv().caps()->shaderCaps()->supportsSkSLES3()) { *errorMsg = "SkSL ES3 is not supported."; return skiagm::DrawResult::kSkip; } canvas->translate(kPadding, kPadding); canvas->save(); plot_es3(canvas, "floatBitsToInt(x)", -2, 2, -2'000'000'000, 2'000'000'000, "floatBitsToInt(s)"); plot_es3(canvas, "floatBitsToInt(p).x", -2, 2, -2'000'000'000, 2'000'000'000, "floatBitsToInt(v)"); plot_es3(canvas, "floatBitsToUint(x)", -2, 2, 0, 4'000'000'000, "floatBitsToUint(s)"); plot_es3(canvas, "floatBitsToUint(p).x", -2, 2, 0, 4'000'000'000, "floatBitsToUint(v)"); next_row(canvas); plot_es3(canvas, "intBitsToFloat(xi)", -2'000'000'000, 2'000'000'000, -2, 2, "intBitsToFloat(s)"); plot_es3(canvas, "intBitsToFloat(pi).x", -2'000'000'000, 2'000'000'000, -2, 2, "intBitsToFloat(v)"); plot_es3(canvas, "uintBitsToFloat(uint(xi))", 0, 4'000'000'000, -2, 2, "uintBitsToFloat(s)"); plot_es3(canvas, "uintBitsToFloat(uint2(pi)).x", 0, 4'000'000'000, -2, 2, "uintBitsToFloat(v)"); next_row(canvas); plot_es3(canvas, "trunc(x)", -2, 2, -3, 3); plot_es3(canvas, "trunc(p).x", -2, 2, -3, 3); plot_es3(canvas, "round(x)", -2, 2, -3, 3); plot_es3(canvas, "round(p).x", -2, 2, -3, 3); plot_es3(canvas, "roundEven(x)", -2, 2, -3, 3); plot_es3(canvas, "roundEven(p).x", -2, 2, -3, 3); next_row(canvas); plot_es3(canvas, "min(xi, 1)", -2, 5, -3, 5, "min(int-scalar)"); plot_es3(canvas, "min(pi, 1).x", -2, 5, -3, 5, "min(int-mixed)" ); plot_es3(canvas, "min(pi, int2(1)).x", -2, 5, -3, 5, "min(int-vector)"); plot_es3(canvas, "max(xi, 1)", -2, 5, -3, 5, "max(int-scalar)"); plot_es3(canvas, "max(pi, 1).x", -2, 5, -3, 5, "max(int-mixed)" ); plot_es3(canvas, "max(pi, int2(1)).x", -2, 5, -3, 5, "max(int-vector)"); next_row(canvas); plot_es3(canvas, "clamp(xi, 1, 3)", -1, 5, -1, 5, "clamp(int-scalar)"); plot_es3(canvas, "clamp(pi, 1, 3).x", -1, 5, -1, 5, "clamp(int-mixed)" ); plot_es3(canvas, "clamp(pi, int2(1), int2(3)).x", -1, 5, -1, 5, "clamp(int-vector)"); plot_es3(canvas, "mix(p.x, p.y, (x>0) )", -1, 2, 0, 3, "mix(scalar, bool)"); plot_es3(canvas, "mix(p.yx, p, (x>0).xx).x", -1, 2, 0, 3, "mix(vector, bool)"); next_row(canvas); return skiagm::DrawResult::kOk; } // The OpenGL ES Shading Language, Version 1.00, Section 8.4 DEF_SIMPLE_GM(runtime_intrinsics_geometric, canvas, columns_to_width(4), rows_to_height(5)) { canvas->translate(kPadding, kPadding); canvas->save(); plot(canvas, "length(x)", -1.0f, 1.0f, -0.5f, 1.5f); plot(canvas, "length(p)", 0.0f, 1.0f, 0.5f, 1.5f); plot(canvas, "distance(x, 0)", -1.0f, 1.0f, -0.5f, 1.5f); plot(canvas, "distance(p, v1)", 0.0f, 1.0f, 0.5f, 1.5f); next_row(canvas); plot(canvas, "dot(x, 2)", -1.0f, 1.0f, -2.5f, 2.5f); plot(canvas, "dot(p, p.y1)", -1.0f, 1.0f, -2.5f, 0.5f); next_row(canvas); plot(canvas, "cross(p.xy1, p.y1x).x", 0.0f, 1.0f, -1.0f, 1.0f); plot(canvas, "cross(p.xy1, p.y1x).y", 0.0f, 1.0f, -1.0f, 1.0f); plot(canvas, "cross(p.xy1, p.y1x).z", 0.0f, 1.0f, -1.0f, 1.0f); next_row(canvas); plot(canvas, "normalize(x)", -2.0f, 2.0f, -1.5f, 1.5f); plot(canvas, "normalize(p).x", 0.0f, 2.0f, 0.0f, 1.0f); plot(canvas, "normalize(p).y", 0.0f, 2.0f, 0.0f, 1.0f); plot(canvas, "faceforward(v1, p.x0, v1.x0).x", -1.0f, 1.0f, -1.5f, 1.5f, "faceforward"); next_row(canvas); plot(canvas, "reflect(p.x1, v1.0x).x", -1.0f, 1.0f, -1.0f, 1.0f, "reflect(horiz)"); plot(canvas, "reflect(p.x1, normalize(v1)).y", -1.0f, 1.0f, -1.0f, 1.0f, "reflect(diag)" ); plot(canvas, "refract(v1.x0, v1.0x, x).x", 0.0f, 1.0f, -1.0f, 1.0f, "refract().x"); plot(canvas, "refract(v1.x0, v1.0x, x).y", 0.0f, 1.0f, -1.0f, 1.0f, "refract().y"); next_row(canvas); } #define SKSL_MATRIX_SELECTORS \ "inline float2 sel2(float x) {" \ " return float2(" \ " x < 0.5 ? 1 : 0," \ " x >= 0.5 ? 1 : 0);" \ "}" \ "inline float3 sel3(float x) {" \ " return float3(" \ " x < 0.33 ? 1 : 0," \ " x >= 0.33 && x < 0.66 ? 1 : 0," \ " x >= 0.66 ? 1 : 0);" \ "}" \ "inline float4 sel4(float x) {" \ " return float4(" \ " x < 0.25 ? 1 : 0," \ " x >= 0.25 && x < 0.5 ? 1 : 0," \ " x >= 0.5 && x < 0.75 ? 1 : 0," \ " x >= 0.75 ? 1 : 0);" \ "}" // Shader for testing matrixCompMult intrinsic static SkString make_matrix_comp_mult_sksl(int dim) { return SkStringPrintf( "uniform float%dx%d m1;" // dim, dim "uniform float%dx%d m2;" // dim, dim SKSL_MATRIX_SELECTORS "half4 main(float2 p) {" " float%d colSel = sel%d(p.x);" // dim, dim " float%d rowSel = sel%d(p.y);" // dim, dim " float%d col = matrixCompMult(m1, m2) * colSel;" // dim " float v = dot(col, rowSel);" " return v.xxx1;" "}", dim, dim, dim, dim, dim, dim, dim, dim, dim); } template static void plot_matrix_comp_mult(SkCanvas* canvas, std::array mtx1, std::array mtx2, const char* label) { canvas->save(); draw_label(canvas, label); auto [effect, error] = SkRuntimeEffect::MakeForShader(make_matrix_comp_mult_sksl(N)); if (!effect) { SkDebugf("Error: %s\n", error.c_str()); return; } SkRuntimeShaderBuilder builder(effect); builder.uniform("m1") = mtx1; builder.uniform("m2") = mtx2; draw_shader(canvas, builder.makeShader()); canvas->restore(); next_column(canvas); } // Shader for testing inverse() intrinsic static SkString make_matrix_inverse_sksl(int dim) { return SkStringPrintf( "uniform float scale; uniform float bias;" "uniform float%dx%d m;" // dim, dim SKSL_MATRIX_SELECTORS "half4 main(float2 p) {" " float%d colSel = sel%d(p.x);" // dim, dim " float%d rowSel = sel%d(p.y);" // dim, dim " float%d col = inverse(m) * colSel;" // dim " float v = dot(col, rowSel) * scale + bias;" " return v.xxx1;" "}", dim, dim, dim, dim, dim, dim, dim); } template static void plot_matrix_inverse(SkCanvas* canvas, std::array mtx, const char* label) { canvas->save(); draw_label(canvas, label); auto [effect, error] = SkRuntimeEffect::MakeForShader(make_matrix_inverse_sksl(N)); if (!effect) { SkDebugf("Error: %s\n", error.c_str()); return; } SkRuntimeShaderBuilder builder(effect); builder.uniform("scale") = 0.5f; builder.uniform("bias") = 0.5f; builder.uniform("m") = mtx; draw_shader(canvas, builder.makeShader()); canvas->restore(); next_column(canvas); } // The OpenGL ES Shading Language, Version 1.00, Section 8.5 DEF_SIMPLE_GM(runtime_intrinsics_matrix, canvas, columns_to_width(3), rows_to_height(2)) { canvas->translate(kPadding, kPadding); canvas->save(); // Random pairs of matrices where the elements of matrixCompMult(m1, m2) lie in [0, 1] plot_matrix_comp_mult<2>(canvas, {1.00f, 0.0f, 2.0f, 0.5f}, {0.75f, 2.0f, 0.2f, 1.2f}, "compMult(2x2)"); plot_matrix_comp_mult<3>(canvas, {1.00f, 0.0f, 2.0f, 0.5f, -1.0f, -2.0f, -0.5f, 4.00f, 0.25f}, {0.75f, 2.0f, 0.2f, 1.2f, -0.8f, -0.1f, -1.8f, 0.25f, 2.00f}, "compMult(3x3)"); plot_matrix_comp_mult<4>(canvas, {1.00f, 0.0f, 2.0f, 0.5f, -1.0f, -2.0f, -0.5f, 4.00f, 0.25f, 0.05f, 10.00f, -0.66f, -1.0f, -0.5f, 0.5f, 0.66f}, {0.75f, 2.0f, 0.2f, 1.2f, -0.8f, -0.1f, -1.8f, 0.25f, 2.00f, 2.00f, 0.03f, -1.00f, -1.0f, -0.5f, 1.7f, 0.66f}, "compMult(4x4)"); next_row(canvas); // Random, invertible matrices where the elements of inverse(m) lie in [-1, 1] plot_matrix_inverse<2>(canvas, { 1.20f, 0.68f, -0.27f, -1.55f}, "inverse(2x2)"); plot_matrix_inverse<3>(canvas, {-1.13f, -2.96f, -0.14f, 1.45f, -1.88f, -1.02f, -2.54f, -2.58f, -1.17f}, "inverse(3x3)"); plot_matrix_inverse<4>(canvas, {-1.51f, -3.95f, -0.19f, 1.93f, -2.51f, -1.35f, -3.39f, -3.45f, -1.56f, 1.61f, -0.22f, -1.08f, -2.81f, -2.14f, -0.09f, 3.00f}, "inverse(4x4)"); next_row(canvas); } /* Specialized shader for testing relational operators. */ static SkString make_bvec_sksl(const char* type, const char* fn) { // We use negative floats, to ensure that the integer variants are working with the correct // interpretation of the data. return SkStringPrintf( "uniform %s2 v1;" "half4 main(float2 p) {" " p.x = p.x < 0.33 ? -3.0 : (p.x < 0.66 ? -2.0 : -1.0);" " p.y = p.y < 0.33 ? -3.0 : (p.y < 0.66 ? -2.0 : -1.0);" " bool2 cmp = %s;" " return half4(cmp.x ? 1.0 : 0.0, cmp.y ? 1.0 : 0.0, 0, 1);" "}", type, fn); } template static void plot_bvec(SkCanvas* canvas, const char* fn, const char* label) { canvas->save(); draw_label(canvas, label); const char* type = std::is_integral::value ? "int" : "float"; auto [effect, error] = SkRuntimeEffect::MakeForShader(make_bvec_sksl(type, fn)); if (!effect) { SkDebugf("Error: %s\n", error.c_str()); return; } T uniformData[2] = { -2, -2 }; sk_sp uniforms = SkData::MakeWithCopy(uniformData, sizeof(uniformData)); draw_shader(canvas, effect->makeShader(uniforms, /*children=*/{})); canvas->restore(); next_column(canvas); } // The OpenGL ES Shading Language, Version 1.00, Section 8.6 DEF_SIMPLE_GM(runtime_intrinsics_relational, canvas, columns_to_width(4), rows_to_height(6)) { canvas->translate(kPadding, kPadding); canvas->save(); plot_bvec(canvas, "lessThan(p, v1)", "lessThan"); plot_bvec (canvas, "lessThan(int2(p), v1)", "lessThan(int)"); plot_bvec(canvas, "lessThanEqual(p, v1)", "lessThanEqual"); plot_bvec (canvas, "lessThanEqual(int2(p), v1)", "lessThanEqual(int)"); next_row(canvas); plot_bvec(canvas, "greaterThan(p, v1)", "greaterThan"); plot_bvec (canvas, "greaterThan(int2(p), v1)", "greaterThan(int)"); plot_bvec(canvas, "greaterThanEqual(p, v1)", "greaterThanEqual"); plot_bvec (canvas, "greaterThanEqual(int2(p), v1)", "greaterThanEqual(int)"); next_row(canvas); plot_bvec(canvas, "equal(p, v1)", "equal"); plot_bvec (canvas, "equal(int2(p), v1)", "equal(int)"); plot_bvec(canvas, "notEqual(p, v1)", "notEqual"); plot_bvec (canvas, "notEqual(int2(p), v1)", "notEqual(int)"); next_row(canvas); plot_bvec(canvas, "equal( lessThanEqual(p, v1), greaterThanEqual(p, v1))", "equal(bvec)"); plot_bvec(canvas, "notEqual(lessThanEqual(p, v1), greaterThanEqual(p, v1))", "notequal(bvec)"); next_row(canvas); plot_bvec(canvas, "not(notEqual(p, v1))", "not(notEqual)"); plot_bvec(canvas, "not(equal(p, v1))", "not(equal)"); next_row(canvas); plot_bvec(canvas, "bool2(any(equal(p, v1)))", "any(equal)"); plot_bvec(canvas, "bool2(all(equal(p, v1)))", "all(equal)"); next_row(canvas); }