/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkGeometry_DEFINED #define SkGeometry_DEFINED #include "SkMatrix.h" /** An XRay is a half-line that runs from the specific point/origin to +infinity in the X direction. e.g. XRay(3,5) is the half-line (3,5)....(infinity, 5) */ typedef SkPoint SkXRay; /** Given a line segment from pts[0] to pts[1], and an xray, return true if they intersect. Optional outgoing "ambiguous" argument indicates whether the answer is ambiguous because the query occurred exactly at one of the endpoints' y coordinates, indicating that another query y coordinate is preferred for robustness. */ bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2], bool* ambiguous = NULL); /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the equation. */ int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]); /////////////////////////////////////////////////////////////////////////////// /** Set pt to the point on the src quadratic specified by t. t must be 0 <= t <= 1.0 */ void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = NULL); void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent = NULL); /** Given a src quadratic bezier, chop it at the specified t value, where 0 < t < 1, and return the two new quadratics in dst: dst[0..2] and dst[2..4] */ void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t); /** Given a src quadratic bezier, chop it at the specified t == 1/2, The new quads are returned in dst[0..2] and dst[2..4] */ void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]); /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look for extrema, and return the number of t-values that are found that represent these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the function returns 0. Returned count tValues[] 0 ignored 1 0 < tValues[0] < 1 */ int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]); /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that the resulting beziers are monotonic in Y. This is called by the scan converter. Depending on what is returned, dst[] is treated as follows 0 dst[0..2] is the original quad 1 dst[0..2] and dst[2..4] are the two new quads */ int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]); int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]); /** Given 3 points on a quadratic bezier, divide it into 2 quadratics if the point of maximum curvature exists on the quad segment. Depending on what is returned, dst[] is treated as follows 1 dst[0..2] is the original quad 2 dst[0..2] and dst[2..4] are the two new quads If dst == null, it is ignored and only the count is returned. */ int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]); /** Given 3 points on a quadratic bezier, use degree elevation to convert it into the cubic fitting the same curve. The new cubic curve is returned in dst[0..3]. */ SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]); /////////////////////////////////////////////////////////////////////////////// /** Convert from parametric from (pts) to polynomial coefficients coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3] */ void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]); /** Set pt to the point on the src cubic specified by t. t must be 0 <= t <= 1.0 */ void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, SkVector* tangentOrNull, SkVector* curvatureOrNull); /** Given a src cubic bezier, chop it at the specified t value, where 0 < t < 1, and return the two new cubics in dst: dst[0..3] and dst[3..6] */ void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t); void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], const SkScalar t[], int t_count); /** Given a src cubic bezier, chop it at the specified t == 1/2, The new cubics are returned in dst[0..3] and dst[3..6] */ void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]); /** Given the 4 coefficients for a cubic bezier (either X or Y values), look for extrema, and return the number of t-values that are found that represent these extrema. If the cubic has no extrema betwee (0..1) exclusive, the function returns 0. Returned count tValues[] 0 ignored 1 0 < tValues[0] < 1 2 0 < tValues[0] < tValues[1] < 1 */ int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2]); /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that the resulting beziers are monotonic in Y. This is called by the scan converter. Depending on what is returned, dst[] is treated as follows 0 dst[0..3] is the original cubic 1 dst[0..3] and dst[3..6] are the two new cubics 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics If dst == null, it is ignored and only the count is returned. */ int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]); int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]); /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the inflection points. */ int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]); /** Return 1 for no chop, or 2 for having chopped the cubic at its inflection point. */ int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]); int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]); int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3] = NULL); /** Given a monotonic cubic bezier, determine whether an xray intersects the cubic. By definition the cubic is open at the starting point; in other words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the left of the curve, the line is not considered to cross the curve, but if it is equal to cubic[3].fY then it is considered to cross. Optional outgoing "ambiguous" argument indicates whether the answer is ambiguous because the query occurred exactly at one of the endpoints' y coordinates, indicating that another query y coordinate is preferred for robustness. */ bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous = NULL); /** Given an arbitrary cubic bezier, return the number of times an xray crosses the cubic. Valid return values are [0..3] By definition the cubic is open at the starting point; in other words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the left of the curve, the line is not considered to cross the curve, but if it is equal to cubic[3].fY then it is considered to cross. Optional outgoing "ambiguous" argument indicates whether the answer is ambiguous because the query occurred exactly at one of the endpoints' y coordinates or at a tangent point, indicating that another query y coordinate is preferred for robustness. */ int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous = NULL); /////////////////////////////////////////////////////////////////////////////// enum SkRotationDirection { kCW_SkRotationDirection, kCCW_SkRotationDirection }; /** Maximum number of points needed in the quadPoints[] parameter for SkBuildQuadArc() */ #define kSkBuildQuadArcStorage 17 /** Given 2 unit vectors and a rotation direction, fill out the specified array of points with quadratic segments. Return is the number of points written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage } matrix, if not null, is appled to the points before they are returned. */ int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop, SkRotationDirection, const SkMatrix*, SkPoint quadPoints[]); #endif