// Another approach is to start with the implicit form of one curve and solve // (seek implicit coefficients in QuadraticParameter.cpp // by substituting in the parametric form of the other. // The downside of this approach is that early rejects are difficult to come by. // http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step #include "CurveIntersection.h" #include "Intersections.h" #include "QuadraticParameterization.h" #include "QuarticRoot.h" #include "QuadraticUtilities.h" /* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F * and given x = at^2 + bt + c (the parameterized form) * y = dt^2 + et + f * then * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F */ static int findRoots(const QuadImplicitForm& i, const Quadratic& q2, double roots[4]) { double a, b, c; set_abc(&q2[0].x, a, b, c); double d, e, f; set_abc(&q2[0].y, d, e, f); const double t4 = i.x2() * a * a + i.xy() * a * d + i.y2() * d * d; const double t3 = 2 * i.x2() * a * b + i.xy() * (a * e + b * d) + 2 * i.y2() * d * e; const double t2 = i.x2() * (b * b + 2 * a * c) + i.xy() * (c * d + b * e + a * f) + i.y2() * (e * e + 2 * d * f) + i.x() * a + i.y() * d; const double t1 = 2 * i.x2() * b * c + i.xy() * (c * e + b * f) + 2 * i.y2() * e * f + i.x() * b + i.y() * e; const double t0 = i.x2() * c * c + i.xy() * c * f + i.y2() * f * f + i.x() * c + i.y() * f + i.c(); return quarticRoots(t4, t3, t2, t1, t0, roots); } static void addValidRoots(const double roots[4], const int count, const int side, Intersections& i) { int index; for (index = 0; index < count; ++index) { if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) { continue; } double t = 1 - roots[index]; if (approximately_less_than_zero(t)) { t = 0; } else if (approximately_greater_than_one(t)) { t = 1; } i.insertOne(t, side); } } bool intersect2(const Quadratic& q1, const Quadratic& q2, Intersections& i) { QuadImplicitForm i1(q1); QuadImplicitForm i2(q2); if (i1.implicit_match(i2)) { // FIXME: compute T values // compute the intersections of the ends to find the coincident span bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y); double t; if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) { i.addCoincident(t, 0); } if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) { i.addCoincident(t, 1); } useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y); if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) { i.addCoincident(0, t); } if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) { i.addCoincident(1, t); } assert(i.fCoincidentUsed <= 2); return i.fCoincidentUsed > 0; } double roots1[4], roots2[4]; int rootCount = findRoots(i2, q1, roots1); // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1 int rootCount2 = findRoots(i1, q2, roots2); assert(rootCount == rootCount2); addValidRoots(roots1, rootCount, 0, i); addValidRoots(roots2, rootCount, 1, i); _Point pts[4]; bool matches[4]; int index; for (index = 0; index < i.fUsed2; ++index) { xy_at_t(q2, i.fT[1][index], pts[index].x, pts[index].y); matches[index] = false; } for (index = 0; index < i.fUsed; ) { _Point xy; xy_at_t(q1, i.fT[0][index], xy.x, xy.y); for (int inner = 0; inner < i.fUsed2; ++inner) { if (approximately_equal(pts[inner].x, xy.x) && approximately_equal(pts[inner].y, xy.y)) { matches[index] = true; goto next; } } if (--i.fUsed > index) { memmove(&i.fT[0][index], &i.fT[0][index + 1], (i.fUsed - index) * sizeof(i.fT[0][0])); continue; } next: ++index; } for (index = 0; index < i.fUsed2; ) { if (!matches[index]) { if (--i.fUsed2 > index) { memmove(&i.fT[1][index], &i.fT[1][index + 1], (i.fUsed2 - index) * sizeof(i.fT[1][0])); continue; } } ++index; } assert(i.insertBalanced()); return i.intersected(); }