Skia UnitTests: --match Simplify$ --resourcePath resources\ SK_DEBUG
seg=1 {{{41, 33}, {41, 36.3137093f}, {38.6568527f, 38.6568527f}}}
seg=2 {{{38.6568527f, 38.6568527f}, {36.3137093f, 41}, {33, 41}}}
seg=3 {{{33, 41}, {29.6862907f, 41}, {27.3431454f, 38.6568527f}}}
seg=4 {{{27.3431454f, 38.6568527f}, {25, 36.3137093f}, {25, 33}}}
seg=5 {{{25, 33}, {25, 29.6862907f}, {27.3431454f, 27.3431454f}}}
seg=6 {{{27.3431454f, 27.3431454f}, {29.6862907f, 25}, {33, 25}}}
seg=7 {{{33, 25}, {36.3137093f, 25}, {38.6568527f, 27.3431454f}}}
seg=8 {{{38.6568527f, 27.3431454f}, {41, 29.6862907f}, {41, 33}}}
seg=9 {{{33.2413864f, 24.6781349f}, {36.5549393f, 24.6459332f}, {38.920742f, 26.966198f}}}
seg=10 {{{38.920742f, 26.966198f}, {41.2865486f, 29.2864628f}, {41.3187523f, 32.6000175f}}}
seg=11 {{{41.3187523f, 32.6000175f}, {41.3509521f, 35.9135704f}, {39.0306854f, 38.2793732f}}}
seg=12 {{{39.0306854f, 38.2793732f}, {38.9995995f, 38.3110695f}, {38.9681816f, 38.3424988f}}}
seg=13 {{{38.9681816f, 38.3424988f}, {38.9374619f, 38.3742142f}, {38.9064751f, 38.4056053f}}}
seg=14 {{{38.9064751f, 38.4056053f}, {38.8441086f, 38.4687881f}, {38.7809143f, 38.5304031f}}}
seg=15 {{{38.7809143f, 38.5304031f}, {38.7196693f, 38.5940361f}, {38.6568527f, 38.6568527f}}}
seg=16 {{{38.6568527f, 38.6568527f}, {36.3137093f, 41}, {33, 41}}}
seg=17 {{{33, 41}, {29.6862907f, 41}, {27.3431454f, 38.6568527f}}}
seg=18 {{{27.3431454f, 38.6568527f}, {25, 36.3137093f}, {25, 33}}}
seg=19 {{{25, 33}, {25, 29.6862907f}, {27.3431454f, 27.3431454f}}}
seg=20 {{{27.3431454f, 27.3431454f}, {27.3875446f, 27.2987461f}, {27.4323025f, 27.2551785f}}}
seg=21 {{{27.4323025f, 27.2551785f}, {27.4755878f, 27.2101307f}, {27.5197105f, 27.165432f}}}
seg=22 {{{27.5197105f, 27.165432f}, {27.541851f, 27.1430035f}, {27.5638676f, 27.1209965f}}}
seg=23 {{{27.5638676f, 27.1209965f}, {27.5855064f, 27.0986347f}, {27.6075668f, 27.0761414f}}}
seg=24 {{{27.6075668f, 27.0761414f}, {29.9278316f, 24.7103367f}, {33.2413864f, 24.6781349f}}}
debugShowQuadIntersection wtTs[0]=1 {{{33.2413864,24.6781349}, {36.5549393,24.6459332}, {38.920742,26.966198}}} {{38.920742,26.966198}} wnTs[0]=0 {{{38.920742,26.966198}, {41.2865486,29.2864628}, {41.3187523,32.6000175}}}
debugShowQuadIntersection wtTs[0]=0 {{{33.2413864,24.6781349}, {36.5549393,24.6459332}, {38.920742,26.966198}}} {{33.2413864,24.6781349}} wnTs[0]=1 {{{27.6075668,27.0761414}, {29.9278316,24.7103367}, {33.2413864,24.6781349}}}
debugShowQuadIntersection wtTs[0]=1 {{{38.920742,26.966198}, {41.2865486,29.2864628}, {41.3187523,32.6000175}}} {{41.3187523,32.6000175}} wnTs[0]=0 {{{41.3187523,32.6000175}, {41.3509521,35.9135704}, {39.0306854,38.2793732}}}
debugShowQuadIntersection wtTs[0]=1 {{{41.3187523,32.6000175}, {41.3509521,35.9135704}, {39.0306854,38.2793732}}} {{39.0306854,38.2793732}} wnTs[0]=0 {{{39.0306854,38.2793732}, {38.9995995,38.3110695}, {38.9681816,38.3424988}}}
debugShowQuadIntersection wtTs[0]=1 {{{39.0306854,38.2793732}, {38.9995995,38.3110695}, {38.9681816,38.3424988}}} {{38.9681816,38.3424988}} wnTs[0]=0 {{{38.9681816,38.3424988}, {38.9374619,38.3742142}, {38.9064751,38.4056053}}}
debugShowQuadIntersection wtTs[0]=1 {{{38.9681816,38.3424988}, {38.9374619,38.3742142}, {38.9064751,38.4056053}}} {{38.9064751,38.4056053}} wnTs[0]=0 {{{38.9064751,38.4056053}, {38.8441086,38.4687881}, {38.7809143,38.5304031}}}
debugShowQuadIntersection wtTs[0]=1 {{{38.9064751,38.4056053}, {38.8441086,38.4687881}, {38.7809143,38.5304031}}} {{38.7809143,38.5304031}} wnTs[0]=0 {{{38.7809143,38.5304031}, {38.7196693,38.5940361}, {38.6568527,38.6568527}}}
debugShowQuadIntersection wtTs[0]=1 {{{38.7809143,38.5304031}, {38.7196693,38.5940361}, {38.6568527,38.6568527}}} {{38.6568527,38.6568527}} wnTs[0]=0 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}}
debugShowQuadIntersection wtTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} {{33,41}} wnTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}}
debugShowQuadIntersection wtTs[0]=1 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}} {{27.3431454,38.6568527}} wnTs[0]=0 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}}
debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} {{25,33}} wnTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}}
debugShowQuadIntersection wtTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}} {{27.3431454,27.3431454}} wnTs[0]=0 {{{27.3431454,27.3431454}, {27.3875446,27.2987461}, {27.4323025,27.2551785}}}
debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,27.3431454}, {27.3875446,27.2987461}, {27.4323025,27.2551785}}} {{27.4323025,27.2551785}} wnTs[0]=0 {{{27.4323025,27.2551785}, {27.4755878,27.2101307}, {27.5197105,27.165432}}}
debugShowQuadIntersection wtTs[0]=1 {{{27.4323025,27.2551785}, {27.4755878,27.2101307}, {27.5197105,27.165432}}} {{27.5197105,27.165432}} wnTs[0]=0 {{{27.5197105,27.165432}, {27.541851,27.1430035}, {27.5638676,27.1209965}}}
debugShowQuadIntersection wtTs[0]=1 {{{27.5197105,27.165432}, {27.541851,27.1430035}, {27.5638676,27.1209965}}} {{27.5638676,27.1209965}} wnTs[0]=0 {{{27.5638676,27.1209965}, {27.5855064,27.0986347}, {27.6075668,27.0761414}}}
debugShowQuadIntersection wtTs[0]=1 {{{27.5638676,27.1209965}, {27.5855064,27.0986347}, {27.6075668,27.0761414}}} {{27.6075668,27.0761414}} wnTs[0]=0 {{{27.6075668,27.0761414}, {29.9278316,24.7103367}, {33.2413864,24.6781349}}}
id=1 1=(0,0.5) [2] 3=(0.5,1) [2] id=2 2=(0,1) [3,1]
id=1 1=(0,0.5) [2] 3=(0.5,1) [4] id=2 2=(0,0.5) [1] 4=(0.5,1) [3]
id=1 3=(0.5,1) [4] id=2 4=(0.5,1) [3]
id=1 (empty) id=2 (empty)
debugShowQuadIntersection no intersect {{{33.2413864,24.6781349}, {36.5549393,24.6459332}, {38.920742,26.966198}}} {{{33,25}, {36.3137093,25}, {38.6568527,27.3431454}}}
id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1]
id=1 (empty) id=2 (empty)
debugShowQuadIntersection no intersect {{{38.920742,26.966198}, {41.2865486,29.2864628}, {41.3187523,32.6000175}}} {{{38.6568527,27.3431454}, {41,29.6862907}, {41,33}}}
id=1 1=(0,0.5) [2] 3=(0.5,1) [2] id=2 2=(0,1) [3,1]
id=1 1=(0,0.5) [2] 3=(0.5,1) [4,2] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3]
id=1 3=(0.5,1) [4,2] id=2 2=(0,0.5) [3] 4=(0.5,1) [3]
id=1 3=(0.5,1) [6,4] id=2 6=(0.25,0.5) [3] 4=(0.5,1) [3]
id=1 3=(0.5,0.75) [4] 7=(0.75,1) [4] id=2 4=(0.5,1) [7,3]
id=1 7=(0.75,1) [8,4] id=2 4=(0.5,0.75) [7] 8=(0.75,1) [7]
id=1 7=(0.75,1) [10,8] id=2 10=(0.625,0.75) [7] 8=(0.75,1) [7]
id=1 9=(0.875,1) [8] id=2 8=(0.75,1) [9]
id=1 (empty) id=2 (empty)
debugShowQuadIntersection no intersect {{{41.3187523,32.6000175}, {41.3509521,35.9135704}, {39.0306854,38.2793732}}} {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}}
debugShowQuadIntersection no intersect {{{41.3187523,32.6000175}, {41.3509521,35.9135704}, {39.0306854,38.2793732}}} {{{38.6568527,27.3431454}, {41,29.6862907}, {41,33}}}
id=1 1=(0,1) [4] id=2 4=(0.5,1) [1]
id=1 1=(0,1) [6] id=2 6=(0.75,1) [1]
id=1 (empty) id=2 (empty)
debugShowQuadIntersection no intersect {{{39.0306854,38.2793732}, {38.9995995,38.3110695}, {38.9681816,38.3424988}}} {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}}
id=1 1=(0,1) [4] id=2 4=(0.5,1) [1]
id=1 1=(0,1) [6] id=2 6=(0.75,1) [1]
id=1 1=(0,1) [8] id=2 8=(0.875,1) [1]
id=1 (empty) id=2 (empty)
debugShowQuadIntersection no intersect {{{38.9681816,38.3424988}, {38.9374619,38.3742142}, {38.9064751,38.4056053}}} {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}}
id=1 1=(0,1) [4] id=2 4=(0.5,1) [1]
id=1 1=(0,1) [6] id=2 6=(0.75,1) [1]
id=1 1=(0,1) [8] id=2 8=(0.875,1) [1]
id=1 1=(0,1) [10] id=2 10=(0.9375,1) [1]
id=1 1=(0,1) [12,10] id=2 10=(0.9375,0.96875) [1] 12=(0.96875,1) [1]
id=1 1=(0,1) [14,12,10] id=2 10=(0.9375,0.953125) [1] 14=(0.953125,0.96875) [1] 12=(0.96875,1) [1]
id=1 1=(0,1) [14,12,10] id=2 10=(0.9375,0.953125) [1] 14=(0.953125,0.96875) [1] 12=(0.96875,0.984375) [1]
id=1 3=(0.5,1) [12] id=2 12=(0.96875,0.984375) [3]
id=1 3=(0.5,1) [12] id=2 12=(0.96875,0.976563) [3]
id=1 5=(0.75,1) [12] id=2 12=(0.96875,0.976563) [5]
id=1 5=(0.75,1) [20,12] id=2 12=(0.96875,0.972656) [5] 20=(0.972656,0.976563) [5]
id=1 7=(0.875,1) [20] id=2 20=(0.972656,0.976563) [7]
id=1 7=(0.875,1) [20] id=2 20=(0.972656,0.974609) [7]
id=1 (empty) id=2 (empty)
debugShowQuadIntersection no intersect {{{38.9064751,38.4056053}, {38.8441086,38.4687881}, {38.7809143,38.5304031}}} {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}}
id=1 1=(0,1) [4] id=2 4=(0.5,1) [1]
id=1 1=(0,1) [6] id=2 6=(0.75,1) [1]
id=1 1=(0,1) [8] id=2 8=(0.875,1) [1]
id=1 1=(0,1) [10] id=2 10=(0.9375,1) [1]
id=1 1=(0,1) [12] id=2 12=(0.96875,1) [1]
id=1 1=(0,1) [14,12] id=2 12=(0.96875,0.984375) [1] 14=(0.984375,1) [1]
id=1 1=(0,0.5) [14,12] 3=(0.5,1) [14] id=2 12=(0.96875,0.984375) [1] 14=(0.984375,1) [3,1]
id=1 1=(0,0.5) [16,14,12] 3=(0.5,1) [14] id=2 12=(0.96875,0.976563) [1] 16=(0.976563,0.984375) [1] 14=(0.984375,1) [3,1]
id=1 1=(0,0.5) [16,14,12] 3=(0.5,1) [18,14] id=2 12=(0.96875,0.976563) [1] 16=(0.976563,0.984375) [1] 14=(0.984375,0.992188) [3,1] 18=(0.992188,1) [3]
id=1 1=(0,0.25) [16,12] 5=(0.25,0.5) [14,16] 3=(0.5,1) [18,14] id=2 12=(0.96875,0.976563) [1] 16=(0.976563,0.984375) [5,1] 14=(0.984375,0.992188) [5,3] 18=(0.992188,1) [3]
id=1 1=(0,0.25) [16,12] 5=(0.25,0.5) [14,16] 3=(0.5,0.75) [18,14] 7=(0.75,1) [18] id=2 12=(0.96875,0.976563) [1] 16=(0.976563,0.984375) [5,1] 14=(0.984375,0.992188) [5,3] 18=(0.992188,1) [7,3]
id=1 1=(0,0.25) [20,16] 5=(0.25,0.5) [14,16] 3=(0.5,0.75) [18,14] 7=(0.75,1) [18] id=2 20=(0.972656,0.976563) [1] 16=(0.976563,0.984375) [5,1] 14=(0.984375,0.992188) [5,3] 18=(0.992188,1) [7,3]
id=1 1=(0,0.25) [20,16] 5=(0.25,0.5) [22,14,16] 3=(0.5,0.75) [18,14] 7=(0.75,1) [18] id=2 20=(0.972656,0.976563) [1] 16=(0.976563,0.980469) [5,1] 22=(0.980469,0.984375) [5] 14=(0.984375,0.992188) [5,3] 18=(0.992188,1) [7,3]
id=1 1=(0,0.25) [20,16] 5=(0.25,0.5) [22,14,16] 3=(0.5,0.75) [24,18,14] 7=(0.75,1) [18] id=2 20=(0.972656,0.976563) [1] 16=(0.976563,0.980469) [5,1] 22=(0.980469,0.984375) [5] 14=(0.984375,0.988281) [5,3] 24=(0.988281,0.992188) [3] 18=(0.992188,1) [7,3]
id=1 1=(0,0.25) [20,16] 5=(0.25,0.5) [22,14,16] 3=(0.5,0.75) [24,18,14] 7=(0.75,1) [26,18] id=2 20=(0.972656,0.976563) [1] 16=(0.976563,0.980469) [5,1] 22=(0.980469,0.984375) [5] 14=(0.984375,0.988281) [5,3] 24=(0.988281,0.992188) [3] 18=(0.992188,0.996094) [7,3] 26=(0.996094,1) [7]
id=1 1=(0,0.125) [20] 9=(0.125,0.25) [16,20] 5=(0.25,0.5) [22,14,16] 3=(0.5,0.75) [24,18,14] 7=(0.75,1) [26,18] id=2 20=(0.972656,0.976563) [9,1] 16=(0.976563,0.980469) [9,5] 22=(0.980469,0.984375) [5] 14=(0.984375,0.988281) [5,3] 24=(0.988281,0.992188) [3] 18=(0.992188,0.996094) [7,3] 26=(0.996094,1) [7]
id=1 1=(0,0.125) [20] 9=(0.125,0.25) [16,20] 5=(0.25,0.375) [22,16] 11=(0.375,0.5) [14,22] 3=(0.5,0.75) [24,18,14] 7=(0.75,1) [26,18] id=2 20=(0.972656,0.976563) [9,1] 16=(0.976563,0.980469) [9,5] 22=(0.980469,0.984375) [11,5] 14=(0.984375,0.988281) [11,3] 24=(0.988281,0.992188) [3] 18=(0.992188,0.996094) [7,3] 26=(0.996094,1) [7]
id=1 1=(0,0.125) [20] 9=(0.125,0.25) [16,20] 5=(0.25,0.375) [22,16] 11=(0.375,0.5) [14,22] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,1) [26,18] id=2 20=(0.972656,0.976563) [9,1] 16=(0.976563,0.980469) [9,5] 22=(0.980469,0.984375) [11,5] 14=(0.984375,0.988281) [11,3] 24=(0.988281,0.992188) [13,3] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [7]
id=1 1=(0,0.125) [20] 9=(0.125,0.25) [16,20] 5=(0.25,0.375) [22,16] 11=(0.375,0.5) [14,22] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,0.875) [26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.976563) [9,1] 16=(0.976563,0.980469) [9,5] 22=(0.980469,0.984375) [11,5] 14=(0.984375,0.988281) [11,3] 24=(0.988281,0.992188) [13,3] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [15,7]
id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [28,16] 5=(0.25,0.375) [22,16] 11=(0.375,0.5) [14,22] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,0.875) [26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563) [1,9] 16=(0.976563,0.980469) [9,5] 22=(0.980469,0.984375) [11,5] 14=(0.984375,0.988281) [11,3] 24=(0.988281,0.992188) [13,3] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [15,7]
id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [30,22] 11=(0.375,0.5) [14,22] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,0.875) [26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,0.984375) [11,5] 14=(0.984375,0.988281) [11,3] 24=(0.988281,0.992188) [13,3] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [15,7]
id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=(0.375,0.5) [32,14] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,0.875) [26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.988281) [11,3] 24=(0.988281,0.992188) [13,3] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [15,7]
id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [18,24] 7=(0.75,0.875) [26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.992188) [13,3] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [15,7]
id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [15,7]
id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,1) [15,7]
id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15]
setPerp t=0.974609375 cPt=(38.7743301,38.5372393) == oppT=0.0537252999 fPerpPt=(38.774329,38.5372382)
setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38.7653995,38.5464837)
setPerp t=0.0625 cPt=(38.7732525,38.5383541) == oppT=0.974845025 fPerpPt=(38.7732537,38.5383551)
setPerp t=0.974609375 cPt=(38.7743301,38.5372393) == oppT=0.0537252999 fPerpPt=(38.774329,38.5372382)
setPerp t=0 cPt=(38.7809143,38.5304031) == oppT=0.973166462 fPerpPt=(38.7809154,38.5304042)
setPerp t=0.974609375 cPt=(38.7743301,38.5372393) == oppT=0.0537252999 fPerpPt=(38.774329,38.5372382)
setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38.7653995,38.5464837)
setPerp t=0.0625 cPt=(38.7732525,38.5383541) == oppT=0.974845025 fPerpPt=(38.7732537,38.5383551)
setPerp t=0.125 cPt=(38.7655785,38.5462986) == oppT=0.976523392 fPerpPt=(38.7655796,38.5462997)
id=1 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 28=(0.974609,0.976563) [9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15]
setPerp t=0.974609375 cPt=(38.7743301,38.5372393) == oppT=0.0537252999 fPerpPt=(38.774329,38.5372382)
setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38.7653995,38.5464837)
setPerp t=0.125 cPt=(38.7655785,38.5462986) == oppT=0.976523392 fPerpPt=(38.7655796,38.5462997)
setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38.7653995,38.5464837)
setPerp t=0.978515625 cPt=(38.7564533,38.5557228) == oppT=0.199197443 fPerpPt=(38.7564523,38.5557218)
setPerp t=0.1875 cPt=(38.7578922,38.5542368) == oppT=0.978201562 fPerpPt=(38.7578932,38.5542378)
setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38.7653995,38.5464837)
setPerp t=0.978515625 cPt=(38.7564533,38.5557228) == oppT=0.199197443 fPerpPt=(38.7564523,38.5557218)
setPerp t=0.1875 cPt=(38.7578922,38.5542368) == oppT=0.978201562 fPerpPt=(38.7578932,38.5542378)
setPerp t=0.978515625 cPt=(38.7564533,38.5557228) == oppT=0.199197443 fPerpPt=(38.7564523,38.5557218)
setPerp t=0.98046875 cPt=(38.7474881,38.5649534) == oppT=0.271948381 fPerpPt=(38.7474871,38.5649525)
setPerp t=0.25 cPt=(38.7501936,38.5621686) == oppT=0.979879536 fPerpPt=(38.7501946,38.5621695)
id=1 5=(0.25,0.375) [32,30,22] 11=(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 30=(0.978516,0.980469) [5] 22=(0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15]
setPerp t=0.978515625 cPt=(38.7564533,38.5557228) == oppT=0.199197443 fPerpPt=(38.7564523,38.5557218)
setPerp t=0.98046875 cPt=(38.7474881,38.5649534) == oppT=0.271948381 fPerpPt=(38.7474871,38.5649525)
setPerp t=0.25 cPt=(38.7501936,38.5621686) == oppT=0.979879536 fPerpPt=(38.7501946,38.5621695)
setPerp t=0.98046875 cPt=(38.7474881,38.5649534) == oppT=0.271948381 fPerpPt=(38.7474871,38.5649525)
setPerp t=0.982421875 cPt=(38.738505,38.5741767) == oppT=0.344709216 fPerpPt=(38.7385041,38.5741759)
setPerp t=0.3125 cPt=(38.7424827,38.570094) == oppT=0.981557313 fPerpPt=(38.7424836,38.5700949)
setPerp t=0.98046875 cPt=(38.7474881,38.5649534) == oppT=0.271948381 fPerpPt=(38.7474871,38.5649525)
setPerp t=0.982421875 cPt=(38.738505,38.5741767) == oppT=0.344709216 fPerpPt=(38.7385041,38.5741759)
setPerp t=0.3125 cPt=(38.7424827,38.570094) == oppT=0.981557313 fPerpPt=(38.7424836,38.5700949)
setPerp t=0.982421875 cPt=(38.738505,38.5741767) == oppT=0.344709216 fPerpPt=(38.7385041,38.5741759)
setPerp t=0.984375 cPt=(38.729504,38.5833925) == oppT=0.417479935 fPerpPt=(38.7295033,38.5833918)
setPerp t=0.375 cPt=(38.7347596,38.5780131) == oppT=0.983234895 fPerpPt=(38.7347604,38.5780138)
id=1 11=(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 32=(0.982422,0.984375) [11] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15]
setPerp t=0.982421875 cPt=(38.738505,38.5741767) == oppT=0.344709216 fPerpPt=(38.7385041,38.5741759)
setPerp t=0.984375 cPt=(38.729504,38.5833925) == oppT=0.417479935 fPerpPt=(38.7295033,38.5833918)
setPerp t=0.375 cPt=(38.7347596,38.5780131) == oppT=0.983234895 fPerpPt=(38.7347604,38.5780138)
setPerp t=0.984375 cPt=(38.729504,38.5833925) == oppT=0.417479935 fPerpPt=(38.7295033,38.5833918)
setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38.7204846,38.5926004)
setPerp t=0.4375 cPt=(38.7270241,38.5859257) == oppT=0.984912281 fPerpPt=(38.7270248,38.5859264)
setPerp t=0.984375 cPt=(38.729504,38.5833925) == oppT=0.417479935 fPerpPt=(38.7295033,38.5833918)
setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38.7204846,38.5926004)
setPerp t=0.4375 cPt=(38.7270241,38.5859257) == oppT=0.984912281 fPerpPt=(38.7270248,38.5859264)
setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38.7204846,38.5926004)
setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38.711448,38.6018015)
setPerp t=0.5 cPt=(38.7192764,38.593832) == oppT=0.986589471 fPerpPt=(38.719277,38.5938326)
id=1 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 34=(0.986328,0.988281) [3] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15]
setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38.7204846,38.5926004)
setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38.711448,38.6018015)
setPerp t=0.5 cPt=(38.7192764,38.593832) == oppT=0.986589471 fPerpPt=(38.719277,38.5938326)
setPerp t=0.5625 cPt=(38.7115164,38.6017319) == oppT=0.988266467 fPerpPt=(38.7115169,38.6017324)
setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38.711448,38.6018015)
setPerp t=0.990234375 cPt=(38.7023939,38.6109956) == oppT=0.635851272 fPerpPt=(38.7023935,38.6109953)
setPerp t=0.625 cPt=(38.7037442,38.6096255) == oppT=0.989943268 fPerpPt=(38.7037445,38.6096258)
setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38.7204846,38.5926004)
setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38.711448,38.6018015)
setPerp t=0.5625 cPt=(38.7115164,38.6017319) == oppT=0.988266467 fPerpPt=(38.7115169,38.6017324)
id=1 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 24=(0.988281,0.990234) [13] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15]
setPerp t=0.990234375 cPt=(38.7023939,38.6109956) == oppT=0.635851272 fPerpPt=(38.7023935,38.6109953)
setPerp t=0.9921875 cPt=(38.6933214,38.6201819) == oppT=0.708661403 fPerpPt=(38.6933211,38.6201816)
setPerp t=0.6875 cPt=(38.6959596,38.6175126) == oppT=0.991619875 fPerpPt=(38.6959599,38.6175129)
setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38.711448,38.6018015)
setPerp t=0.990234375 cPt=(38.7023939,38.6109956) == oppT=0.635851272 fPerpPt=(38.7023935,38.6109953)
setPerp t=0.625 cPt=(38.7037442,38.6096255) == oppT=0.989943268 fPerpPt=(38.7037445,38.6096258)
setPerp t=0.9921875 cPt=(38.6933214,38.6201819) == oppT=0.708661403 fPerpPt=(38.6933211,38.6201816)
setPerp t=0.994140625 cPt=(38.684231,38.6293607) == oppT=0.781481354 fPerpPt=(38.6842309,38.6293605)
setPerp t=0.75 cPt=(38.6881628,38.6253934) == oppT=0.993296287 fPerpPt=(38.688163,38.6253936)
setPerp t=0.990234375 cPt=(38.7023939,38.6109956) == oppT=0.635851272 fPerpPt=(38.7023935,38.6109953)
setPerp t=0.9921875 cPt=(38.6933214,38.6201819) == oppT=0.708661403 fPerpPt=(38.6933211,38.6201816)
setPerp t=0.6875 cPt=(38.6959596,38.6175126) == oppT=0.991619875 fPerpPt=(38.6959599,38.6175129)
id=1 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 18=(0.992188,0.994141) [7] 38=(0.994141,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15]
setPerp t=0.994140625 cPt=(38.684231,38.6293607) == oppT=0.781481354 fPerpPt=(38.6842309,38.6293605)
setPerp t=0.99609375 cPt=(38.6751228,38.6385321) == oppT=0.854311113 fPerpPt=(38.6751227,38.638532)
setPerp t=0.8125 cPt=(38.6803537,38.6332678) == oppT=0.994972505 fPerpPt=(38.6803538,38.6332679)
setPerp t=0.9921875 cPt=(38.6933214,38.6201819) == oppT=0.708661403 fPerpPt=(38.6933211,38.6201816)
setPerp t=0.994140625 cPt=(38.684231,38.6293607) == oppT=0.781481354 fPerpPt=(38.6842309,38.6293605)
setPerp t=0.75 cPt=(38.6881628,38.6253934) == oppT=0.993296287 fPerpPt=(38.688163,38.6253936)
setPerp t=0.99609375 cPt=(38.6751228,38.6385321) == oppT=0.854311113 fPerpPt=(38.6751227,38.638532)
setPerp t=0.998046875 cPt=(38.6659967,38.6476961) == oppT=0.927150666 fPerpPt=(38.6659967,38.6476961)
setPerp t=0.875 cPt=(38.6725323,38.6411358) == oppT=0.99664853 fPerpPt=(38.6725324,38.6411359)
setPerp t=0.994140625 cPt=(38.684231,38.6293607) == oppT=0.781481354 fPerpPt=(38.6842309,38.6293605)
setPerp t=0.99609375 cPt=(38.6751228,38.6385321) == oppT=0.854311113 fPerpPt=(38.6751227,38.638532)
setPerp t=0.8125 cPt=(38.6803537,38.6332678) == oppT=0.994972505 fPerpPt=(38.6803538,38.6332679)
id=1 15=(0.875,1) [40,26] id=2 26=(0.996094,0.998047) [15] 40=(0.998047,1) [15]
setPerp t=0.998046875 cPt=(38.6659967,38.6476961) == oppT=0.927150666 fPerpPt=(38.6659967,38.6476961)
setPerp t=1 cPt=(38.6568527,38.6568527) == oppT=1 fPerpPt=(38.6568527,38.6568527)
setPerp t=0.9375 cPt=(38.6646987,38.6489975) == oppT=0.998324361 fPerpPt=(38.6646987,38.6489975)
setPerp t=0.99609375 cPt=(38.6751228,38.6385321) == oppT=0.854311113 fPerpPt=(38.6751227,38.638532)
setPerp t=0.998046875 cPt=(38.6659967,38.6476961) == oppT=0.927150666 fPerpPt=(38.6659967,38.6476961)
setPerp t=0.875 cPt=(38.6725323,38.6411358) == oppT=0.99664853 fPerpPt=(38.6725324,38.6411359)
id=1 31=(0.9375,1) [40] id=2 40=(0.998047,1) [31]
setPerp t=0.9375 cPt=(38.6646987,38.6489975) == oppT=0.998324361 fPerpPt=(38.6646987,38.6489975)
setPerp t=1 cPt=(38.6568527,38.6568527) == oppT=1 fPerpPt=(38.6568527,38.6568527)
setPerp t=0.999023438 cPt=(38.6614269,38.6522753) == oppT=0.963574111 fPerpPt=(38.6614269,38.6522753)
id=1 31=(1,1) [42] id=2 42=(1,1) [31]
debugShowQuadIntersection wtTs[0]=1 {{{38.7809143,38.5304031}, {38.7196693,38.5940361}, {38.6568527,38.6568527}}} {{38.6568527,38.6568527}} wnTs[0]=1 {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}}
debugShowQuadIntersection wtTs[0]=1 {{{38.7809143,38.5304031}, {38.7196693,38.5940361}, {38.6568527,38.6568527}}} {{38.6568527,38.6568527}} wnTs[0]=0 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}}
debugShowQuadIntersection wtTs[0]=0 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} {{38.6568527,38.6568527}} wnTs[0]=1 {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}}
id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1]
id=1 1=(0,0.5) [4,2] 3=(0.5,1) [2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3,1]
id=1 1=(0,0.5) [4,2] 3=(0.5,1) [6,2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,0.75) [3,1] 6=(0.75,1) [3]
id=1 1=(0,0.5) [4,2] 3=(0.5,0.75) [6,2,4] 5=(0.75,1) [4,6] id=2 2=(0,0.5) [3,1] 4=(0.5,0.75) [5,3,1] 6=(0.75,1) [5,3]
id=1 1=(0,0.5) [8,4,2] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [4,6] id=2 2=(0,0.25) [1] 8=(0.25,0.5) [1,3] 4=(0.5,0.75) [5,3,1] 6=(0.75,1) [5,3]
id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [4,6] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,1) [5,3]
id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [10,4,6] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,0.875) [5,3] 10=(0.875,1) [5]
id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,0.875) [10,4,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,0.875) [9,5,3] 10=(0.875,1) [9,5]
id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [12,8,6,4] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.625) [7,3] 12=(0.625,0.75) [3,5] 6=(0.75,0.875) [9,5,3] 10=(0.875,1) [9,5]
id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.625) [12,8,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.625) [11,7,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [14,2,4,8] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.375) [7,1] 14=(0.375,0.5) [3,7] 4=(0.5,0.625) [11,7,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
id=1 1=(0,0.25) [8,2] 7=(0.25,0.375) [14,2,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.375) [13,7,1] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
id=1 1=(0,0.25) [16,8,2] 7=(0.25,0.375) [16,14,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.125) [1] 16=(0.125,0.25) [1,7] 8=(0.25,0.375) [13,7,1] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
id=1 1=(0,0.125) [16,2] 15=(0.125,0.25) [2,8,16] 7=(0.25,0.375) [16,14,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.125) [15,1] 16=(0.125,0.25) [15,1,7] 8=(0.25,0.375) [15,13,7] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
id=1 1=(0,0.125) [16,2] 15=(0.125,0.25) [2,8,16] 7=(0.25,0.375) [16,14,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [18,6,10] id=2 2=(0,0.125) [15,1] 16=(0.125,0.25) [15,1,7] 8=(0.25,0.375) [15,13,7] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,0.9375) [9,5] 18=(0.9375,1) [9]
setPerp t=0 cPt=(38.6568527,38.6568527) == oppT=0 fPerpPt=(38.6568527,38.6568527)
setPerp t=0.125 cPt=(38.0559018,39.2060279) == oppT=0.125 fPerpPt=(38.0559018,39.2060279)
setPerp t=0.25 cPt=(37.4246206,39.6819797) == oppT=0.25 fPerpPt=(37.4246206,39.6819797)
setPerp t=0.375 cPt=(36.7630093,40.0847081) == oppT=0.375 fPerpPt=(36.7630093,40.0847081)
setPerp t=0.5 cPt=(36.0710678,40.4142132) == oppT=0.5 fPerpPt=(36.0710678,40.4142132)
setPerp t=0.625 cPt=(35.3487961,40.6704949) == oppT=0.625 fPerpPt=(35.3487961,40.6704949)
setPerp t=0.75 cPt=(34.5961943,40.8535533) == oppT=0.75 fPerpPt=(34.5961943,40.8535533)
setPerp t=0.875 cPt=(33.8132622,40.9633883) == oppT=0.875 fPerpPt=(33.8132622,40.9633883)
setPerp t=0.9375 cPt=(33.4104224,40.9908471) == oppT=0.9375 fPerpPt=(33.4104224,40.9908471)
setPerp t=1 cPt=(33,41) == oppT=1 fPerpPt=(33,41)
setPerp t=0 cPt=(38.6568527,38.6568527) == oppT=0 fPerpPt=(38.6568527,38.6568527)
setPerp t=1 cPt=(33,41) == oppT=1 fPerpPt=(33,41)
id=1 (empty) id=2 (empty)
debugShowQuadIntersection wtTs[0]=0 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} {{38.6568527,38.6568527}} wtTs[1]=1 {{33,41}} wnTs[0]=0 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} wnTs[1]=1
debugShowQuadIntersection wtTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} {{33,41}} wnTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}}
debugShowQuadIntersection wtTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}} {{33,41}} wnTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}}
id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1]
id=1 1=(0,0.5) [4,2] 3=(0.5,1) [2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3,1]
id=1 1=(0,0.5) [6,4,2] 3=(0.5,1) [6,4] id=2 2=(0,0.25) [1] 6=(0.25,0.5) [1,3] 4=(0.5,1) [3,1]
id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,1) [6,4] id=2 2=(0,0.25) [5,1] 6=(0.25,0.5) [5,1,3] 4=(0.5,1) [5,3]
id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,1) [8,6,4] id=2 2=(0,0.25) [5,1] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [5,3] 8=(0.75,1) [3]
id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [4,8] id=2 2=(0,0.25) [5,1] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
id=1 1=(0,0.25) [10,6,2] 5=(0.25,0.5) [10,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [1] 10=(0.125,0.25) [1,5] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.5) [10,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.5) [9,5,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.5) [12,10,4,6] 3=(0.5,0.75) [12,8,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [9,5] 12=(0.375,0.5) [3,5] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.75) [12,8,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.75) [11,7,3] 8=(0.75,1) [7,3]
id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.75) [14,12,8,4] 7=(0.75,1) [14,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [11,3] 14=(0.625,0.75) [3,7] 8=(0.75,1) [7,3]
id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,1) [14,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,1) [13,7]
id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,1) [16,14,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0.875) [13,7] 16=(0.875,1) [7]
id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,0.875) [16,14,8] 15=(0.875,1) [8,16] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0.875) [15,13,7] 16=(0.875,1) [15,7]
id=1 1=(0,0.125) [18,10,2] 9=(0.125,0.25) [18,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,0.875) [16,14,8] 15=(0.875,1) [8,16] id=2 2=(0,0.0625) [1] 18=(0.0625,0.125) [1,9] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0.875) [15,13,7] 16=(0.875,1) [15,7]
setPerp t=0 cPt=(33,41) == oppT=0 fPerpPt=(33,41)
setPerp t=0.0625 cPt=(32.5895776,40.9908471) == oppT=0.0625 fPerpPt=(32.5895776,40.9908471)
setPerp t=0.125 cPt=(32.1867377,40.9633883) == oppT=0.125 fPerpPt=(32.1867377,40.9633883)
setPerp t=0.25 cPt=(31.4038056,40.8535533) == oppT=0.25 fPerpPt=(31.4038056,40.8535533)
setPerp t=0.375 cPt=(30.6512036,40.6704949) == oppT=0.375 fPerpPt=(30.6512036,40.6704949)
setPerp t=0.5 cPt=(29.9289317,40.4142132) == oppT=0.5 fPerpPt=(29.9289317,40.4142132)
setPerp t=0.625 cPt=(29.2369899,40.0847081) == oppT=0.625 fPerpPt=(29.2369899,40.0847081)
setPerp t=0.75 cPt=(28.5753783,39.6819797) == oppT=0.75 fPerpPt=(28.5753783,39.6819797)
setPerp t=0.875 cPt=(27.9440968,39.2060279) == oppT=0.875 fPerpPt=(27.9440968,39.2060279)
setPerp t=1 cPt=(27.3431454,38.6568527) == oppT=1 fPerpPt=(27.3431454,38.6568527)
setPerp t=0 cPt=(33,41) == oppT=0 fPerpPt=(33,41)
setPerp t=1 cPt=(27.3431454,38.6568527) == oppT=1 fPerpPt=(27.3431454,38.6568527)
id=1 (empty) id=2 (empty)
debugShowQuadIntersection wtTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}} {{33,41}} wtTs[1]=1 {{27.3431454,38.6568527}} wnTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}} wnTs[1]=1
debugShowQuadIntersection wtTs[0]=1 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}} {{27.3431454,38.6568527}} wnTs[0]=0 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}}
debugShowQuadIntersection wtTs[0]=0 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} {{27.3431454,38.6568527}} wnTs[0]=1 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}}
id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1]
id=1 1=(0,0.5) [4,2] 3=(0.5,1) [2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3,1]
id=1 1=(0,0.5) [4,2] 3=(0.5,1) [6,2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,0.75) [3,1] 6=(0.75,1) [3]
id=1 1=(0,0.5) [4,2] 3=(0.5,0.75) [6,2,4] 5=(0.75,1) [4,6] id=2 2=(0,0.5) [3,1] 4=(0.5,0.75) [5,3,1] 6=(0.75,1) [5,3]
id=1 1=(0,0.5) [8,4,2] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [4,6] id=2 2=(0,0.25) [1] 8=(0.25,0.5) [1,3] 4=(0.5,0.75) [5,3,1] 6=(0.75,1) [5,3]
id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [4,6] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,1) [5,3]
id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [10,4,6] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,0.875) [5,3] 10=(0.875,1) [5]
id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,0.875) [10,4,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,0.875) [9,5,3] 10=(0.875,1) [9,5]
id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [12,8,6,4] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.625) [7,3] 12=(0.625,0.75) [3,5] 6=(0.75,0.875) [9,5,3] 10=(0.875,1) [9,5]
id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.625) [12,8,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.625) [11,7,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [14,2,4,8] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.375) [7,1] 14=(0.375,0.5) [3,7] 4=(0.5,0.625) [11,7,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
id=1 1=(0,0.25) [8,2] 7=(0.25,0.375) [14,2,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.375) [13,7,1] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
id=1 1=(0,0.25) [16,8,2] 7=(0.25,0.375) [16,14,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.125) [1] 16=(0.125,0.25) [1,7] 8=(0.25,0.375) [13,7,1] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
id=1 1=(0,0.125) [16,2] 15=(0.125,0.25) [2,8,16] 7=(0.25,0.375) [16,14,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.125) [15,1] 16=(0.125,0.25) [15,1,7] 8=(0.25,0.375) [15,13,7] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
id=1 1=(0,0.125) [16,2] 15=(0.125,0.25) [2,8,16] 7=(0.25,0.375) [16,14,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [18,6,10] id=2 2=(0,0.125) [15,1] 16=(0.125,0.25) [15,1,7] 8=(0.25,0.375) [15,13,7] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,0.9375) [9,5] 18=(0.9375,1) [9]
setPerp t=0 cPt=(27.3431454,38.6568527) == oppT=0 fPerpPt=(27.3431454,38.6568527)
setPerp t=0.125 cPt=(26.7939707,38.0559018) == oppT=0.125 fPerpPt=(26.7939707,38.0559018)
setPerp t=0.25 cPt=(26.3180193,37.4246206) == oppT=0.25 fPerpPt=(26.3180193,37.4246206)
setPerp t=0.375 cPt=(25.9152912,36.7630093) == oppT=0.375 fPerpPt=(25.9152912,36.7630093)
setPerp t=0.5 cPt=(25.5857863,36.0710678) == oppT=0.5 fPerpPt=(25.5857863,36.0710678)
setPerp t=0.625 cPt=(25.3295048,35.3487961) == oppT=0.625 fPerpPt=(25.3295048,35.3487961)
setPerp t=0.75 cPt=(25.1464466,34.5961943) == oppT=0.75 fPerpPt=(25.1464466,34.5961943)
setPerp t=0.875 cPt=(25.0366116,33.8132622) == oppT=0.875 fPerpPt=(25.0366116,33.8132622)
setPerp t=0.9375 cPt=(25.0091529,33.4104224) == oppT=0.9375 fPerpPt=(25.0091529,33.4104224)
setPerp t=1 cPt=(25,33) == oppT=1 fPerpPt=(25,33)
setPerp t=0 cPt=(27.3431454,38.6568527) == oppT=0 fPerpPt=(27.3431454,38.6568527)
setPerp t=1 cPt=(25,33) == oppT=1 fPerpPt=(25,33)
id=1 (empty) id=2 (empty)
debugShowQuadIntersection wtTs[0]=0 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} {{27.3431454,38.6568527}} wtTs[1]=1 {{25,33}} wnTs[0]=0 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} wnTs[1]=1
debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} {{25,33}} wnTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}}
debugShowQuadIntersection wtTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}} {{25,33}} wnTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}}
id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1]
id=1 1=(0,0.5) [4,2] 3=(0.5,1) [2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3,1]
id=1 1=(0,0.5) [6,4,2] 3=(0.5,1) [6,4] id=2 2=(0,0.25) [1] 6=(0.25,0.5) [1,3] 4=(0.5,1) [3,1]
id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,1) [6,4] id=2 2=(0,0.25) [5,1] 6=(0.25,0.5) [5,1,3] 4=(0.5,1) [5,3]
id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,1) [8,6,4] id=2 2=(0,0.25) [5,1] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [5,3] 8=(0.75,1) [3]
id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [4,8] id=2 2=(0,0.25) [5,1] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
id=1 1=(0,0.25) [10,6,2] 5=(0.25,0.5) [10,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [1] 10=(0.125,0.25) [1,5] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.5) [10,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.5) [9,5,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.5) [12,10,4,6] 3=(0.5,0.75) [12,8,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [9,5] 12=(0.375,0.5) [3,5] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.75) [12,8,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.75) [11,7,3] 8=(0.75,1) [7,3]
id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.75) [14,12,8,4] 7=(0.75,1) [14,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [11,3] 14=(0.625,0.75) [3,7] 8=(0.75,1) [7,3]
id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,1) [14,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,1) [13,7]
id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,1) [16,14,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0.875) [13,7] 16=(0.875,1) [7]
id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,0.875) [16,14,8] 15=(0.875,1) [8,16] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0.875) [15,13,7] 16=(0.875,1) [15,7]
id=1 1=(0,0.125) [18,10,2] 9=(0.125,0.25) [18,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,0.875) [16,14,8] 15=(0.875,1) [8,16] id=2 2=(0,0.0625) [1] 18=(0.0625,0.125) [1,9] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0.875) [15,13,7] 16=(0.875,1) [15,7]
setPerp t=0 cPt=(25,33) == oppT=0 fPerpPt=(25,33)
setPerp t=0.0625 cPt=(25.0091529,32.5895776) == oppT=0.0625 fPerpPt=(25.0091529,32.5895776)
setPerp t=0.125 cPt=(25.0366116,32.1867377) == oppT=0.125 fPerpPt=(25.0366116,32.1867377)
setPerp t=0.25 cPt=(25.1464466,31.4038056) == oppT=0.25 fPerpPt=(25.1464466,31.4038056)
setPerp t=0.375 cPt=(25.3295048,30.6512036) == oppT=0.375 fPerpPt=(25.3295048,30.6512036)
setPerp t=0.5 cPt=(25.5857863,29.9289317) == oppT=0.5 fPerpPt=(25.5857863,29.9289317)
setPerp t=0.625 cPt=(25.9152912,29.2369899) == oppT=0.625 fPerpPt=(25.9152912,29.2369899)
setPerp t=0.75 cPt=(26.3180193,28.5753783) == oppT=0.75 fPerpPt=(26.3180193,28.5753783)
setPerp t=0.875 cPt=(26.7939707,27.9440968) == oppT=0.875 fPerpPt=(26.7939707,27.9440968)
setPerp t=1 cPt=(27.3431454,27.3431454) == oppT=1 fPerpPt=(27.3431454,27.3431454)
setPerp t=0 cPt=(25,33) == oppT=0 fPerpPt=(25,33)
setPerp t=1 cPt=(27.3431454,27.3431454) == oppT=1 fPerpPt=(27.3431454,27.3431454)
id=1 (empty) id=2 (empty)
debugShowQuadIntersection wtTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}} {{25,33}} wtTs[1]=1 {{27.3431454,27.3431454}} wnTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}} wnTs[1]=1
debugShowQuadIntersection wtTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}} {{27.3431454,27.3431454}} wnTs[0]=0 {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}}
debugShowQuadIntersection wtTs[0]=0 {{{27.3431454,27.3431454}, {27.3875446,27.2987461}, {27.4323025,27.2551785}}} {{27.3431454,27.3431454}} wnTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}}
id=1 1=(0,1) [2] id=2 2=(0,0.5) [1]
id=1 1=(0,1) [2] id=2 2=(0,0.25) [1]
id=1 1=(0,1) [2] id=2 2=(0,0.125) [1]
id=1 1=(0,1) [2] id=2 2=(0,0.0625) [1]
id=1 1=(0,1) [2] id=2 2=(0,0.03125) [1]
id=1 1=(0,1) [14,2] id=2 2=(0,0.015625) [1] 14=(0.015625,0.03125) [1]
id=1 1=(0,0.5) [2] 3=(0.5,1) [2,14] id=2 2=(0,0.015625) [3,1] 14=(0.015625,0.03125) [3]
id=1 1=(0,0.5) [2] 3=(0.5,1) [2,14] id=2 2=(0,0.015625) [3,1] 14=(0.015625,0.0234375) [3]
id=1 1=(0,0.5) [18,2] 3=(0.5,1) [18,14] id=2 2=(0,0.0078125) [1] 18=(0.0078125,0.015625) [1,3] 14=(0.015625,0.0234375) [3]
id=1 1=(0,0.5) [18,2] 3=(0.5,0.75) [18] 5=(0.75,1) [14,18] id=2 2=(0,0.0078125) [1] 18=(0.0078125,0.015625) [5,1,3] 14=(0.015625,0.0234375) [5]
id=1 1=(0,0.25) [2] 7=(0.25,0.5) [2,18] 3=(0.5,0.75) [18] 5=(0.75,1) [14,18] id=2 2=(0,0.0078125) [7,1] 18=(0.0078125,0.015625) [7,5,3] 14=(0.015625,0.0234375) [5]
id=1 1=(0,0.25) [2] 7=(0.25,0.5) [2,18] 3=(0.5,0.75) [18] 5=(0.75,1) [14,18] id=2 2=(0,0.0078125) [7,1] 18=(0.0078125,0.015625) [7,5,3] 14=(0.015625,0.0195313) [5]
id=1 1=(0,0.25) [2] 7=(0.25,0.5) [2,18] 3=(0.5,0.75) [22,18] 5=(0.75,1) [22,14] id=2 2=(0,0.0078125) [7,1] 18=(0.0078125,0.0117188) [7,3] 22=(0.0117188,0.015625) [3,5] 14=(0.015625,0.0195313) [5]
id=1 1=(0,0.25) [24,2] 7=(0.25,0.5) [24,18] 3=(0.5,0.75) [22,18] 5=(0.75,1) [22,14] id=2 2=(0,0.00390625) [1] 24=(0.00390625,0.0078125) [1,7] 18=(0.0078125,0.0117188) [7,3] 22=(0.0117188,0.015625) [3,5] 14=(0.015625,0.0195313) [5]
id=1 1=(0,0.25) [24,2] 7=(0.25,0.5) [24,18] 3=(0.5,0.75) [22,18] 5=(0.75,0.875) [22,14] 9=(0.875,1) [14] id=2 2=(0,0.00390625) [1] 24=(0.00390625,0.0078125) [1,7] 18=(0.0078125,0.0117188) [7,3] 22=(0.0117188,0.015625) [3,5] 14=(0.015625,0.0195313) [9,5]
id=1 1=(0,0.25) [24,2] 7=(0.25,0.5) [24,18] 3=(0.5,0.625) [22,18] 11=(0.625,0.75) [22] 5=(0.75,0.875) [22,14] 9=(0.875,1) [14] id=2 2=(0,0.00390625) [1] 24=(0.00390625,0.0078125) [1,7] 18=(0.0078125,0.0117188) [7,3] 22=(0.0117188,0.015625) [11,3,5] 14=(0.015625,0.0195313) [9,5]
id=1 1=(0,0.25) [24,2] 7=(0.25,0.375) [24] 13=(0.375,0.5) [18,24] 3=(0.5,0.625) [22,18] 11=(0.625,0.75) [22] 5=(0.75,0.875) [22,14] 9=(0.875,1) [14] id=2 2=(0,0.00390625) [1] 24=(0.00390625,0.0078125) [13,1,7] 18=(0.0078125,0.0117188) [13,3] 22=(0.0117188,0.015625) [11,3,5] 14=(0.015625,0.0195313) [9,5]
id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2,24] 7=(0.25,0.375) [24] 13=(0.375,0.5) [18,24] 3=(0.5,0.625) [22,18] 11=(0.625,0.75) [22] 5=(0.75,0.875) [22,14] 9=(0.875,1) [14] id=2 2=(0,0.00390625) [15,1] 24=(0.00390625,0.0078125) [15,13,7] 18=(0.0078125,0.0117188) [13,3] 22=(0.0117188,0.015625) [11,3,5] 14=(0.015625,0.0195313) [9,5]
setPerp t=0.875 cPt=(27.4211186,27.2660834) == oppT=0.0165816271 fPerpPt=(27.4211186,27.2660833)
setPerp t=1 cPt=(27.4323025,27.2551785) == oppT=0.0189506978 fPerpPt=(27.4323024,27.2551784)
setPerp t=0.017578125 cPt=(27.4258215,27.2614932) == oppT=0.927578956 fPerpPt=(27.4258215,27.2614932)
setPerp t=0.75 cPt=(27.409946,27.2770143) == oppT=0.0142126233 fPerpPt=(27.4099459,27.2770142)
setPerp t=0.875 cPt=(27.4211186,27.2660834) == oppT=0.0165816271 fPerpPt=(27.4211186,27.2660833)
setPerp t=0.015625 cPt=(27.4166056,27.2704941) == oppT=0.824524193 fPerpPt=(27.4166057,27.2704942)
setPerp t=0.875 cPt=(27.4211186,27.2660834) == oppT=0.0165816271 fPerpPt=(27.4211186,27.2660833)
setPerp t=1 cPt=(27.4323025,27.2551785) == oppT=0.0189506978 fPerpPt=(27.4323024,27.2551784)
setPerp t=0.017578125 cPt=(27.4258215,27.2614932) == oppT=0.927578956 fPerpPt=(27.4258215,27.2614932)
id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2,24] 7=(0.25,0.375) [24] 13=(0.375,0.5) [18,24] 3=(0.5,0.625) [22,18] 11=(0.625,0.75) [22] 5=(0.75,0.875) [22] id=2 2=(0,0.00390625) [15,1] 24=(0.00390625,0.0078125) [15,13,7] 18=(0.0078125,0.0117188) [13,3] 22=(0.0117188,0.015625) [11,3,5]
setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.3987845,27.2879711)
setPerp t=0.75 cPt=(27.409946,27.2770143) == oppT=0.0142126233 fPerpPt=(27.4099459,27.2770142)
setPerp t=0.013671875 cPt=(27.4073972,27.279513) == oppT=0.721467031 fPerpPt=(27.4073972,27.279513)
setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.3876342,27.298954)
setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.3987845,27.2879711)
setPerp t=0.01171875 cPt=(27.3981961,27.2885497) == oppT=0.618407471 fPerpPt=(27.3981962,27.2885497)
setPerp t=0.75 cPt=(27.409946,27.2770143) == oppT=0.0142126233 fPerpPt=(27.4099459,27.2770142)
setPerp t=0.875 cPt=(27.4211186,27.2660834) == oppT=0.0165816271 fPerpPt=(27.4211186,27.2660833)
setPerp t=0.015625 cPt=(27.4166056,27.2704941) == oppT=0.824524193 fPerpPt=(27.4166057,27.2704942)
setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.3987845,27.2879711)
setPerp t=0.75 cPt=(27.409946,27.2770143) == oppT=0.0142126233 fPerpPt=(27.4099459,27.2770142)
setPerp t=0.013671875 cPt=(27.4073972,27.279513) == oppT=0.721467031 fPerpPt=(27.4073972,27.279513)
id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2,24] 7=(0.25,0.375) [24] 13=(0.375,0.5) [18,24] 3=(0.5,0.625) [18] id=2 2=(0,0.00390625) [15,1] 24=(0.00390625,0.0078125) [15,13,7] 18=(0.0078125,0.0117188) [13,3]
setPerp t=0.375 cPt=(27.3764952,27.3099629) == oppT=0.00710601267 fPerpPt=(27.3764952,27.3099628)
setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.3876342,27.298954)
setPerp t=0.0078125 cPt=(27.3798163,27.3066767) == oppT=0.412281177 fPerpPt=(27.3798163,27.3066768)
setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.3876342,27.298954)
setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.3987845,27.2879711)
setPerp t=0.009765625 cPt=(27.3890025,27.2976043) == oppT=0.515345519 fPerpPt=(27.3890025,27.2976043)
setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.3876342,27.298954)
setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.3987845,27.2879711)
setPerp t=0.009765625 cPt=(27.3890025,27.2976043) == oppT=0.515345519 fPerpPt=(27.3890025,27.2976043)
setPerp t=0.01171875 cPt=(27.3981961,27.2885497) == oppT=0.618407471 fPerpPt=(27.3981962,27.2885497)
id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2,24] 7=(0.25,0.375) [24] 13=(0.375,0.5) [24] id=2 2=(0,0.00390625) [15,1] 24=(0.00390625,0.0078125) [15,13,7]
setPerp t=0.125 cPt=(27.3542508,27.3320585) == oppT=0.00236860468 fPerpPt=(27.3542508,27.3320585)
setPerp t=0.25 cPt=(27.3653674,27.3209977) == oppT=0.00473727552 fPerpPt=(27.3653674,27.3209977)
setPerp t=0.00390625 cPt=(27.361466,27.3248753) == oppT=0.206145343 fPerpPt=(27.361466,27.3248753)
setPerp t=0.25 cPt=(27.3653674,27.3209977) == oppT=0.00473727552 fPerpPt=(27.3653674,27.3209977)
setPerp t=0.375 cPt=(27.3764952,27.3099629) == oppT=0.00710601267 fPerpPt=(27.3764952,27.3099628)
setPerp t=0.005859375 cPt=(27.3706374,27.3157671) == oppT=0.309214451 fPerpPt=(27.3706374,27.3157671)
setPerp t=0.25 cPt=(27.3653674,27.3209977) == oppT=0.00473727552 fPerpPt=(27.3653674,27.3209977)
setPerp t=0.375 cPt=(27.3764952,27.3099629) == oppT=0.00710601267 fPerpPt=(27.3764952,27.3099628)
setPerp t=0.005859375 cPt=(27.3706374,27.3157671) == oppT=0.309214451 fPerpPt=(27.3706374,27.3157671)
setPerp t=0.375 cPt=(27.3764952,27.3099629) == oppT=0.00710601267 fPerpPt=(27.3764952,27.3099628)
setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.3876342,27.298954)
setPerp t=0.0078125 cPt=(27.3798163,27.3066767) == oppT=0.412281177 fPerpPt=(27.3798163,27.3066768)
id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2] id=2 2=(0,0.00390625) [15,1]
setPerp t=0.125 cPt=(27.3542508,27.3320585) == oppT=0.00236860468 fPerpPt=(27.3542508,27.3320585)
setPerp t=0.25 cPt=(27.3653674,27.3209977) == oppT=0.00473727552 fPerpPt=(27.3653674,27.3209977)
setPerp t=0.00390625 cPt=(27.361466,27.3248753) == oppT=0.206145343 fPerpPt=(27.361466,27.3248753)
id=1 1=(0,0.125) [34,2] id=2 2=(0,0.00195313) [1] 34=(0.00195313,0.00390625) [1]
id=1 1=(0,0.0625) [2] 17=(0.0625,0.125) [2,34] id=2 2=(0,0.00195313) [17,1] 34=(0.00195313,0.00390625) [17]
id=1 1=(0,0.0625) [2] 17=(0.0625,0.125) [2,34] id=2 2=(0,0.00195313) [17,1] 34=(0.00195313,0.00292969) [17]
id=1 1=(0,0.0625) [38,2] 17=(0.0625,0.125) [38,34] id=2 2=(0,0.000976563) [1] 38=(0.000976563,0.00195313) [1,17] 34=(0.00195313,0.00292969) [17]
setPerp t=0.001953125 cPt=(27.352302,27.3340014) == oppT=0.103073858 fPerpPt=(27.352302,27.3340014)
setPerp t=0.0029296875 cPt=(27.3568831,27.3294361) == oppT=0.154609898 fPerpPt=(27.3568831,27.3294361)
setPerp t=0.125 cPt=(27.3542508,27.3320585) == oppT=0.00236860468 fPerpPt=(27.3542508,27.3320585)
id=1 1=(0,0.0625) [38,2] 17=(0.0625,0.09375) [38] 19=(0.09375,0.125) [38] id=2 2=(0,0.000976563) [1] 38=(0.000976563,0.00195313) [19,1,17]
id=1 1=(0,0.03125) [2] 21=(0.03125,0.0625) [2,38] 17=(0.0625,0.09375) [38] 19=(0.09375,0.125) [38] id=2 2=(0,0.000976563) [21,1] 38=(0.000976563,0.00195313) [21,19,17]
setPerp t=0.09375 cPt=(27.3514734,27.3348278) == oppT=0.00177644731 fPerpPt=(27.3514734,27.3348278)
setPerp t=0.125 cPt=(27.3542508,27.3320585) == oppT=0.00236860468 fPerpPt=(27.3542508,27.3320585)
setPerp t=0.001953125 cPt=(27.352302,27.3340014) == oppT=0.103073858 fPerpPt=(27.352302,27.3340014)
id=1 1=(0,0.03125) [2] 21=(0.03125,0.0625) [2,38] 17=(0.0625,0.09375) [40,38] id=2 2=(0,0.000976563) [21,1] 38=(0.000976563,0.00146484) [21,17] 40=(0.00146484,0.00195313) [17]
id=1 1=(0,0.03125) [42,2] 21=(0.03125,0.0625) [42,38] 17=(0.0625,0.09375) [40,38] id=2 2=(0,0.000488281) [1] 42=(0.000488281,0.000976563) [1,21] 38=(0.000976563,0.00146484) [21,17] 40=(0.00146484,0.00195313) [17]
setPerp t=0.00146484375 cPt=(27.3500121,27.3362857) == oppT=0.0773056159 fPerpPt=(27.3500121,27.3362857)
setPerp t=0.001953125 cPt=(27.352302,27.3340014) == oppT=0.103073858 fPerpPt=(27.352302,27.3340014)
setPerp t=0.078125 cPt=(27.3500849,27.3362131) == oppT=0.00148037018 fPerpPt=(27.3500849,27.3362131)
setPerp t=0.00146484375 cPt=(27.3500121,27.3362857) == oppT=0.0773056159 fPerpPt=(27.3500121,27.3362857)
setPerp t=0.001953125 cPt=(27.352302,27.3340014) == oppT=0.103073858 fPerpPt=(27.352302,27.3340014)
setPerp t=0.078125 cPt=(27.3500849,27.3362131) == oppT=0.00148037018 fPerpPt=(27.3500849,27.3362131)
setPerp t=0.09375 cPt=(27.3514734,27.3348278) == oppT=0.00177644731 fPerpPt=(27.3514734,27.3348278)
id=1 1=(0,0.03125) [42,2] 21=(0.03125,0.0625) [42,38] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281) [1] 42=(0.000488281,0.000976563) [1,21] 38=(0.000976563,0.00146484) [21,17]
id=1 1=(0,0.03125) [42,2] 21=(0.03125,0.046875) [42] 25=(0.046875,0.0625) [38,42] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281) [1] 42=(0.000488281,0.000976563) [25,1,21] 38=(0.000976563,0.00146484) [25,17]
id=1 1=(0,0.015625) [2] 27=(0.015625,0.03125) [2,42] 21=(0.03125,0.046875) [42] 25=(0.046875,0.0625) [38,42] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281) [27,1] 42=(0.000488281,0.000976563) [27,25,21] 38=(0.000976563,0.00146484) [25,17]
setPerp t=0.0625 cPt=(27.3486967,27.3375987) == oppT=0.00118429408 fPerpPt=(27.3486967,27.3375987)
setPerp t=0.078125 cPt=(27.3500849,27.3362131) == oppT=0.00148037018 fPerpPt=(27.3500849,27.3362131)
setPerp t=0.00122070313 cPt=(27.3488674,27.3374283) == oppT=0.0644214392 fPerpPt=(27.3488674,27.3374283)
setPerp t=0.00146484375 cPt=(27.3500121,27.3362857) == oppT=0.0773056159 fPerpPt=(27.3500121,27.3362857)
id=1 1=(0,0.015625) [2] 27=(0.015625,0.03125) [2,42] 21=(0.03125,0.046875) [42] 25=(0.046875,0.0625) [38,42] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281) [27,1] 42=(0.000488281,0.000976563) [27,25,21] 38=(0.000976563,0.0012207) [25,17]
id=1 1=(0,0.015625) [2] 27=(0.015625,0.03125) [2,42] 21=(0.03125,0.046875) [46,42] 25=(0.046875,0.0625) [46,38] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281) [27,1] 42=(0.000488281,0.000732422) [27,21] 46=(0.000732422,0.000976563) [21,25] 38=(0.000976563,0.0012207) [25,17]
id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.03125) [48,42] 21=(0.03125,0.046875) [46,42] 25=(0.046875,0.0625) [46,38] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000244141) [1] 48=(0.000244141,0.000488281) [1,27] 42=(0.000488281,0.000732422) [27,21] 46=(0.000732422,0.000976563) [21,25] 38=(0.000976563,0.0012207) [25,17]
id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.03125) [48,42] 21=(0.03125,0.046875) [46,42] 25=(0.046875,0.0625) [46,38] 17=(0.0625,0.0703125) [38] id=2 2=(0,0.000244141) [1] 48=(0.000244141,0.000488281) [1,27] 42=(0.000488281,0.000732422) [27,21] 46=(0.000732422,0.000976563) [21,25] 38=(0.000976563,0.0012207) [25,17]
id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.03125) [48,42] 21=(0.03125,0.046875) [46,42] 25=(0.046875,0.0546875) [46,38] 31=(0.0546875,0.0625) [38] 17=(0.0625,0.0703125) [38] id=2 2=(0,0.000244141) [1] 48=(0.000244141,0.000488281) [1,27] 42=(0.000488281,0.000732422) [27,21] 46=(0.000732422,0.000976563) [21,25] 38=(0.000976563,0.0012207) [31,25,17]
id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.03125) [48,42] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625,0.046875) [46] 25=(0.046875,0.0546875) [46,38] 31=(0.0546875,0.0625) [38] 17=(0.0625,0.0703125) [38] id=2 2=(0,0.000244141) [1] 48=(0.000244141,0.000488281) [1,27] 42=(0.000488281,0.000732422) [27,21] 46=(0.000732422,0.000976563) [33,21,25] 38=(0.000976563,0.0012207) [31,25,17]
id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.0234375) [48] 35=(0.0234375,0.03125) [42,48] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625,0.046875) [46] 25=(0.046875,0.0546875) [46,38] 31=(0.0546875,0.0625) [38] 17=(0.0625,0.0703125) [38] id=2 2=(0,0.000244141) [1] 48=(0.000244141,0.000488281) [35,1,27] 42=(0.000488281,0.000732422) [35,21] 46=(0.000732422,0.000976563) [33,21,25] 38=(0.000976563,0.0012207) [31,25,17]
id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375) [48] 35=(0.0234375,0.03125) [42,48] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625,0.046875) [46] 25=(0.046875,0.0546875) [46,38] 31=(0.0546875,0.0625) [38] 17=(0.0625,0.0703125) [38] id=2 2=(0,0.000244141) [37,1] 48=(0.000244141,0.000488281) [37,35,27] 42=(0.000488281,0.000732422) [35,21] 46=(0.000732422,0.000976563) [33,21,25] 38=(0.000976563,0.0012207) [31,25,17]
setPerp t=0.0546875 cPt=(27.3480026,27.3382917) == oppT=0.00103625641 fPerpPt=(27.3480026,27.3382917)
setPerp t=0.0625 cPt=(27.3486967,27.3375987) == oppT=0.00118429408 fPerpPt=(27.3486967,27.3375987)
setPerp t=0.00109863281 cPt=(27.3482951,27.3379997) == oppT=0.057979337 fPerpPt=(27.3482951,27.3379997)
setPerp t=0.046875 cPt=(27.3473086,27.3389848) == oppT=0.00088821901 fPerpPt=(27.3473086,27.3389848)
setPerp t=0.0546875 cPt=(27.3480026,27.3382917) == oppT=0.00103625641 fPerpPt=(27.3480026,27.3382917)
setPerp t=0.0009765625 cPt=(27.3477228,27.3385711) == oppT=0.0515372255 fPerpPt=(27.3477228,27.3385711)
setPerp t=0.0625 cPt=(27.3486967,27.3375987) == oppT=0.00118429408 fPerpPt=(27.3486967,27.3375987)
setPerp t=0.0703125 cPt=(27.3493908,27.3369058) == oppT=0.001332332 fPerpPt=(27.3493908,27.3369058)
setPerp t=0.00122070313 cPt=(27.3488674,27.3374283) == oppT=0.0644214392 fPerpPt=(27.3488674,27.3374283)
setPerp t=0.0546875 cPt=(27.3480026,27.3382917) == oppT=0.00103625641 fPerpPt=(27.3480026,27.3382917)
setPerp t=0.0625 cPt=(27.3486967,27.3375987) == oppT=0.00118429408 fPerpPt=(27.3486967,27.3375987)
setPerp t=0.00109863281 cPt=(27.3482951,27.3379997) == oppT=0.057979337 fPerpPt=(27.3482951,27.3379997)
id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375) [48] 35=(0.0234375,0.03125) [42,48] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625,0.046875) [46] 25=(0.046875,0.0546875) [46] id=2 2=(0,0.000244141) [37,1] 48=(0.000244141,0.000488281) [37,35,27] 42=(0.000488281,0.000732422) [35,21] 46=(0.000732422,0.000976563) [33,21,25]
setPerp t=0.046875 cPt=(27.3473086,27.3389848) == oppT=0.00088821901 fPerpPt=(27.3473086,27.3389848)
setPerp t=0.0546875 cPt=(27.3480026,27.3382917) == oppT=0.00103625641 fPerpPt=(27.3480026,27.3382917)
setPerp t=0.0009765625 cPt=(27.3477228,27.3385711) == oppT=0.0515372255 fPerpPt=(27.3477228,27.3385711)
id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375) [48] 35=(0.0234375,0.03125) [42,48] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625,0.046875) [52,46] id=2 2=(0,0.000244141) [37,1] 48=(0.000244141,0.000488281) [37,35,27] 42=(0.000488281,0.000732422) [35,21] 46=(0.000732422,0.000854492) [33,21] 52=(0.000854492,0.000976563) [33]
id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375) [48] 35=(0.0234375,0.03125) [42,48] 21=(0.03125,0.0390625) [54,46,42] 33=(0.0390625,0.046875) [52,46] id=2 2=(0,0.000244141) [37,1] 48=(0.000244141,0.000488281) [37,35,27] 42=(0.000488281,0.000610352) [35,21] 54=(0.000610352,0.000732422) [21] 46=(0.000732422,0.000854492) [33,21] 52=(0.000854492,0.000976563) [33]
id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375) [56,48] 35=(0.0234375,0.03125) [56,42] 21=(0.03125,0.0390625) [54,46,42] 33=(0.0390625,0.046875) [52,46] id=2 2=(0,0.000244141) [37,1] 48=(0.000244141,0.000366211) [37,27] 56=(0.000366211,0.000488281) [27,35] 42=(0.000488281,0.000610352) [35,21] 54=(0.000610352,0.000732422) [21] 46=(0.000732422,0.000854492) [33,21] 52=(0.000854492,0.000976563) [33]
id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.0234375) [56,48] 35=(0.0234375,0.03125) [56,42] 21=(0.03125,0.0390625) [54,46,42] 33=(0.0390625,0.046875) [52,46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.000244141) [1,37] 48=(0.000244141,0.000366211) [37,27] 56=(0.000366211,0.000488281) [27,35] 42=(0.000488281,0.000610352) [35,21] 54=(0.000610352,0.000732422) [21] 46=(0.000732422,0.000854492) [33,21] 52=(0.000854492,0.000976563) [33]
setPerp t=0.000854492188 cPt=(27.3471505,27.3391427) == oppT=0.0450951047 fPerpPt=(27.3471505,27.3391427)
setPerp t=0.0009765625 cPt=(27.3477228,27.3385711) == oppT=0.0515372255 fPerpPt=(27.3477228,27.3385711)
setPerp t=0.046875 cPt=(27.3473086,27.3389848) == oppT=0.00088821901 fPerpPt=(27.3473086,27.3389848)
id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.0234375) [56,48] 35=(0.0234375,0.03125) [56,42] 21=(0.03125,0.0390625) [54,46,42] 33=(0.0390625,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.000244141) [1,37] 48=(0.000244141,0.000366211) [37,27] 56=(0.000366211,0.000488281) [27,35] 42=(0.000488281,0.000610352) [35,21] 54=(0.000610352,0.000732422) [21] 46=(0.000732422,0.000854492) [39,33,21]
id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.0234375) [56,48] 35=(0.0234375,0.03125) [56,42] 21=(0.03125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [46,54] 33=(0.0390625,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.000244141) [1,37] 48=(0.000244141,0.000366211) [37,27] 56=(0.000366211,0.000488281) [27,35] 42=(0.000488281,0.000610352) [35,21] 54=(0.000610352,0.000732422) [41,21] 46=(0.000732422,0.000854492) [41,39,33]
id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.0234375) [56,48] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [42] 21=(0.03125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [46,54] 33=(0.0390625,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.000244141) [1,37] 48=(0.000244141,0.000366211) [37,27] 56=(0.000366211,0.000488281) [27,35] 42=(0.000488281,0.000610352) [43,35,21] 54=(0.000610352,0.000732422) [41,21] 46=(0.000732422,0.000854492) [41,39,33]
id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.0195313) [56,48] 45=(0.0195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [42] 21=(0.03125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [46,54] 33=(0.0390625,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.000244141) [1,37] 48=(0.000244141,0.000366211) [37,27] 56=(0.000366211,0.000488281) [45,27,35] 42=(0.000488281,0.000610352) [43,35,21] 54=(0.000610352,0.000732422) [41,21] 46=(0.000732422,0.000854492) [41,39,33]
id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.0117188) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [42] 21=(0.03125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [46,54] 33=(0.0390625,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.000244141) [47,1,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.000366211,0.000488281) [45,27,35] 42=(0.000488281,0.000610352) [43,35,21] 54=(0.000610352,0.000732422) [41,21] 46=(0.000732422,0.000854492) [41,39,33]
id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.0117188) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [42] 21=(0.03125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [46,54] 33=(0.0390625,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [49,1] 58=(0.00012207,0.000244141) [49,47,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.000366211,0.000488281) [45,27,35] 42=(0.000488281,0.000610352) [43,35,21] 54=(0.000610352,0.000732422) [41,21] 46=(0.000732422,0.000854492) [41,39,33]
setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt=(27.3462676,27.3400246)
setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=(27.3466146,27.3396779)
setPerp t=0.000732421875 cPt=(27.3465782,27.3397143) == oppT=0.0386529746 fPerpPt=(27.3465782,27.3397143)
setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=(27.3466146,27.3396779)
setPerp t=0.04296875 cPt=(27.3469616,27.3393313) == oppT=0.000814200404 fPerpPt=(27.3469616,27.3393313)
setPerp t=0.000793457031 cPt=(27.3468644,27.3394285) == oppT=0.0418740408 fPerpPt=(27.3468644,27.3394285)
setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=(27.3466146,27.3396779)
setPerp t=0.04296875 cPt=(27.3469616,27.3393313) == oppT=0.000814200404 fPerpPt=(27.3469616,27.3393313)
setPerp t=0.000793457031 cPt=(27.3468644,27.3394285) == oppT=0.0418740408 fPerpPt=(27.3468644,27.3394285)
setPerp t=0.04296875 cPt=(27.3469616,27.3393313) == oppT=0.000814200404 fPerpPt=(27.3469616,27.3393313)
setPerp t=0.046875 cPt=(27.3473086,27.3389848) == oppT=0.00088821901 fPerpPt=(27.3473086,27.3389848)
setPerp t=0.000854492188 cPt=(27.3471505,27.3391427) == oppT=0.0450951047 fPerpPt=(27.3471505,27.3391427)
id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.0117188) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [42] 21=(0.03125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [54] id=2 2=(0,0.00012207) [49,1] 58=(0.00012207,0.000244141) [49,47,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.000366211,0.000488281) [45,27,35] 42=(0.000488281,0.000610352) [43,35,21] 54=(0.000610352,0.000732422) [41,21]
setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt=(27.3462676,27.3400246)
setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=(27.3466146,27.3396779)
setPerp t=0.000671386719 cPt=(27.3462921,27.3400001) == oppT=0.0354319062 fPerpPt=(27.3462921,27.3400001)
setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt=(27.3462676,27.3400246)
setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=(27.3466146,27.3396779)
setPerp t=0.000671386719 cPt=(27.3462921,27.3400001) == oppT=0.0354319062 fPerpPt=(27.3462921,27.3400001)
setPerp t=0.000732421875 cPt=(27.3465782,27.3397143) == oppT=0.0386529746 fPerpPt=(27.3465782,27.3397143)
id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.0117188) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [42] 21=(0.03125,0.0351563) [54,42] id=2 2=(0,0.00012207) [49,1] 58=(0.00012207,0.000244141) [49,47,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.000366211,0.000488281) [45,27,35] 42=(0.000488281,0.000610352) [43,35,21] 54=(0.000610352,0.000671387) [21]
id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.0117188) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [64,42] 21=(0.03125,0.0351563) [64,54] id=2 2=(0,0.00012207) [49,1] 58=(0.00012207,0.000244141) [49,47,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.000366211,0.000488281) [45,27,35] 42=(0.000488281,0.000549316) [43,35] 64=(0.000549316,0.000610352) [21,43] 54=(0.000610352,0.000671387) [21]
id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.0117188) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0195313,0.0234375) [66,56] 35=(0.0234375,0.0273438) [66,42] 43=(0.0273438,0.03125) [64,42] 21=(0.03125,0.0351563) [64,54] id=2 2=(0,0.00012207) [49,1] 58=(0.00012207,0.000244141) [49,47,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.000366211,0.000427246) [45,27] 66=(0.000427246,0.000488281) [35,45] 42=(0.000488281,0.000549316) [43,35] 64=(0.000549316,0.000610352) [21,43] 54=(0.000610352,0.000671387) [21]
setPerp t=0 cPt=(27.3431454,27.3431454) == oppT=0 fPerpPt=(27.3431454,27.3431454)
setPerp t=0.00390625 cPt=(27.3434922,27.3427985) == oppT=7.40178961e-05 fPerpPt=(27.3434922,27.3427985)
setPerp t=0.0078125 cPt=(27.3438391,27.3424517) == oppT=0.000148035857 fPerpPt=(27.3438391,27.3424517)
setPerp t=0.01171875 cPt=(27.344186,27.3421049) == oppT=0.000222053882 fPerpPt=(27.344186,27.3421049)
setPerp t=0.015625 cPt=(27.3445329,27.3417581) == oppT=0.000296071971 fPerpPt=(27.3445329,27.3417581)
setPerp t=0.01953125 cPt=(27.3448799,27.3414113) == oppT=0.000370090126 fPerpPt=(27.3448799,27.3414113)
setPerp t=0.0234375 cPt=(27.3452268,27.3410646) == oppT=0.000444108344 fPerpPt=(27.3452268,27.3410646)
setPerp t=0.02734375 cPt=(27.3455737,27.3407179) == oppT=0.000518126627 fPerpPt=(27.3455737,27.3407179)
setPerp t=0.03125 cPt=(27.3459207,27.3403712) == oppT=0.000592144975 fPerpPt=(27.3459207,27.3403712)
setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt=(27.3462676,27.3400246)
setPerp t=0 cPt=(27.3431454,27.3431454) == oppT=0 fPerpPt=(27.3431454,27.3431454)
setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt=(27.3462676,27.3400246)
id=1 (empty) id=2 (empty)
debugShowQuadIntersection wtTs[0]=0 {{{27.3431454,27.3431454}, {27.3875446,27.2987461}, {27.4323025,27.2551785}}} {{27.3431454,27.3431454}} wtTs[1]=0.03515625 {{27.3462677,27.3400249}} wnTs[0]=0 {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}} wnTs[1]=0.000666163387
SkOpSegment::addT insert t=0.03515625 segID=20 spanID=49
SkOpSegment::addT insert t=0.000666163387 segID=6 spanID=50
id=1 1=(0,1) [2] id=2 2=(0,0.5) [1]
id=1 1=(0,1) [2] id=2 2=(0,0.25) [1]
id=1 1=(0,1) [2] id=2 2=(0,0.125) [1]
id=1 1=(0,1) [2] id=2 2=(0,0.0625) [1]
id=1 1=(0,1) [12,2] id=2 2=(0,0.03125) [1] 12=(0.03125,0.0625) [1]
id=1 1=(0,1) [12,2] id=2 2=(0,0.03125) [1] 12=(0.03125,0.046875) [1]
id=1 1=(0,1) [16,12] id=2 16=(0.015625,0.03125) [1] 12=(0.03125,0.046875) [1]
id=1 1=(0,0.5) [16] 3=(0.5,1) [16] id=2 16=(0.015625,0.03125) [3,1]
id=1 1=(0,0.5) [18,16] id=2 16=(0.015625,0.0234375) [1] 18=(0.0234375,0.03125) [1]
id=1 1=(0,0.25) [16] id=2 16=(0.015625,0.0234375) [1]
id=1 1=(0,0.25) [20,16] id=2 16=(0.015625,0.0195313) [1] 20=(0.0195313,0.0234375) [1]
id=1 1=(0,0.125) [20,16] id=2 16=(0.015625,0.0195313) [1] 20=(0.0195313,0.0234375) [1]
setPerp t=0 cPt=(27.4323025,27.2551785) == oppT=0.0189506973 fPerpPt=(27.4323024,27.2551784)
setPerp t=0.125 cPt=(27.4431369,27.243922) != oppT=0.0213231007 fPerpPt=(27.4435129,27.2442845)
setPerp t=0.01953125 cPt=(27.4350447,27.2525101) != oppT=0.0306377854 fPerpPt=(27.4349556,27.2524185)
id=1 1=(0,0.125) [16] id=2 16=(0.015625,0.0195313) [1]
id=1 (empty) id=2 (empty)
debugShowQuadIntersection no intersect {{{27.4323025,27.2551785}, {27.4755878,27.2101307}, {27.5197105,27.165432}}} {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}}
debugShowQuadIntersection no intersect {{{27.5197105,27.165432}, {27.541851,27.1430035}, {27.5638676,27.1209965}}} {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}}
id=1 (empty) id=2 (empty)
debugShowQuadIntersection no intersect {{{27.5638676,27.1209965}, {27.5855064,27.0986347}, {27.6075668,27.0761414}}} {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}}
id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1]
id=1 1=(0,0.5) [2] 3=(0.5,1) [4] id=2 2=(0,0.5) [1] 4=(0.5,1) [3]
id=1 1=(0,0.5) [2] id=2 2=(0,0.5) [1]
id=1 1=(0,0.5) [8,2] id=2 2=(0,0.25) [1] 8=(0.25,0.5) [1]
id=1 1=(0,0.25) [2] id=2 2=(0,0.25) [1]
id=1 1=(0,0.25) [10,2] id=2 2=(0,0.125) [1] 10=(0.125,0.25) [1]
id=1 (empty) id=2 (empty)
debugShowQuadIntersection no intersect {{{27.6075668,27.0761414}, {29.9278316,24.7103367}, {33.2413864,24.6781349}}} {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}}
debugShowQuadIntersection no intersect {{{27.6075668,27.0761414}, {29.9278316,24.7103367}, {33.2413864,24.6781349}}} {{{33,25}, {36.3137093,25}, {38.6568527,27.3431454}}}
debugShowQuadIntersection wtTs[0]=1 {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}} {{38.6568527,38.6568527}} wnTs[0]=0 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}}
debugShowQuadIntersection wtTs[0]=0 {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}} {{41,33}} wnTs[0]=1 {{{38.6568527,27.3431454}, {41,29.6862907}, {41,33}}}
debugShowQuadIntersection wtTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} {{33,41}} wnTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}}
debugShowQuadIntersection wtTs[0]=1 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}} {{27.3431454,38.6568527}} wnTs[0]=0 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}}
debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} {{25,33}} wnTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}}
debugShowQuadIntersection wtTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}} {{27.3431454,27.3431454}} wnTs[0]=0 {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}}
debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}} {{33,25}} wnTs[0]=0 {{{33,25}, {36.3137093,25}, {38.6568527,27.3431454}}}
debugShowQuadIntersection wtTs[0]=1 {{{33,25}, {36.3137093,25}, {38.6568527,27.3431454}}} {{38.6568527,27.3431454}} wnTs[0]=0 {{{38.6568527,27.3431454}, {41,29.6862907}, {41,33}}}
SkOpSegment::markDone id=6 (27.3431454,27.3431454 29.6862907,25 33,25) t=0 [11] (27.3431454,27.3431454) tEnd=0.000666163387 newWindSum=? newOppSum=? oppSum=? windSum=? windValue=0 oppValue=0
SkOpSegment::markDone id=5 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [9] (25,33) tEnd=1 newWindSum=? newOppSum=? oppSum=? windSum=? windValue=0 oppValue=0
SkOpSegment::markDone id=4 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [7] (27.3431454,38.6568527) tEnd=1 newWindSum=? newOppSum=? oppSum=? windSum=? windValue=0 oppValue=0
SkOpSegment::markDone id=3 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [5] (33,41) tEnd=1 newWindSum=? newOppSum=? oppSum=? windSum=? windValue=0 oppValue=0
SkOpSegment::markDone id=2 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [3] (38.6568527,38.6568527) tEnd=1 newWindSum=? newOppSum=? oppSum=? windSum=? windValue=0 oppValue=0
SkOpSegment::sortAngles [15] tStart=1 [30]
SkOpAngle::after [15/1] 4/5 tStart=1 tEnd=0 < [16/2] 21/17 tStart=0 tEnd=1 < [1/13] 1/5 tStart=1 tEnd=0 T 5
SkOpAngle::afterPart {{{38.6568527,38.6568527}, {38.7196693,38.5940361}, {38.7809143,38.5304031}}} id=15
SkOpAngle::afterPart {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} id=16
SkOpAngle::afterPart {{{38.6568527,38.6568527}, {41,36.3137093}, {41,33}}} id=1
SkOpSegment::sortAngles [16] tStart=0 [31]
SkOpSegment::sortAngles [16] tStart=1 [32]
SkOpSegment::sortAngles [17] tStart=0 [33]
SkOpSegment::sortAngles [17] tStart=1 [34]
SkOpSegment::sortAngles [18] tStart=0 [35]
SkOpSegment::sortAngles [18] tStart=1 [36]
SkOpSegment::sortAngles [19] tStart=0 [37]
SkOpSegment::sortAngles [19] tStart=1 [38]
SkOpSegment::sortAngles [20] tStart=0 [39]
SkOpSegment::sortAngles [20] tStart=0.03515625 [49]
SkOpAngle::after [20/11] 17/17 tStart=0.03515625 tEnd=0 < [6/14] 1/1 tStart=0.000666163387 tEnd=1 < [20/12] 1/1 tStart=0.03515625 tEnd=1 F 11
SkOpAngle::afterPart {{{27.3462677,27.3400249}, {27.3447063,27.3415846}, {27.3431454,27.3431454}}} id=20
SkOpAngle::afterPart {{{27.3462677,27.3400249}, {29.6884986,25}, {33,25}}} id=6
SkOpAngle::afterPart {{{27.3462677,27.3400249}, {27.3891352,27.2971979}, {27.4323025,27.2551785}}} id=20
SkOpSegment::sortAngles [1] tStart=1 [2]
SkOpSegment::sortAngles [6] tStart=0.000666163387 [50]
SkOpCoincidence::debugShowCoincidence - id=20 t=0 tEnd=0.03515625
SkOpCoincidence::debugShowCoincidence + id=6 t=0 tEnd=0.000666163387
SkOpCoincidence::debugShowCoincidence - id=19 t=0 tEnd=1
SkOpCoincidence::debugShowCoincidence + id=5 t=0 tEnd=1
SkOpCoincidence::debugShowCoincidence - id=18 t=0 tEnd=1
SkOpCoincidence::debugShowCoincidence + id=4 t=0 tEnd=1
SkOpCoincidence::debugShowCoincidence - id=17 t=0 tEnd=1
SkOpCoincidence::debugShowCoincidence + id=3 t=0 tEnd=1
SkOpCoincidence::debugShowCoincidence - id=16 t=0 tEnd=1
SkOpCoincidence::debugShowCoincidence + id=2 t=0 tEnd=1
SkOpSegment::debugShowActiveSpans id=9 (33.2413864,24.6781349 36.5549393,24.6459332 38.920742,26.966198) t=0 (33.2413864,24.6781349) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=10 (38.920742,26.966198 41.2865486,29.2864628 41.3187523,32.6000175) t=0 (38.920742,26.966198) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=11 (41.3187523,32.6000175 41.3509521,35.9135704 39.0306854,38.2793732) t=0 (41.3187523,32.6000175) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=12 (39.0306854,38.2793732 38.9995995,38.3110695 38.9681816,38.3424988) t=0 (39.0306854,38.2793732) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=13 (38.9681816,38.3424988 38.9374619,38.3742142 38.9064751,38.4056053) t=0 (38.9681816,38.3424988) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=14 (38.9064751,38.4056053 38.8441086,38.4687881 38.7809143,38.5304031) t=0 (38.9064751,38.4056053) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=15 (38.7809143,38.5304031 38.7196693,38.5940361 38.6568527,38.6568527) t=0 (38.7809143,38.5304031) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=16 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 (38.6568527,38.6568527) tEnd=1 windSum=? windValue=2
SkOpSegment::debugShowActiveSpans id=17 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 (33,41) tEnd=1 windSum=? windValue=2
SkOpSegment::debugShowActiveSpans id=18 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 (27.3431454,38.6568527) tEnd=1 windSum=? windValue=2
SkOpSegment::debugShowActiveSpans id=19 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 (25,33) tEnd=1 windSum=? windValue=2
SkOpSegment::debugShowActiveSpans id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4323025,27.2551785) t=0 (27.3431454,27.3431454) tEnd=0.03515625 windSum=? windValue=2
SkOpSegment::debugShowActiveSpans id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4323025,27.2551785) t=0.03515625 (27.3462677,27.3400249) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=21 (27.4323025,27.2551785 27.4755878,27.2101307 27.5197105,27.165432) t=0 (27.4323025,27.2551785) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=22 (27.5197105,27.165432 27.541851,27.1430035 27.5638676,27.1209965) t=0 (27.5197105,27.165432) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=23 (27.5638676,27.1209965 27.5855064,27.0986347 27.6075668,27.0761414) t=0 (27.5638676,27.1209965) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=24 (27.6075668,27.0761414 29.9278316,24.7103367 33.2413864,24.6781349) t=0 (27.6075668,27.0761414) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=1 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 (41,33) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=6 (27.3431454,27.3431454 29.6862907,25 33,25) t=0.000666163387 (27.3462677,27.3400249) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=7 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 (33,25) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=8 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 (38.6568527,27.3431454) tEnd=1 windSum=? windValue=1
SkOpSpan::sortableTop dir=kTop seg=9 t=0.5 pt=(36.3180008,25.2340508)
SkOpSpan::sortableTop [0] valid=1 operand=0 span=17 ccw=1 seg=9 {{{33.2413864f, 24.6781349f}, {36.5549393f, 24.6459332f}, {38.920742f, 26.966198f}}} t=0.5 pt=(36.3180008,25.2340508) slope=(2.83967781,1.14403152)
SkOpSegment::markWinding id=9 (33.2413864,24.6781349 36.5549393,24.6459332 38.920742,26.966198) t=0 [17] (33.2413864,24.6781349) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
SkOpSegment::markWinding id=10 (38.920742,26.966198 41.2865486,29.2864628 41.3187523,32.6000175) t=0 [19] (38.920742,26.966198) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=11 (41.3187523,32.6000175 41.3509521,35.9135704 39.0306854,38.2793732) t=0 [21] (41.3187523,32.6000175) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=12 (39.0306854,38.2793732 38.9995995,38.3110695 38.9681816,38.3424988) t=0 [23] (39.0306854,38.2793732) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=13 (38.9681816,38.3424988 38.9374619,38.3742142 38.9064751,38.4056053) t=0 [25] (38.9681816,38.3424988) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=14 (38.9064751,38.4056053 38.8441086,38.4687881 38.7809143,38.5304031) t=0 [27] (38.9064751,38.4056053) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=15 (38.7809143,38.5304031 38.7196693,38.5940361 38.6568527,38.6568527) t=0 [29] (38.7809143,38.5304031) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=9 (33.2413864,24.6781349 36.5549393,24.6459332 38.920742,26.966198) t=0 [17] (33.2413864,24.6781349) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
SkOpSegment::markWinding id=24 (27.6075668,27.0761414 29.9278316,24.7103367 33.2413864,24.6781349) t=0 [47] (27.6075668,27.0761414) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=23 (27.5638676,27.1209965 27.5855064,27.0986347 27.6075668,27.0761414) t=0 [45] (27.5638676,27.1209965) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=22 (27.5197105,27.165432 27.541851,27.1430035 27.5638676,27.1209965) t=0 [43] (27.5197105,27.165432) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=21 (27.4323025,27.2551785 27.4755878,27.2101307 27.5197105,27.165432) t=0 [41] (27.4323025,27.2551785) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4323025,27.2551785) t=0.03515625 [49] (27.3462677,27.3400249) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::findNextWinding simple
SkOpSegment::markDone id=9 (33.2413864,24.6781349 36.5549393,24.6459332 38.920742,26.966198) t=0 [17] (33.2413864,24.6781349) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeWinding current id=9 from=(38.920742,26.966198) to=(33.2413864,24.6781349)
path.moveTo(38.920742,26.966198);
path.quadTo(36.5549393,24.6459332, 33.2413864,24.6781349);
SkOpSegment::findNextWinding simple
SkOpSegment::markDone id=24 (27.6075668,27.0761414 29.9278316,24.7103367 33.2413864,24.6781349) t=0 [47] (27.6075668,27.0761414) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeWinding current id=24 from=(33.2413864,24.6781349) to=(27.6075668,27.0761414)
path.quadTo(29.9278316,24.7103367, 27.6075668,27.0761414);
SkOpSegment::findNextWinding simple
SkOpSegment::markDone id=23 (27.5638676,27.1209965 27.5855064,27.0986347 27.6075668,27.0761414) t=0 [45] (27.5638676,27.1209965) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeWinding current id=23 from=(27.6075668,27.0761414) to=(27.5638676,27.1209965)
path.quadTo(27.5855064,27.0986347, 27.5638676,27.1209965);
SkOpSegment::findNextWinding simple
SkOpSegment::markDone id=22 (27.5197105,27.165432 27.541851,27.1430035 27.5638676,27.1209965) t=0 [43] (27.5197105,27.165432) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeWinding current id=22 from=(27.5638676,27.1209965) to=(27.5197105,27.165432)
path.quadTo(27.541851,27.1430035, 27.5197105,27.165432);
SkOpSegment::findNextWinding simple
SkOpSegment::markDone id=21 (27.4323025,27.2551785 27.4755878,27.2101307 27.5197105,27.165432) t=0 [41] (27.4323025,27.2551785) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeWinding current id=21 from=(27.5197105,27.165432) to=(27.4323025,27.2551785)
path.quadTo(27.4755878,27.2101307, 27.4323025,27.2551785);
SkOpSegment::markWinding id=6 (27.3431454,27.3431454 29.6862907,25 33,25) t=0.000666163387 [50] (27.3462677,27.3400249) tEnd=1 newWindSum=1 windSum=? windValue=1
SkOpSegment::markWinding id=7 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 [13] (33,25) tEnd=1 newWindSum=1 windSum=? windValue=1
SkOpSegment::markWinding id=8 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 [15] (38.6568527,27.3431454) tEnd=1 newWindSum=1 windSum=? windValue=1
SkOpSegment::markWinding id=1 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 [1] (41,33) tEnd=1 newWindSum=1 windSum=? windValue=1
SkOpSegment::markAngle last seg=1 span=2
SkOpSegment::markWinding id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4323025,27.2551785) t=0 [39] (27.3431454,27.3431454) tEnd=0.03515625 newWindSum=1 windSum=? windValue=2
SkOpSegment::nextChase mismatched signs
SkOpSegment::markWinding id=19 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [37] (25,33) tEnd=1 newWindSum=1 windSum=? windValue=2
SkOpSegment::nextChase mismatched signs
SkOpSegment::markWinding id=18 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [35] (27.3431454,38.6568527) tEnd=1 newWindSum=1 windSum=? windValue=2
SkOpSegment::nextChase mismatched signs
SkOpSegment::markWinding id=17 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [33] (33,41) tEnd=1 newWindSum=1 windSum=? windValue=2
SkOpSegment::nextChase mismatched signs
SkOpSegment::markWinding id=16 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [31] (38.6568527,38.6568527) tEnd=1 newWindSum=1 windSum=? windValue=2
SkOpSegment::markAngle last seg=16 span=31 windSum=1
SkOpSegment::findNextWinding
SkOpAngle::dumpOne [20/12] next=6/14 sect=1/1 s=0.03515625 [49] e=1 [40] sgn=-1 windVal=1 windSum=-1 oppVal=0 oppSum=0
SkOpAngle::dumpOne [6/14] next=20/11 sect=1/1 s=0.000666163387 [50] e=1 [12] sgn=-1 windVal=1 windSum=1
SkOpAngle::dumpOne [20/11] next=20/12 sect=17/17 s=0.03515625 [49] e=0 [39] sgn=1 windVal=2 windSum=1
SkOpSegment::findNextWinding chase.append segment=1 span=2
SkOpSegment::markDone id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4323025,27.2551785) t=0 [39] (27.3431454,27.3431454) tEnd=0.03515625 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=2 oppValue=0
SkOpSegment::nextChase mismatched signs
SkOpSegment::markDone id=19 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [37] (25,33) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=2 oppValue=0
SkOpSegment::nextChase mismatched signs
SkOpSegment::markDone id=18 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [35] (27.3431454,38.6568527) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=2 oppValue=0
SkOpSegment::nextChase mismatched signs
SkOpSegment::markDone id=17 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [33] (33,41) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=2 oppValue=0
SkOpSegment::nextChase mismatched signs
SkOpSegment::markDone id=16 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [31] (38.6568527,38.6568527) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=2 oppValue=0
SkOpSegment::findNextWinding chase.append segment=16 span=31 windSum=1
SkOpSegment::markDone id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4323025,27.2551785) t=0.03515625 [49] (27.3462677,27.3400249) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
SkOpSegment::findNextWinding from:[20] to:[6] start=5584652 end=5579668
bridgeWinding current id=20 from=(27.4323025,27.2551785) to=(27.3462677,27.3400249)
path.quadTo(27.3891354,27.2971973, 27.3462677,27.3400249);
SkOpSegment::findNextWinding simple
SkOpSegment::markDone id=6 (27.3431454,27.3431454 29.6862907,25 33,25) t=0.000666163387 [50] (27.3462677,27.3400249) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=1 oppValue=0
bridgeWinding current id=6 from=(27.3462677,27.3400249) to=(33,25)
path.quadTo(29.6884995,25, 33,25);
SkOpSegment::findNextWinding simple
SkOpSegment::markDone id=7 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 [13] (33,25) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=1 oppValue=0
bridgeWinding current id=7 from=(33,25) to=(38.6568527,27.3431454)
path.quadTo(36.3137093,25, 38.6568527,27.3431454);
SkOpSegment::findNextWinding simple
SkOpSegment::markDone id=8 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 [15] (38.6568527,27.3431454) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=1 oppValue=0
bridgeWinding current id=8 from=(38.6568527,27.3431454) to=(41,33)
path.quadTo(41,29.6862907, 41,33);
SkOpSegment::findNextWinding
SkOpAngle::dumpOne [1/13] next=15/1 sect=1/5 s=1 [2] e=0 [1] sgn=1 windVal=1 windSum=1
SkOpAngle::dumpOne [15/1] next=16/2 sect=4/5 s=1 [30] e=0 [29] sgn=1 windVal=1 windSum=-1 oppVal=0 oppSum=0
SkOpAngle::dumpOne [16/2] next=1/13 sect=21/17 s=0 [31] e=1 [32] sgn=-1 windVal=2 windSum=1 done
SkOpSegment::markDone id=1 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 [1] (41,33) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=1 oppValue=0
SkOpSegment::findNextWinding from:[1] to:[15] start=5581892 end=5581788
bridgeWinding current id=1 from=(41,33) to=(38.6568527,38.6568527)
path.quadTo(41,36.3137093, 38.6568527,38.6568527);
SkOpSegment::findNextWinding simple
SkOpSegment::markDone id=15 (38.7809143,38.5304031 38.7196693,38.5940361 38.6568527,38.6568527) t=0 [29] (38.7809143,38.5304031) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeWinding current id=15 from=(38.6568527,38.6568527) to=(38.7809143,38.5304031)
path.quadTo(38.7196693,38.5940361, 38.7809143,38.5304031);
SkOpSegment::findNextWinding simple
SkOpSegment::markDone id=14 (38.9064751,38.4056053 38.8441086,38.4687881 38.7809143,38.5304031) t=0 [27] (38.9064751,38.4056053) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeWinding current id=14 from=(38.7809143,38.5304031) to=(38.9064751,38.4056053)
path.quadTo(38.8441086,38.4687881, 38.9064751,38.4056053);
SkOpSegment::findNextWinding simple
SkOpSegment::markDone id=13 (38.9681816,38.3424988 38.9374619,38.3742142 38.9064751,38.4056053) t=0 [25] (38.9681816,38.3424988) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeWinding current id=13 from=(38.9064751,38.4056053) to=(38.9681816,38.3424988)
path.quadTo(38.9374619,38.3742142, 38.9681816,38.3424988);
SkOpSegment::findNextWinding simple
SkOpSegment::markDone id=12 (39.0306854,38.2793732 38.9995995,38.3110695 38.9681816,38.3424988) t=0 [23] (39.0306854,38.2793732) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeWinding current id=12 from=(38.9681816,38.3424988) to=(39.0306854,38.2793732)
path.quadTo(38.9995995,38.3110695, 39.0306854,38.2793732);
SkOpSegment::findNextWinding simple
SkOpSegment::markDone id=11 (41.3187523,32.6000175 41.3509521,35.9135704 39.0306854,38.2793732) t=0 [21] (41.3187523,32.6000175) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeWinding current id=11 from=(39.0306854,38.2793732) to=(41.3187523,32.6000175)
path.quadTo(41.3509521,35.9135704, 41.3187523,32.6000175);
SkOpSegment::findNextWinding simple
SkOpSegment::markDone id=10 (38.920742,26.966198 41.2865486,29.2864628 41.3187523,32.6000175) t=0 [19] (38.920742,26.966198) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeWinding current id=10 from=(41.3187523,32.6000175) to=(38.920742,26.966198)
path.quadTo(41.2865486,29.2864628, 38.920742,26.966198);
path.close();
seg=1 {{{-33.1326447f, -40.8928833f}, {-29.8189526f, -40.9036179f}, {-27.4682293f, -38.5680733f}}}
seg=2 {{{-27.4682293f, -38.5680733f}, {-25.117506f, -36.2325325f}, {-25.1067715f, -32.9188423f}}}
seg=3 {{{-25.1067715f, -32.9188423f}, {-25.0960369f, -29.6051483f}, {-27.4315796f, -27.254425f}}}
seg=4 {{{-27.4315796f, -27.254425f}, {-29.7671204f, -24.9036999f}, {-33.0808144f, -24.8929653f}}}
seg=5 {{{-33.0808144f, -24.8929653f}, {-36.3945045f, -24.8822308f}, {-38.7452278f, -27.2177753f}}}
seg=6 {{{-38.7452278f, -27.2177753f}, {-41.0959549f, -29.5533161f}, {-41.1066895f, -32.867012f}}}
seg=7 {{{-41.1066895f, -32.867012f}, {-41.117424f, -36.1807022f}, {-38.7818794f, -38.5314217f}}}
seg=8 {{{-38.7818794f, -38.5314217f}, {-36.4463348f, -40.8821487f}, {-33.1326447f, -40.8928833f}}}
op union
seg=9 {{{41, 33}, {41, 36.3137093f}, {38.6568527f, 38.6568527f}}}
seg=10 {{{38.6568527f, 38.6568527f}, {36.3137093f, 41}, {33, 41}}}
seg=11 {{{33, 41}, {29.6862907f, 41}, {27.3431454f, 38.6568527f}}}
seg=12 {{{27.3431454f, 38.6568527f}, {25, 36.3137093f}, {25, 33}}}
seg=13 {{{25, 33}, {25, 29.6862907f}, {27.3431454f, 27.3431454f}}}
seg=14 {{{27.3431454f, 27.3431454f}, {29.6862907f, 25}, {33, 25}}}
seg=15 {{{33, 25}, {36.3137093f, 25}, {38.6568527f, 27.3431454f}}}
seg=16 {{{38.6568527f, 27.3431454f}, {41, 29.6862907f}, {41, 33}}}
debugShowQuadIntersection wtTs[0]=1 {{{-33.1326447,-40.8928833}, {-29.8189526,-40.9036179}, {-27.4682293,-38.5680733}}} {{-27.4682293,-38.5680733}} wnTs[0]=0 {{{-27.4682293,-38.5680733}, {-25.117506,-36.2325325}, {-25.1067715,-32.9188423}}}
debugShowQuadIntersection wtTs[0]=0 {{{-33.1326447,-40.8928833}, {-29.8189526,-40.9036179}, {-27.4682293,-38.5680733}}} {{-33.1326447,-40.8928833}} wnTs[0]=1 {{{-38.7818794,-38.5314217}, {-36.4463348,-40.8821487}, {-33.1326447,-40.8928833}}}
debugShowQuadIntersection wtTs[0]=1 {{{-27.4682293,-38.5680733}, {-25.117506,-36.2325325}, {-25.1067715,-32.9188423}}} {{-25.1067715,-32.9188423}} wnTs[0]=0 {{{-25.1067715,-32.9188423}, {-25.0960369,-29.6051483}, {-27.4315796,-27.254425}}}
debugShowQuadIntersection wtTs[0]=1 {{{-25.1067715,-32.9188423}, {-25.0960369,-29.6051483}, {-27.4315796,-27.254425}}} {{-27.4315796,-27.254425}} wnTs[0]=0 {{{-27.4315796,-27.254425}, {-29.7671204,-24.9036999}, {-33.0808144,-24.8929653}}}
debugShowQuadIntersection wtTs[0]=1 {{{-27.4315796,-27.254425}, {-29.7671204,-24.9036999}, {-33.0808144,-24.8929653}}} {{-33.0808144,-24.8929653}} wnTs[0]=0 {{{-33.0808144,-24.8929653}, {-36.3945045,-24.8822308}, {-38.7452278,-27.2177753}}}
debugShowQuadIntersection wtTs[0]=1 {{{-33.0808144,-24.8929653}, {-36.3945045,-24.8822308}, {-38.7452278,-27.2177753}}} {{-38.7452278,-27.2177753}} wnTs[0]=0 {{{-38.7452278,-27.2177753}, {-41.0959549,-29.5533161}, {-41.1066895,-32.867012}}}
debugShowQuadIntersection wtTs[0]=1 {{{-38.7452278,-27.2177753}, {-41.0959549,-29.5533161}, {-41.1066895,-32.867012}}} {{-41.1066895,-32.867012}} wnTs[0]=0 {{{-41.1066895,-32.867012}, {-41.117424,-36.1807022}, {-38.7818794,-38.5314217}}}
debugShowQuadIntersection wtTs[0]=1 {{{-41.1066895,-32.867012}, {-41.117424,-36.1807022}, {-38.7818794,-38.5314217}}} {{-38.7818794,-38.5314217}} wnTs[0]=0 {{{-38.7818794,-38.5314217}, {-36.4463348,-40.8821487}, {-33.1326447,-40.8928833}}}
debugShowQuadIntersection wtTs[0]=1 {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}} {{38.6568527,38.6568527}} wnTs[0]=0 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}}
debugShowQuadIntersection wtTs[0]=0 {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}} {{41,33}} wnTs[0]=1 {{{38.6568527,27.3431454}, {41,29.6862907}, {41,33}}}
debugShowQuadIntersection wtTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} {{33,41}} wnTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}}
debugShowQuadIntersection wtTs[0]=1 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527}}} {{27.3431454,38.6568527}} wnTs[0]=0 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}}
debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} {{25,33}} wnTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}}
debugShowQuadIntersection wtTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}} {{27.3431454,27.3431454}} wnTs[0]=0 {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}}
debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}} {{33,25}} wnTs[0]=0 {{{33,25}, {36.3137093,25}, {38.6568527,27.3431454}}}
debugShowQuadIntersection wtTs[0]=1 {{{33,25}, {36.3137093,25}, {38.6568527,27.3431454}}} {{38.6568527,27.3431454}} wnTs[0]=0 {{{38.6568527,27.3431454}, {41,29.6862907}, {41,33}}}
SkOpSegment::debugShowActiveSpans id=1 (-33.1326447,-40.8928833 -29.8189526,-40.9036179 -27.4682293,-38.5680733) t=0 (-33.1326447,-40.8928833) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=2 (-27.4682293,-38.5680733 -25.117506,-36.2325325 -25.1067715,-32.9188423) t=0 (-27.4682293,-38.5680733) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=3 (-25.1067715,-32.9188423 -25.0960369,-29.6051483 -27.4315796,-27.254425) t=0 (-25.1067715,-32.9188423) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=4 (-27.4315796,-27.254425 -29.7671204,-24.9036999 -33.0808144,-24.8929653) t=0 (-27.4315796,-27.254425) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=5 (-33.0808144,-24.8929653 -36.3945045,-24.8822308 -38.7452278,-27.2177753) t=0 (-33.0808144,-24.8929653) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=6 (-38.7452278,-27.2177753 -41.0959549,-29.5533161 -41.1066895,-32.867012) t=0 (-38.7452278,-27.2177753) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=7 (-41.1066895,-32.867012 -41.117424,-36.1807022 -38.7818794,-38.5314217) t=0 (-41.1066895,-32.867012) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=8 (-38.7818794,-38.5314217 -36.4463348,-40.8821487 -33.1326447,-40.8928833) t=0 (-38.7818794,-38.5314217) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=9 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 (41,33) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=10 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 (38.6568527,38.6568527) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=11 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 (33,41) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=12 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 (27.3431454,38.6568527) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=13 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 (25,33) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=14 (27.3431454,27.3431454 29.6862907,25 33,25) t=0 (27.3431454,27.3431454) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=15 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 (33,25) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=16 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 (38.6568527,27.3431454) tEnd=1 windSum=? windValue=1
SkOpSpan::sortableTop dir=kTop seg=1 t=0.5 pt=(-30.0596943,-40.3170471)
SkOpSpan::sortableTop [0] valid=1 operand=0 span=1 ccw=1 seg=1 {{{-33.1326447f, -40.8928833f}, {-29.8189526f, -40.9036179f}, {-27.4682293f, -38.5680733f}}} t=0.5 pt=(-30.0596943,-40.3170471) slope=(2.83220768,1.16240501)
SkOpSegment::markWinding id=1 (-33.1326447,-40.8928833 -29.8189526,-40.9036179 -27.4682293,-38.5680733) t=0 [1] (-33.1326447,-40.8928833) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
SkOpSegment::markWinding id=2 (-27.4682293,-38.5680733 -25.117506,-36.2325325 -25.1067715,-32.9188423) t=0 [3] (-27.4682293,-38.5680733) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=3 (-25.1067715,-32.9188423 -25.0960369,-29.6051483 -27.4315796,-27.254425) t=0 [5] (-25.1067715,-32.9188423) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=4 (-27.4315796,-27.254425 -29.7671204,-24.9036999 -33.0808144,-24.8929653) t=0 [7] (-27.4315796,-27.254425) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=5 (-33.0808144,-24.8929653 -36.3945045,-24.8822308 -38.7452278,-27.2177753) t=0 [9] (-33.0808144,-24.8929653) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=6 (-38.7452278,-27.2177753 -41.0959549,-29.5533161 -41.1066895,-32.867012) t=0 [11] (-38.7452278,-27.2177753) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=7 (-41.1066895,-32.867012 -41.117424,-36.1807022 -38.7818794,-38.5314217) t=0 [13] (-41.1066895,-32.867012) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=8 (-38.7818794,-38.5314217 -36.4463348,-40.8821487 -33.1326447,-40.8928833) t=0 [15] (-38.7818794,-38.5314217) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=1 (-33.1326447,-40.8928833 -29.8189526,-40.9036179 -27.4682293,-38.5680733) t=0 [1] (-33.1326447,-40.8928833) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
SkOpSegment::activeOp id=1 t=1 tEnd=0 op=union miFrom=0 miTo=1 suFrom=0 suTo=0 result=1
SkOpSegment::findNextOp simple
SkOpSegment::markDone id=1 (-33.1326447,-40.8928833 -29.8189526,-40.9036179 -27.4682293,-38.5680733) t=0 [1] (-33.1326447,-40.8928833) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeOp current id=1 from=(-27.4682293,-38.5680733) to=(-33.1326447,-40.8928833)
path.moveTo(-27.4682293,-38.5680733);
path.quadTo(-29.8189526,-40.9036179, -33.1326447,-40.8928833);
SkOpSegment::findNextOp simple
SkOpSegment::markDone id=8 (-38.7818794,-38.5314217 -36.4463348,-40.8821487 -33.1326447,-40.8928833) t=0 [15] (-38.7818794,-38.5314217) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeOp current id=8 from=(-33.1326447,-40.8928833) to=(-38.7818794,-38.5314217)
path.quadTo(-36.4463348,-40.8821487, -38.7818794,-38.5314217);
SkOpSegment::findNextOp simple
SkOpSegment::markDone id=7 (-41.1066895,-32.867012 -41.117424,-36.1807022 -38.7818794,-38.5314217) t=0 [13] (-41.1066895,-32.867012) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeOp current id=7 from=(-38.7818794,-38.5314217) to=(-41.1066895,-32.867012)
path.quadTo(-41.117424,-36.1807022, -41.1066895,-32.867012);
SkOpSegment::findNextOp simple
SkOpSegment::markDone id=6 (-38.7452278,-27.2177753 -41.0959549,-29.5533161 -41.1066895,-32.867012) t=0 [11] (-38.7452278,-27.2177753) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeOp current id=6 from=(-41.1066895,-32.867012) to=(-38.7452278,-27.2177753)
path.quadTo(-41.0959549,-29.5533161, -38.7452278,-27.2177753);
SkOpSegment::findNextOp simple
SkOpSegment::markDone id=5 (-33.0808144,-24.8929653 -36.3945045,-24.8822308 -38.7452278,-27.2177753) t=0 [9] (-33.0808144,-24.8929653) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeOp current id=5 from=(-38.7452278,-27.2177753) to=(-33.0808144,-24.8929653)
path.quadTo(-36.3945045,-24.8822308, -33.0808144,-24.8929653);
SkOpSegment::findNextOp simple
SkOpSegment::markDone id=4 (-27.4315796,-27.254425 -29.7671204,-24.9036999 -33.0808144,-24.8929653) t=0 [7] (-27.4315796,-27.254425) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeOp current id=4 from=(-33.0808144,-24.8929653) to=(-27.4315796,-27.254425)
path.quadTo(-29.7671204,-24.9036999, -27.4315796,-27.254425);
SkOpSegment::findNextOp simple
SkOpSegment::markDone id=3 (-25.1067715,-32.9188423 -25.0960369,-29.6051483 -27.4315796,-27.254425) t=0 [5] (-25.1067715,-32.9188423) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeOp current id=3 from=(-27.4315796,-27.254425) to=(-25.1067715,-32.9188423)
path.quadTo(-25.0960369,-29.6051483, -25.1067715,-32.9188423);
SkOpSegment::findNextOp simple
SkOpSegment::markDone id=2 (-27.4682293,-38.5680733 -25.117506,-36.2325325 -25.1067715,-32.9188423) t=0 [3] (-27.4682293,-38.5680733) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeOp current id=2 from=(-25.1067715,-32.9188423) to=(-27.4682293,-38.5680733)
path.quadTo(-25.117506,-36.2325325, -27.4682293,-38.5680733);
path.close();
SkOpSegment::debugShowActiveSpans id=9 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 (41,33) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=10 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 (38.6568527,38.6568527) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=11 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 (33,41) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=12 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 (27.3431454,38.6568527) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=13 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 (25,33) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=14 (27.3431454,27.3431454 29.6862907,25 33,25) t=0 (27.3431454,27.3431454) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=15 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 (33,25) tEnd=1 windSum=? windValue=1
SkOpSegment::debugShowActiveSpans id=16 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 (38.6568527,27.3431454) tEnd=1 windSum=? windValue=1
SkOpSpan::sortableTop dir=kLeft seg=9 t=0.5 pt=(40.4142151,36.0710678)
SkOpSpan::sortableTop [0] valid=1 operand=1 span=23 ccw=1 seg=12 {{{27.3431454f, 38.6568527f}, {25, 36.3137093f}, {25, 33}}} t=0.5 pt=(25.5857868,36.0710678) slope=(-1.17157269,-2.82842636)
SkOpSpan::sortableTop [1] valid=1 operand=1 span=17 ccw=0 seg=9 {{{41, 33}, {41, 36.3137093f}, {38.6568527f, 38.6568527f}}} t=0.5 pt=(40.4142151,36.0710678) slope=(-1.17157364,2.82842636)
SkOpSegment::markWinding id=12 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [23] (27.3431454,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
SkOpSegment::markWinding id=13 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [25] (25,33) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=14 (27.3431454,27.3431454 29.6862907,25 33,25) t=0 [27] (27.3431454,27.3431454) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=15 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 [29] (33,25) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=16 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 [31] (38.6568527,27.3431454) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=9 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 [17] (41,33) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=10 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [19] (38.6568527,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=11 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [21] (33,41) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
SkOpSegment::markWinding id=12 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [23] (27.3431454,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
SkOpSegment::activeOp id=9 t=1 tEnd=0 op=union miFrom=0 miTo=0 suFrom=0 suTo=1 result=1
SkOpSegment::findNextOp simple
SkOpSegment::markDone id=9 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 [17] (41,33) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeOp current id=9 from=(38.6568527,38.6568527) to=(41,33)
path.moveTo(38.6568527,38.6568527);
path.quadTo(41,36.3137093, 41,33);
SkOpSegment::findNextOp simple
SkOpSegment::markDone id=16 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 [31] (38.6568527,27.3431454) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeOp current id=16 from=(41,33) to=(38.6568527,27.3431454)
path.quadTo(41,29.6862907, 38.6568527,27.3431454);
SkOpSegment::findNextOp simple
SkOpSegment::markDone id=15 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 [29] (33,25) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeOp current id=15 from=(38.6568527,27.3431454) to=(33,25)
path.quadTo(36.3137093,25, 33,25);
SkOpSegment::findNextOp simple
SkOpSegment::markDone id=14 (27.3431454,27.3431454 29.6862907,25 33,25) t=0 [27] (27.3431454,27.3431454) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeOp current id=14 from=(33,25) to=(27.3431454,27.3431454)
path.quadTo(29.6862907,25, 27.3431454,27.3431454);
SkOpSegment::findNextOp simple
SkOpSegment::markDone id=13 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [25] (25,33) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeOp current id=13 from=(27.3431454,27.3431454) to=(25,33)
path.quadTo(25,29.6862907, 25,33);
SkOpSegment::findNextOp simple
SkOpSegment::markDone id=12 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [23] (27.3431454,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeOp current id=12 from=(25,33) to=(27.3431454,38.6568527)
path.quadTo(25,36.3137093, 27.3431454,38.6568527);
SkOpSegment::findNextOp simple
SkOpSegment::markDone id=11 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [21] (33,41) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeOp current id=11 from=(27.3431454,38.6568527) to=(33,41)
path.quadTo(29.6862907,41, 33,41);
SkOpSegment::findNextOp simple
SkOpSegment::markDone id=10 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [19] (38.6568527,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
bridgeOp current id=10 from=(33,41) to=(38.6568527,38.6568527)
path.quadTo(36.3137093,41, 38.6568527,38.6568527);
path.close();