/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "CubicUtilities.h" #include "CurveIntersection.h" #include "Intersections.h" #include "IntersectionUtilities.h" #include "LineIntersection.h" #include "LineUtilities.h" #include "QuadraticUtilities.h" #if ONE_OFF_DEBUG static const double tLimits[2][2] = {{0.134, 0.145}, {0.134, 0.136}}; #endif #define DEBUG_QUAD_PART 0 #define SWAP_TOP_DEBUG 0 static int quadPart(const Cubic& cubic, double tStart, double tEnd, Quadratic& simple) { Cubic part; sub_divide(cubic, tStart, tEnd, part); Quadratic quad; demote_cubic_to_quad(part, quad); // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an // extremely shallow quadratic? int order = reduceOrder(quad, simple, kReduceOrder_TreatAsFill); #if DEBUG_QUAD_PART SkDebugf("%s cubic=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g) t=(%1.17g,%1.17g)\n", __FUNCTION__, cubic[0].x, cubic[0].y, cubic[1].x, cubic[1].y, cubic[2].x, cubic[2].y, cubic[3].x, cubic[3].y, tStart, tEnd); SkDebugf("%s part=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)" " quad=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)\n", __FUNCTION__, part[0].x, part[0].y, part[1].x, part[1].y, part[2].x, part[2].y, part[3].x, part[3].y, quad[0].x, quad[0].y, quad[1].x, quad[1].y, quad[2].x, quad[2].y); SkDebugf("%s simple=(%1.17g,%1.17g", __FUNCTION__, simple[0].x, simple[0].y); if (order > 1) { SkDebugf(" %1.17g,%1.17g", simple[1].x, simple[1].y); } if (order > 2) { SkDebugf(" %1.17g,%1.17g", simple[2].x, simple[2].y); } SkDebugf(")\n"); SkASSERT(order < 4 && order > 0); #endif return order; } static void intersectWithOrder(const Quadratic& simple1, int order1, const Quadratic& simple2, int order2, Intersections& i) { if (order1 == 3 && order2 == 3) { intersect2(simple1, simple2, i); } else if (order1 <= 2 && order2 <= 2) { intersect((const _Line&) simple1, (const _Line&) simple2, i); } else if (order1 == 3 && order2 <= 2) { intersect(simple1, (const _Line&) simple2, i); } else { SkASSERT(order1 <= 2 && order2 == 3); intersect(simple2, (const _Line&) simple1, i); for (int s = 0; s < i.fUsed; ++s) { SkTSwap(i.fT[0][s], i.fT[1][s]); } } } // this flavor centers potential intersections recursively. In contrast, '2' may inadvertently // chase intersections near quadratic ends, requiring odd hacks to find them. static bool intersect3(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2, double t2s, double t2e, double precisionScale, Intersections& i) { i.upDepth(); bool result = false; Cubic c1, c2; sub_divide(cubic1, t1s, t1e, c1); sub_divide(cubic2, t2s, t2e, c2); SkTDArray ts1; cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1); SkTDArray ts2; cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2); double t1Start = t1s; int ts1Count = ts1.count(); for (int i1 = 0; i1 <= ts1Count; ++i1) { const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1; const double t1 = t1s + (t1e - t1s) * tEnd1; Quadratic s1; int o1 = quadPart(cubic1, t1Start, t1, s1); double t2Start = t2s; int ts2Count = ts2.count(); for (int i2 = 0; i2 <= ts2Count; ++i2) { const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1; const double t2 = t2s + (t2e - t2s) * tEnd2; if (cubic1 == cubic2 && t1Start >= t2Start) { t2Start = t2; continue; } Quadratic s2; int o2 = quadPart(cubic2, t2Start, t2, s2); #if ONE_OFF_DEBUG if (tLimits[0][0] >= t1Start && tLimits[0][1] <= t1 && tLimits[1][0] >= t2Start && tLimits[1][1] <= t2) { Cubic cSub1, cSub2; sub_divide(cubic1, t1Start, tEnd1, cSub1); sub_divide(cubic2, t2Start, tEnd2, cSub2); SkDebugf("t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)\n", t1Start, t1, t2Start, t2); Intersections xlocals; intersectWithOrder(s1, o1, s2, o2, xlocals); SkDebugf("xlocals.fUsed=%d\n", xlocals.used()); } #endif Intersections locals; intersectWithOrder(s1, o1, s2, o2, locals); double coStart[2] = { -1 }; _Point coPoint; int tCount = locals.used(); for (int tIdx = 0; tIdx < tCount; ++tIdx) { double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx]; double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx]; // if the computed t is not sufficiently precise, iterate _Point p1, p2; xy_at_t(cubic1, to1, p1.x, p1.y); xy_at_t(cubic2, to2, p2.x, p2.y); if (p1.approximatelyEqual(p2)) { if (locals.fIsCoincident[0] & 1 << tIdx) { if (coStart[0] < 0) { coStart[0] = to1; coStart[1] = to2; coPoint = p1; } else { i.insertCoincidentPair(coStart[0], to1, coStart[1], to2, coPoint, p1); coStart[0] = -1; } result = true; } else if (cubic1 != cubic2 || !approximately_equal(to1, to2)) { if (i.swapped()) { // FIXME: insert should respect swap i.insert(to2, to1, p1); } else { i.insert(to1, to2, p1); } result = true; } } else { double offset = precisionScale / 16; // FIME: const is arbitrary -- test & refine double c1Bottom = tIdx == 0 ? 0 : (t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2; double c1Min = SkTMax(c1Bottom, to1 - offset); double c1Top = tIdx == tCount - 1 ? 1 : (t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2; double c1Max = SkTMin(c1Top, to1 + offset); double c2Bottom = tIdx == 0 ? to2 : (t2Start + (t2 - t2Start) * locals.fT[1][tIdx - 1] + to2) / 2; double c2Top = tIdx == tCount - 1 ? to2 : (t2Start + (t2 - t2Start) * locals.fT[1][tIdx + 1] + to2) / 2; if (c2Bottom > c2Top) { SkTSwap(c2Bottom, c2Top); } if (c2Bottom == to2) { c2Bottom = 0; } if (c2Top == to2) { c2Top = 1; } double c2Min = SkTMax(c2Bottom, to2 - offset); double c2Max = SkTMin(c2Top, to2 + offset); intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); // TODO: if no intersection is found, either quadratics intersected where // cubics did not, or the intersection was missed. In the former case, expect // the quadratics to be nearly parallel at the point of intersection, and check // for that. } } SkASSERT(coStart[0] == -1); t2Start = t2; } t1Start = t1; } i.downDepth(); return result; } // intersect the end of the cubic with the other. Try lines from the end to control and opposite // end to determine range of t on opposite cubic. static bool intersectEnd(const Cubic& cubic1, bool start, const Cubic& cubic2, const _Rect& bounds2, Intersections& i) { _Line line; int t1Index = start ? 0 : 3; line[0] = cubic1[t1Index]; // don't bother if the two cubics are connnected if (line[0].approximatelyEqual(cubic2[0]) || line[0].approximatelyEqual(cubic2[3])) { return false; } double tMin = 1, tMax = 0; for (int index = 0; index < 4; ++index) { if (index == t1Index) { continue; } _Vector dxy1 = cubic1[index] - line[0]; dxy1 /= gPrecisionUnit; line[1] = line[0] + dxy1; _Rect lineBounds; lineBounds.setBounds(line); if (!bounds2.intersects(lineBounds)) { continue; } Intersections local; if (!intersect(cubic2, line, local)) { continue; } for (int index = 0; index < local.fUsed; ++index) { tMin = SkTMin(tMin, local.fT[0][index]); tMax = SkTMax(tMax, local.fT[0][index]); } } if (tMin > tMax) { return false; } double tMin1 = start ? 0 : 1 - 1.0 / gPrecisionUnit; double tMax1 = start ? 1.0 / gPrecisionUnit : 1; double tMin2 = SkTMax(tMin - 1.0 / gPrecisionUnit, 0.0); double tMax2 = SkTMin(tMax + 1.0 / gPrecisionUnit, 1.0); return intersect3(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i); } const double CLOSE_ENOUGH = 0.001; static bool closeStart(const Cubic& cubic, int cubicIndex, Intersections& i, _Point& pt) { if (i.fT[cubicIndex][0] != 0 || i.fT[cubicIndex][1] > CLOSE_ENOUGH) { return false; } pt = xy_at_t(cubic, (i.fT[cubicIndex][0] + i.fT[cubicIndex][1]) / 2); return true; } static bool closeEnd(const Cubic& cubic, int cubicIndex, Intersections& i, _Point& pt) { int last = i.used() - 1; if (i.fT[cubicIndex][last] != 1 || i.fT[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) { return false; } pt = xy_at_t(cubic, (i.fT[cubicIndex][last] + i.fT[cubicIndex][last - 1]) / 2); return true; } bool intersect3(const Cubic& c1, const Cubic& c2, Intersections& i) { bool result = intersect3(c1, 0, 1, c2, 0, 1, 1, i); // FIXME: pass in cached bounds from caller _Rect c1Bounds, c2Bounds; c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ? c2Bounds.setBounds(c2); result |= intersectEnd(c1, false, c2, c2Bounds, i); result |= intersectEnd(c1, true, c2, c2Bounds, i); i.swap(); result |= intersectEnd(c2, false, c1, c1Bounds, i); result |= intersectEnd(c2, true, c1, c1Bounds, i); i.swap(); // If an end point and a second point very close to the end is returned, the second // point may have been detected because the approximate quads // intersected at the end and close to it. Verify that the second point is valid. if (i.used() <= 1 || i.coincidentUsed()) { return result; } _Point pt[2]; if (closeStart(c1, 0, i, pt[0]) && closeStart(c2, 1, i, pt[1]) && pt[0].approximatelyEqual(pt[1])) { i.removeOne(1); } if (closeEnd(c1, 0, i, pt[0]) && closeEnd(c2, 1, i, pt[1]) && pt[0].approximatelyEqual(pt[1])) { i.removeOne(i.used() - 2); } return result; } // Up promote the quad to a cubic. // OPTIMIZATION If this is a common use case, optimize by duplicating // the intersect 3 loop to avoid the promotion / demotion code int intersect(const Cubic& cubic, const Quadratic& quad, Intersections& i) { Cubic up; toCubic(quad, up); (void) intersect3(cubic, up, i); return i.used(); } /* http://www.ag.jku.at/compass/compasssample.pdf ( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no SINTEF Applied Mathematics http://www.sintef.no ) describes a method to find the self intersection of a cubic by taking the gradient of the implicit form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/ int intersect(const Cubic& c, Intersections& i) { // check to see if x or y end points are the extrema. Are other quick rejects possible? if ((between(c[0].x, c[1].x, c[3].x) && between(c[0].x, c[2].x, c[3].x)) || (between(c[0].y, c[1].y, c[3].y) && between(c[0].y, c[2].y, c[3].y))) { return false; } (void) intersect3(c, c, i); return i.used(); }