/* * Copyright 2020 Google LLC. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkCanvas.h" #include "include/core/SkImage.h" #include "include/core/SkSurface.h" #include "include/effects/SkGradientShader.h" #include "include/gpu/GrDirectContext.h" #include "src/core/SkAutoPixmapStorage.h" #include "src/core/SkConvertPixels.h" #include "src/gpu/GrDirectContextPriv.h" #include "src/gpu/GrImageInfo.h" #include "src/gpu/GrSurfaceContext.h" #include "tests/Test.h" #include "tests/TestUtils.h" #include "tools/ToolUtils.h" #include "tools/gpu/BackendSurfaceFactory.h" #include "tools/gpu/BackendTextureImageFactory.h" #include "tools/gpu/GrContextFactory.h" #include "tools/gpu/ProxyUtils.h" #include static constexpr int min_rgb_channel_bits(SkColorType ct) { switch (ct) { case kUnknown_SkColorType: return 0; case kAlpha_8_SkColorType: return 0; case kA16_unorm_SkColorType: return 0; case kA16_float_SkColorType: return 0; case kRGB_565_SkColorType: return 5; case kARGB_4444_SkColorType: return 4; case kR8G8_unorm_SkColorType: return 8; case kR16G16_unorm_SkColorType: return 16; case kR16G16_float_SkColorType: return 16; case kRGBA_8888_SkColorType: return 8; case kRGB_888x_SkColorType: return 8; case kBGRA_8888_SkColorType: return 8; case kRGBA_1010102_SkColorType: return 10; case kRGB_101010x_SkColorType: return 10; case kBGRA_1010102_SkColorType: return 10; case kBGR_101010x_SkColorType: return 10; case kGray_8_SkColorType: return 8; // counting gray as "rgb" case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa case kRGBA_F16_SkColorType: return 10; // just counting the mantissa case kRGBA_F32_SkColorType: return 23; // just counting the mantissa case kR16G16B16A16_unorm_SkColorType: return 16; } SkUNREACHABLE; } static constexpr int alpha_channel_bits(SkColorType ct) { switch (ct) { case kUnknown_SkColorType: return 0; case kAlpha_8_SkColorType: return 8; case kA16_unorm_SkColorType: return 16; case kA16_float_SkColorType: return 16; case kRGB_565_SkColorType: return 0; case kARGB_4444_SkColorType: return 4; case kR8G8_unorm_SkColorType: return 0; case kR16G16_unorm_SkColorType: return 0; case kR16G16_float_SkColorType: return 0; case kRGBA_8888_SkColorType: return 8; case kRGB_888x_SkColorType: return 0; case kBGRA_8888_SkColorType: return 8; case kRGBA_1010102_SkColorType: return 2; case kRGB_101010x_SkColorType: return 0; case kBGRA_1010102_SkColorType: return 2; case kBGR_101010x_SkColorType: return 0; case kGray_8_SkColorType: return 0; case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa case kRGBA_F16_SkColorType: return 10; // just counting the mantissa case kRGBA_F32_SkColorType: return 23; // just counting the mantissa case kR16G16B16A16_unorm_SkColorType: return 16; } SkUNREACHABLE; } namespace { struct GpuReadPixelTestRules { // Test unpremul sources? We could omit this and detect that creating the source of the read // failed but having it lets us skip generating reference color data. bool fAllowUnpremulSrc = true; // Are reads that are overlapping but not contained by the src bounds expected to succeed? bool fUncontainedRectSucceeds = true; }; // Makes a src populated with the pixmap. The src should get its image info (or equivalent) from // the pixmap. template using GpuSrcFactory = T(SkPixmap&); enum class GpuReadResult { kFail, kSuccess, kExcusedFailure, }; // Does a read from the T into the pixmap. template using GpuReadSrcFn = GpuReadResult(const T&, const SkIVector& offset, const SkPixmap&); } // anonymous namespace template static void gpu_read_pixels_test_driver(skiatest::Reporter* reporter, const GpuReadPixelTestRules& rules, const std::function>& srcFactory, const std::function>& read, SkString label) { if (!label.isEmpty()) { // Add space for printing. label.append(" "); } // Separate this out just to give it some line width to breathe. Note 'srcPixels' should have // the same image info as src. We will do a converting readPixels() on it to get the data // to compare with the results of 'read'. auto runTest = [&](const T& src, const SkPixmap& srcPixels, const SkImageInfo& readInfo, const SkIVector& offset) { const bool csConversion = !SkColorSpace::Equals(readInfo.colorSpace(), srcPixels.info().colorSpace()); const auto readCT = readInfo.colorType(); const auto readAT = readInfo.alphaType(); const auto srcCT = srcPixels.info().colorType(); const auto srcAT = srcPixels.info().alphaType(); const auto rect = SkIRect::MakeWH(readInfo.width(), readInfo.height()).makeOffset(offset); const auto surfBounds = SkIRect::MakeWH(srcPixels.width(), srcPixels.height()); const size_t readBpp = SkColorTypeBytesPerPixel(readCT); // Make the row bytes in the dst be loose for extra stress. const size_t dstRB = readBpp * readInfo.width() + 10 * readBpp; // This will make the last row tight. const size_t dstSize = readInfo.computeByteSize(dstRB); std::unique_ptr dstData(new char[dstSize]); SkPixmap dstPixels(readInfo, dstData.get(), dstRB); // Initialize with an arbitrary value for each byte. Later we will check that only the // correct part of the destination gets overwritten by 'read'. static constexpr auto kInitialByte = static_cast(0x1B); std::fill_n(static_cast(dstPixels.writable_addr()), dstPixels.computeByteSize(), kInitialByte); const GpuReadResult result = read(src, offset, dstPixels); if (!SkIRect::Intersects(rect, surfBounds)) { REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess); } else if (readCT == kUnknown_SkColorType) { REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess); } else if ((readAT == kUnknown_SkAlphaType) != (srcAT == kUnknown_SkAlphaType)) { REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess); } else if (!rules.fUncontainedRectSucceeds && !surfBounds.contains(rect)) { REPORTER_ASSERT(reporter, result != GpuReadResult::kSuccess); } else if (result == GpuReadResult::kFail) { // TODO: Support RGB/BGR 101010x, BGRA 1010102 on the GPU. if (SkColorTypeToGrColorType(readCT) != GrColorType::kUnknown) { ERRORF(reporter, "Read failed. %sSrc CT: %s, Src AT: %s Read CT: %s, Read AT: %s, " "Rect [%d, %d, %d, %d], CS conversion: %d\n", label.c_str(), ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT), ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT), rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion); } return result; } bool guardOk = true; auto guardCheck = [](char x) { return x == kInitialByte; }; // Considering the rect we tried to read and the surface bounds figure out which pixels in // both src and dst space should actually have been read and written. SkIRect srcReadRect; if (result == GpuReadResult::kSuccess && srcReadRect.intersect(surfBounds, rect)) { SkIRect dstWriteRect = srcReadRect.makeOffset(-rect.fLeft, -rect.fTop); const bool lumConversion = !(SkColorTypeChannelFlags(srcCT) & kGray_SkColorChannelFlag) && (SkColorTypeChannelFlags(readCT) & kGray_SkColorChannelFlag); // A CS or luminance conversion allows a 3 value difference and otherwise a 2 value // difference. Note that sometimes read back on GPU can be lossy even when there no // conversion at all because GPU->CPU read may go to a lower bit depth format and then // be promoted back to the original type. For example, GL ES cannot read to 1010102, so // we go through 8888. float numer = (lumConversion || csConversion) ? 3.f : 2.f; // Allow some extra tolerance if unpremuling. if (srcAT == kPremul_SkAlphaType && readAT == kUnpremul_SkAlphaType) { numer += 1; } int rgbBits = std::min({min_rgb_channel_bits(readCT), min_rgb_channel_bits(srcCT), 8}); float tol = numer / (1 << rgbBits); float alphaTol = 0; if (readAT != kOpaque_SkAlphaType && srcAT != kOpaque_SkAlphaType) { // Alpha can also get squashed down to 8 bits going through an intermediate // color format. const int alphaBits = std::min({alpha_channel_bits(readCT), alpha_channel_bits(srcCT), 8}); alphaTol = 2.f / (1 << alphaBits); } const float tols[4] = {tol, tol, tol, alphaTol}; auto error = std::function([&](int x, int y, const float diffs[4]) { SkASSERT(x >= 0 && y >= 0); ERRORF(reporter, "%sSrc CT: %s, Src AT: %s, Read CT: %s, Read AT: %s, Rect [%d, %d, %d, %d]" ", CS conversion: %d\n" "Error at %d, %d. Diff in floats: (%f, %f, %f %f)", label.c_str(), ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT), ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT), rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion, x, y, diffs[0], diffs[1], diffs[2], diffs[3]); }); SkAutoPixmapStorage ref; SkImageInfo refInfo = readInfo.makeDimensions(dstWriteRect.size()); ref.alloc(refInfo); if (readAT == kUnknown_SkAlphaType) { // Do a spoofed read where src and dst alpha type are both kUnpremul. This will // allow SkPixmap readPixels to succeed and won't do any alpha type conversion. SkPixmap unpremulRef(refInfo.makeAlphaType(kUnpremul_SkAlphaType), ref.addr(), ref.rowBytes()); SkPixmap unpremulSRc(srcPixels.info().makeAlphaType(kUnpremul_SkAlphaType), srcPixels.addr(), srcPixels.rowBytes()); unpremulSRc.readPixels(unpremulRef, srcReadRect.x(), srcReadRect.y()); } else { srcPixels.readPixels(ref, srcReadRect.x(), srcReadRect.y()); } // This is the part of dstPixels that should have been updated. SkPixmap actual; SkAssertResult(dstPixels.extractSubset(&actual, dstWriteRect)); ComparePixels(ref, actual, tols, error); const auto* v = dstData.get(); const auto* end = dstData.get() + dstSize; guardOk = std::all_of(v, v + dstWriteRect.top() * dstPixels.rowBytes(), guardCheck); v += dstWriteRect.top() * dstPixels.rowBytes(); for (int y = dstWriteRect.top(); y < dstWriteRect.bottom(); ++y) { guardOk |= std::all_of(v, v + dstWriteRect.left() * readBpp, guardCheck); auto pad = v + dstWriteRect.right() * readBpp; auto rowEnd = std::min(end, v + dstPixels.rowBytes()); // min protects against reading past the end of the tight last row. guardOk |= std::all_of(pad, rowEnd, guardCheck); v = rowEnd; } guardOk |= std::all_of(v, end, guardCheck); } else { guardOk = std::all_of(dstData.get(), dstData.get() + dstSize, guardCheck); } if (!guardOk) { ERRORF(reporter, "Result pixels modified result outside read rect [%d, %d, %d, %d]. " "%sSrc CT: %s, Read CT: %s, CS conversion: %d", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, label.c_str(), ToolUtils::colortype_name(srcCT), ToolUtils::colortype_name(readCT), csConversion); } return result; }; static constexpr int kW = 16; static constexpr int kH = 16; // Makes the reference data that is used to populate the src. Always F32 regardless of srcCT. auto make_ref_f32_data = [](SkAlphaType srcAT, SkColorType srcCT) -> SkAutoPixmapStorage { // Make src data in F32 with srcAT. We will convert it to each color type we test to // initialize the src. auto surfInfo = SkImageInfo::Make(kW, kH, kRGBA_F32_SkColorType, srcAT, SkColorSpace::MakeSRGB()); // Can't make a kUnknown_SkAlphaType surface. if (srcAT == kUnknown_SkAlphaType) { surfInfo = surfInfo.makeAlphaType(kUnpremul_SkAlphaType); } auto refSurf = SkSurface::MakeRaster(surfInfo); static constexpr SkPoint kPts1[] = {{0, 0}, {kW, kH}}; static constexpr SkColor kColors1[] = {SK_ColorGREEN, SK_ColorRED}; SkPaint paint; paint.setShader( SkGradientShader::MakeLinear(kPts1, kColors1, nullptr, 2, SkTileMode::kClamp)); refSurf->getCanvas()->drawPaint(paint); static constexpr SkPoint kPts2[] = {{kW, 0}, {0, kH}}; static constexpr SkColor kColors2[] = {SK_ColorBLUE, SK_ColorBLACK}; paint.setShader( SkGradientShader::MakeLinear(kPts2, kColors2, nullptr, 2, SkTileMode::kClamp)); paint.setBlendMode(SkBlendMode::kPlus); refSurf->getCanvas()->drawPaint(paint); // Keep everything opaque if the src alpha type is opaque. Also, there is an issue with // 1010102 (the only color type where the number of alpha bits is non-zero and not the // same as r, g, and b). Because of the different precisions the draw below can create // data that isn't strictly premul (e.g. alpha is 1/3 but green is .4). SW will clamp // r, g, b to a if the dst is premul and a different color type. GPU doesn't do this. // We could but 1010102 premul is kind of dubious anyway. So for now just keep the data // opaque. if (srcAT != kOpaque_SkAlphaType && (srcAT == kPremul_SkAlphaType && srcCT != kRGBA_1010102_SkColorType && srcCT != kBGRA_1010102_SkColorType)) { static constexpr SkColor kColors3[] = {SK_ColorWHITE, SK_ColorWHITE, 0x60FFFFFF, SK_ColorWHITE, SK_ColorWHITE}; static constexpr SkScalar kPos3[] = {0.f, 0.15f, 0.5f, 0.85f, 1.f}; paint.setShader(SkGradientShader::MakeRadial({kW / 2.f, kH / 2.f}, (kW + kH) / 10.f, kColors3, kPos3, 5, SkTileMode::kMirror)); paint.setBlendMode(SkBlendMode::kDstIn); refSurf->getCanvas()->drawPaint(paint); } const auto srcInfo = SkImageInfo::Make(kW, kH, srcCT, srcAT, SkColorSpace::MakeSRGB()); SkAutoPixmapStorage srcPixels; srcPixels.alloc(srcInfo); SkPixmap readPixmap = srcPixels; // Spoof the alpha type to kUnpremul so the read will succeed without doing any conversion // (because we made our surface also be kUnpremul). if (srcAT == kUnknown_SkAlphaType) { readPixmap.reset(srcPixels.info().makeAlphaType(kUnpremul_SkAlphaType), srcPixels.addr(), srcPixels.rowBytes()); } refSurf->readPixels(readPixmap, 0, 0); return srcPixels; }; const std::vector longRectArray = { // entire thing SkIRect::MakeWH(kW, kH), // larger on all sides SkIRect::MakeLTRB(-10, -10, kW + 10, kH + 10), // fully contained SkIRect::MakeLTRB(kW / 4, kH / 4, 3 * kW / 4, 3 * kH / 4), // outside top left SkIRect::MakeLTRB(-10, -10, -1, -1), // touching top left corner SkIRect::MakeLTRB(-10, -10, 0, 0), // overlapping top left corner SkIRect::MakeLTRB(-10, -10, kW / 4, kH / 4), // overlapping top left and top right corners SkIRect::MakeLTRB(-10, -10, kW + 10, kH / 4), // touching entire top edge SkIRect::MakeLTRB(-10, -10, kW + 10, 0), // overlapping top right corner SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH / 4), // contained in x, overlapping top edge SkIRect::MakeLTRB(kW / 4, -10, 3 * kW / 4, kH / 4), // outside top right corner SkIRect::MakeLTRB(kW + 1, -10, kW + 10, -1), // touching top right corner SkIRect::MakeLTRB(kW, -10, kW + 10, 0), // overlapping top left and bottom left corners SkIRect::MakeLTRB(-10, -10, kW / 4, kH + 10), // touching entire left edge SkIRect::MakeLTRB(-10, -10, 0, kH + 10), // overlapping bottom left corner SkIRect::MakeLTRB(-10, 3 * kH / 4, kW / 4, kH + 10), // contained in y, overlapping left edge SkIRect::MakeLTRB(-10, kH / 4, kW / 4, 3 * kH / 4), // outside bottom left corner SkIRect::MakeLTRB(-10, kH + 1, -1, kH + 10), // touching bottom left corner SkIRect::MakeLTRB(-10, kH, 0, kH + 10), // overlapping bottom left and bottom right corners SkIRect::MakeLTRB(-10, 3 * kH / 4, kW + 10, kH + 10), // touching entire left edge SkIRect::MakeLTRB(0, kH, kW, kH + 10), // overlapping bottom right corner SkIRect::MakeLTRB(3 * kW / 4, 3 * kH / 4, kW + 10, kH + 10), // overlapping top right and bottom right corners SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH + 10), }; const std::vector shortRectArray = { // entire thing SkIRect::MakeWH(kW, kH), // fully contained SkIRect::MakeLTRB(kW / 4, kH / 4, 3 * kW / 4, 3 * kH / 4), // overlapping top right corner SkIRect::MakeLTRB(3 * kW / 4, -10, kW + 10, kH / 4), }; // We ensure we use the long array once per src and read color type and otherwise use the // short array to improve test run time. // Also, some color types have no alpha values and thus Opaque Premul and Unpremul are // equivalent. Just ensure each redundant AT is tested once with each CT (src and read). // Similarly, alpha-only color types behave the same for all alpha types so just test premul // after one iter. // We consider a src or read CT thoroughly tested once it has run through the short rect array // and full complement of alpha types with one successful read in the loop. std::array srcCTTestedThoroughly = {}, readCTTestedThoroughly = {}; for (int sat = 0; sat < kLastEnum_SkAlphaType; ++sat) { const auto srcAT = static_cast(sat); if (srcAT == kUnpremul_SkAlphaType && !rules.fAllowUnpremulSrc) { continue; } for (int sct = 0; sct <= kLastEnum_SkColorType; ++sct) { const auto srcCT = static_cast(sct); // Note that we only currently use srcCT for a 1010102 workaround. If we remove this we // can also put the ref data setup above the srcCT loop. SkAutoPixmapStorage srcPixels = make_ref_f32_data(srcAT, srcCT); auto src = srcFactory(srcPixels); if (!src) { continue; } if (SkColorTypeIsAlwaysOpaque(srcCT) && srcCTTestedThoroughly[srcCT] && (kPremul_SkAlphaType == srcAT || kUnpremul_SkAlphaType == srcAT)) { continue; } if (SkColorTypeIsAlphaOnly(srcCT) && srcCTTestedThoroughly[srcCT] && (kUnpremul_SkAlphaType == srcAT || kOpaque_SkAlphaType == srcAT || kUnknown_SkAlphaType == srcAT)) { continue; } for (int rct = 0; rct <= kLastEnum_SkColorType; ++rct) { const auto readCT = static_cast(rct); for (const sk_sp& readCS : {SkColorSpace::MakeSRGB(), SkColorSpace::MakeSRGBLinear()}) { for (int at = 0; at <= kLastEnum_SkAlphaType; ++at) { const auto readAT = static_cast(at); if (srcAT != kOpaque_SkAlphaType && readAT == kOpaque_SkAlphaType) { // This doesn't make sense. continue; } if (SkColorTypeIsAlwaysOpaque(readCT) && readCTTestedThoroughly[readCT] && (kPremul_SkAlphaType == readAT || kUnpremul_SkAlphaType == readAT)) { continue; } if (SkColorTypeIsAlphaOnly(readCT) && readCTTestedThoroughly[readCT] && (kUnpremul_SkAlphaType == readAT || kOpaque_SkAlphaType == readAT || kUnknown_SkAlphaType == readAT)) { continue; } const auto& rects = srcCTTestedThoroughly[sct] && readCTTestedThoroughly[rct] ? shortRectArray : longRectArray; for (const auto& rect : rects) { const auto readInfo = SkImageInfo::Make(rect.width(), rect.height(), readCT, readAT, readCS); const SkIVector offset = rect.topLeft(); GpuReadResult r = runTest(src, srcPixels, readInfo, offset); if (r == GpuReadResult::kSuccess) { srcCTTestedThoroughly[sct] = true; readCTTestedThoroughly[rct] = true; } } } } } } } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceContextReadPixels, reporter, ctxInfo) { using Surface = std::unique_ptr; GrDirectContext* direct = ctxInfo.directContext(); auto reader = std::function>( [direct](const Surface& surface, const SkIVector& offset, const SkPixmap& pixels) { if (surface->readPixels(direct, pixels, {offset.fX, offset.fY})) { return GpuReadResult::kSuccess; } else { // Reading from a non-renderable format is not guaranteed to work on GL. // We'd have to be able to force a copy or draw draw to a renderable format. const auto& caps = *direct->priv().caps(); if (direct->backend() == GrBackendApi::kOpenGL && !caps.isFormatRenderable(surface->asSurfaceProxy()->backendFormat(), 1)) { return GpuReadResult::kExcusedFailure; } return GpuReadResult::kFail; } }); GpuReadPixelTestRules rules; rules.fAllowUnpremulSrc = true; rules.fUncontainedRectSucceeds = true; for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) { for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { auto factory = std::function>( [direct, origin, renderable](const SkPixmap& src) { if (src.colorType() == kRGB_888x_SkColorType) { return Surface(); } auto surfContext = GrSurfaceContext::Make( direct, src.info(), SkBackingFit::kExact, origin, renderable); if (surfContext) { surfContext->writePixels(direct, src, {0, 0}); } return surfContext; }); auto label = SkStringPrintf("Renderable: %d, Origin: %d", (int)renderable, origin); gpu_read_pixels_test_driver(reporter, rules, factory, reader, label); } } } namespace { struct AsyncContext { bool fCalled = false; std::unique_ptr fResult; }; } // anonymous namespace // Making this a lambda in the test functions caused: // "error: cannot compile this forwarded non-trivially copyable parameter yet" // on x86/Win/Clang bot, referring to 'result'. static void async_callback(void* c, std::unique_ptr result) { auto context = static_cast(c); context->fResult = std::move(result); context->fCalled = true; }; DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceAsyncReadPixels, reporter, ctxInfo) { using Surface = sk_sp; auto reader = std::function>( [](const Surface& surface, const SkIVector& offset, const SkPixmap& pixels) { auto direct = surface->recordingContext()->asDirectContext(); SkASSERT(direct); AsyncContext context; auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset); // Rescale quality and linearity don't matter since we're doing a non-scaling // readback. surface->asyncRescaleAndReadPixels(pixels.info(), rect, SkImage::RescaleGamma::kSrc, SkImage::RescaleMode::kNearest, async_callback, &context); direct->submit(); while (!context.fCalled) { direct->checkAsyncWorkCompletion(); } if (!context.fResult) { return GpuReadResult::kFail; } SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), context.fResult->data(0), context.fResult->rowBytes(0), pixels.info().minRowBytes(), pixels.height()); return GpuReadResult::kSuccess; }); GpuReadPixelTestRules rules; rules.fAllowUnpremulSrc = false; rules.fUncontainedRectSucceeds = false; for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { auto factory = std::function>( [context = ctxInfo.directContext(), origin](const SkPixmap& src) { if (src.colorType() == kRGB_888x_SkColorType) { return Surface(); } auto surf = SkSurface::MakeRenderTarget(context, SkBudgeted::kYes, src.info(), 1, origin, nullptr); if (surf) { surf->writePixels(src, 0, 0); } return surf; }); auto label = SkStringPrintf("Origin: %d", origin); gpu_read_pixels_test_driver(reporter, rules, factory, reader, label); auto backendRTFactory = std::function>( [context = ctxInfo.directContext(), origin](const SkPixmap& src) { if (src.colorType() == kRGB_888x_SkColorType) { return Surface(); } // Dawn backend implementation of backend render targets doesn't support reading. if (context->backend() == GrBackendApi::kDawn) { return Surface(); } auto surf = sk_gpu_test::MakeBackendRenderTargetSurface(context, src.info(), origin, 1); if (surf) { surf->writePixels(src, 0, 0); } return surf; }); label = SkStringPrintf("BERT Origin: %d", origin); gpu_read_pixels_test_driver(reporter, rules, backendRTFactory, reader, label); } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageAsyncReadPixels, reporter, ctxInfo) { using Image = sk_sp; auto context = ctxInfo.directContext(); auto reader = std::function>([context](const Image& image, const SkIVector& offset, const SkPixmap& pixels) { AsyncContext asyncContext; auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset); // The GPU implementation is based on rendering and will fail for non-renderable color // types. auto ct = SkColorTypeToGrColorType(image->colorType()); auto format = context->priv().caps()->getDefaultBackendFormat(ct, GrRenderable::kYes); if (!context->priv().caps()->isFormatAsColorTypeRenderable(ct, format)) { return GpuReadResult::kExcusedFailure; } // Rescale quality and linearity don't matter since we're doing a non-scaling readback. image->asyncRescaleAndReadPixels(pixels.info(), rect, SkImage::RescaleGamma::kSrc, SkImage::RescaleMode::kNearest, async_callback, &asyncContext); context->submit(); while (!asyncContext.fCalled) { context->checkAsyncWorkCompletion(); } if (!asyncContext.fResult) { return GpuReadResult::kFail; } SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), asyncContext.fResult->data(0), asyncContext.fResult->rowBytes(0), pixels.info().minRowBytes(), pixels.height()); return GpuReadResult::kSuccess; }); GpuReadPixelTestRules rules; rules.fAllowUnpremulSrc = true; rules.fUncontainedRectSucceeds = false; for (auto origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) { for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) { auto factory = std::function>([&](const SkPixmap& src) { if (src.colorType() == kRGB_888x_SkColorType) { return Image(); } return sk_gpu_test::MakeBackendTextureImage(ctxInfo.directContext(), src, renderable, origin); }); auto label = SkStringPrintf("Renderable: %d, Origin: %d", (int)renderable, origin); gpu_read_pixels_test_driver(reporter, rules, factory, reader, label); } } } DEF_GPUTEST(AsyncReadPixelsContextShutdown, reporter, options) { const auto ii = SkImageInfo::Make(10, 10, kRGBA_8888_SkColorType, kPremul_SkAlphaType, SkColorSpace::MakeSRGB()); enum class ShutdownSequence { kFreeResult_DestroyContext, kDestroyContext_FreeResult, kFreeResult_ReleaseAndAbandon_DestroyContext, kFreeResult_Abandon_DestroyContext, kReleaseAndAbandon_FreeResult_DestroyContext, kAbandon_FreeResult_DestroyContext, kReleaseAndAbandon_DestroyContext_FreeResult, kAbandon_DestroyContext_FreeResult, }; for (int t = 0; t < sk_gpu_test::GrContextFactory::kContextTypeCnt; ++t) { auto type = static_cast(t); for (auto sequence : {ShutdownSequence::kFreeResult_DestroyContext, ShutdownSequence::kDestroyContext_FreeResult, ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext, ShutdownSequence::kFreeResult_Abandon_DestroyContext, ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext, ShutdownSequence::kAbandon_FreeResult_DestroyContext, ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult, ShutdownSequence::kAbandon_DestroyContext_FreeResult}) { // Vulkan context abandoning without resource release has issues outside of the scope of // this test. if (type == sk_gpu_test::GrContextFactory::kVulkan_ContextType && (sequence == ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext || sequence == ShutdownSequence::kFreeResult_Abandon_DestroyContext || sequence == ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext || sequence == ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult || sequence == ShutdownSequence::kAbandon_FreeResult_DestroyContext || sequence == ShutdownSequence::kAbandon_DestroyContext_FreeResult)) { continue; } for (bool yuv : {false, true}) { sk_gpu_test::GrContextFactory factory(options); auto direct = factory.get(type); if (!direct) { continue; } // This test is only meaningful for contexts that support transfer buffers for // reads. if (!direct->priv().caps()->transferFromSurfaceToBufferSupport()) { continue; } auto surf = SkSurface::MakeRenderTarget(direct, SkBudgeted::kYes, ii, 1, nullptr); if (!surf) { continue; } AsyncContext cbContext; if (yuv) { surf->asyncRescaleAndReadPixelsYUV420( kIdentity_SkYUVColorSpace, SkColorSpace::MakeSRGB(), ii.bounds(), ii.dimensions(), SkImage::RescaleGamma::kSrc, SkImage::RescaleMode::kNearest, &async_callback, &cbContext); } else { surf->asyncRescaleAndReadPixels(ii, ii.bounds(), SkImage::RescaleGamma::kSrc, SkImage::RescaleMode::kNearest, &async_callback, &cbContext); } direct->submit(); while (!cbContext.fCalled) { direct->checkAsyncWorkCompletion(); } if (!cbContext.fResult) { ERRORF(reporter, "Callback failed on %s. is YUV: %d", sk_gpu_test::GrContextFactory::ContextTypeName(type), yuv); continue; } // For vulkan we need to release all refs to the GrDirectContext before trying to // destroy the test context. The surface here is holding a ref. surf.reset(); // The real test is that we don't crash, get Vulkan validation errors, etc, during // this shutdown sequence. switch (sequence) { case ShutdownSequence::kFreeResult_DestroyContext: case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext: case ShutdownSequence::kFreeResult_Abandon_DestroyContext: break; case ShutdownSequence::kDestroyContext_FreeResult: factory.destroyContexts(); break; case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext: factory.releaseResourcesAndAbandonContexts(); break; case ShutdownSequence::kAbandon_FreeResult_DestroyContext: factory.abandonContexts(); break; case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult: factory.releaseResourcesAndAbandonContexts(); factory.destroyContexts(); break; case ShutdownSequence::kAbandon_DestroyContext_FreeResult: factory.abandonContexts(); factory.destroyContexts(); break; } cbContext.fResult.reset(); switch (sequence) { case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext: factory.releaseResourcesAndAbandonContexts(); break; case ShutdownSequence::kFreeResult_Abandon_DestroyContext: factory.abandonContexts(); break; case ShutdownSequence::kFreeResult_DestroyContext: case ShutdownSequence::kDestroyContext_FreeResult: case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext: case ShutdownSequence::kAbandon_FreeResult_DestroyContext: case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult: case ShutdownSequence::kAbandon_DestroyContext_FreeResult: break; } } } } }