/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "PictureRenderer.h" #include "picture_utils.h" #include "SamplePipeControllers.h" #include "SkCanvas.h" #include "SkDevice.h" #include "SkGPipe.h" #if SK_SUPPORT_GPU #include "SkGpuDevice.h" #endif #include "SkGraphics.h" #include "SkImageEncoder.h" #include "SkMatrix.h" #include "SkPicture.h" #include "SkRTree.h" #include "SkScalar.h" #include "SkString.h" #include "SkTemplates.h" #include "SkTDArray.h" #include "SkThreadUtils.h" #include "SkTypes.h" namespace sk_tools { enum { kDefaultTileWidth = 256, kDefaultTileHeight = 256 }; void PictureRenderer::init(SkPicture* pict) { SkASSERT(NULL == fPicture); SkASSERT(NULL == fCanvas.get()); if (fPicture != NULL || NULL != fCanvas.get()) { return; } SkASSERT(pict != NULL); if (NULL == pict) { return; } fPicture = pict; fPicture->ref(); fCanvas.reset(this->setupCanvas()); } SkCanvas* PictureRenderer::setupCanvas() { return this->setupCanvas(fPicture->width(), fPicture->height()); } SkCanvas* PictureRenderer::setupCanvas(int width, int height) { switch(fDeviceType) { case kBitmap_DeviceType: { SkBitmap bitmap; sk_tools::setup_bitmap(&bitmap, width, height); return SkNEW_ARGS(SkCanvas, (bitmap)); break; } #if SK_SUPPORT_GPU case kGPU_DeviceType: { SkAutoTUnref device(SkNEW_ARGS(SkGpuDevice, (fGrContext, SkBitmap::kARGB_8888_Config, width, height))); return SkNEW_ARGS(SkCanvas, (device.get())); break; } #endif default: SkASSERT(0); } return NULL; } void PictureRenderer::end() { this->resetState(); SkSafeUnref(fPicture); fPicture = NULL; fCanvas.reset(NULL); } /** Converts fPicture to a picture that uses a BBoxHierarchy. * PictureRenderer subclasses that are used to test picture playback * should call this method during init. */ void PictureRenderer::buildBBoxHierarchy() { SkASSERT(NULL != fPicture); if (kNone_BBoxHierarchyType != fBBoxHierarchyType && NULL != fPicture) { SkPicture* newPicture = this->createPicture(); SkCanvas* recorder = newPicture->beginRecording(fPicture->width(), fPicture->height(), this->recordFlags()); fPicture->draw(recorder); newPicture->endRecording(); fPicture->unref(); fPicture = newPicture; } } void PictureRenderer::resetState() { #if SK_SUPPORT_GPU if (this->isUsingGpuDevice()) { SkGLContext* glContext = fGrContextFactory.getGLContext( GrContextFactory::kNative_GLContextType); SkASSERT(glContext != NULL); if (NULL == glContext) { return; } fGrContext->flush(); SK_GL(*glContext, Finish()); } #endif } uint32_t PictureRenderer::recordFlags() { return kNone_BBoxHierarchyType == fBBoxHierarchyType ? 0 : SkPicture::kOptimizeForClippedPlayback_RecordingFlag; } /** * Write the canvas to the specified path. * @param canvas Must be non-null. Canvas to be written to a file. * @param path Path for the file to be written. Should have no extension; write() will append * an appropriate one. Passed in by value so it can be modified. * @return bool True if the Canvas is written to a file. */ static bool write(SkCanvas* canvas, SkString path) { SkASSERT(canvas != NULL); if (NULL == canvas) { return false; } SkBitmap bitmap; SkISize size = canvas->getDeviceSize(); sk_tools::setup_bitmap(&bitmap, size.width(), size.height()); canvas->readPixels(&bitmap, 0, 0); sk_tools::force_all_opaque(bitmap); // Since path is passed in by value, it is okay to modify it. path.append(".png"); return SkImageEncoder::EncodeFile(path.c_str(), bitmap, SkImageEncoder::kPNG_Type, 100); } /** * If path is non NULL, append number to it, and call write(SkCanvas*, SkString) to write the * provided canvas to a file. Returns true if path is NULL or if write() succeeds. */ static bool writeAppendNumber(SkCanvas* canvas, const SkString* path, int number) { if (NULL == path) { return true; } SkString pathWithNumber(*path); pathWithNumber.appendf("%i", number); return write(canvas, pathWithNumber); } /////////////////////////////////////////////////////////////////////////////////////////////// bool RecordPictureRenderer::render(const SkString*) { SkAutoTUnref replayer(this->createPicture()); SkCanvas* recorder = replayer->beginRecording(fPicture->width(), fPicture->height(), this->recordFlags()); fPicture->draw(recorder); replayer->endRecording(); // Since this class does not actually render, return false. return false; } SkString RecordPictureRenderer::getConfigNameInternal() { return SkString("record"); } /////////////////////////////////////////////////////////////////////////////////////////////// bool PipePictureRenderer::render(const SkString* path) { SkASSERT(fCanvas.get() != NULL); SkASSERT(fPicture != NULL); if (NULL == fCanvas.get() || NULL == fPicture) { return false; } PipeController pipeController(fCanvas.get()); SkGPipeWriter writer; SkCanvas* pipeCanvas = writer.startRecording(&pipeController); pipeCanvas->drawPicture(*fPicture); writer.endRecording(); fCanvas->flush(); if (NULL != path) { return write(fCanvas, *path); } return true; } SkString PipePictureRenderer::getConfigNameInternal() { return SkString("pipe"); } /////////////////////////////////////////////////////////////////////////////////////////////// void SimplePictureRenderer::init(SkPicture* picture) { INHERITED::init(picture); this->buildBBoxHierarchy(); } bool SimplePictureRenderer::render(const SkString* path) { SkASSERT(fCanvas.get() != NULL); SkASSERT(fPicture != NULL); if (NULL == fCanvas.get() || NULL == fPicture) { return false; } fCanvas->drawPicture(*fPicture); fCanvas->flush(); if (NULL != path) { return write(fCanvas, *path); } return true; } SkString SimplePictureRenderer::getConfigNameInternal() { return SkString("simple"); } /////////////////////////////////////////////////////////////////////////////////////////////// TiledPictureRenderer::TiledPictureRenderer() : fTileWidth(kDefaultTileWidth) , fTileHeight(kDefaultTileHeight) , fTileWidthPercentage(0.0) , fTileHeightPercentage(0.0) , fTileMinPowerOf2Width(0) { } void TiledPictureRenderer::init(SkPicture* pict) { SkASSERT(pict != NULL); SkASSERT(0 == fTileRects.count()); if (NULL == pict || fTileRects.count() != 0) { return; } // Do not call INHERITED::init(), which would create a (potentially large) canvas which is not // used by bench_pictures. fPicture = pict; fPicture->ref(); this->buildBBoxHierarchy(); if (fTileWidthPercentage > 0) { fTileWidth = sk_float_ceil2int(float(fTileWidthPercentage * fPicture->width() / 100)); } if (fTileHeightPercentage > 0) { fTileHeight = sk_float_ceil2int(float(fTileHeightPercentage * fPicture->height() / 100)); } if (fTileMinPowerOf2Width > 0) { this->setupPowerOf2Tiles(); } else { this->setupTiles(); } } void TiledPictureRenderer::end() { fTileRects.reset(); this->INHERITED::end(); } void TiledPictureRenderer::setupTiles() { for (int tile_y_start = 0; tile_y_start < fPicture->height(); tile_y_start += fTileHeight) { for (int tile_x_start = 0; tile_x_start < fPicture->width(); tile_x_start += fTileWidth) { *fTileRects.append() = SkRect::MakeXYWH(SkIntToScalar(tile_x_start), SkIntToScalar(tile_y_start), SkIntToScalar(fTileWidth), SkIntToScalar(fTileHeight)); } } } // The goal of the powers of two tiles is to minimize the amount of wasted tile // space in the width-wise direction and then minimize the number of tiles. The // constraints are that every tile must have a pixel width that is a power of // two and also be of some minimal width (that is also a power of two). // // This is solved by first taking our picture size and rounding it up to the // multiple of the minimal width. The binary representation of this rounded // value gives us the tiles we need: a bit of value one means we need a tile of // that size. void TiledPictureRenderer::setupPowerOf2Tiles() { int rounded_value = fPicture->width(); if (fPicture->width() % fTileMinPowerOf2Width != 0) { rounded_value = fPicture->width() - (fPicture->width() % fTileMinPowerOf2Width) + fTileMinPowerOf2Width; } int num_bits = SkScalarCeilToInt(SkScalarLog2(SkIntToScalar(fPicture->width()))); int largest_possible_tile_size = 1 << num_bits; // The tile height is constant for a particular picture. for (int tile_y_start = 0; tile_y_start < fPicture->height(); tile_y_start += fTileHeight) { int tile_x_start = 0; int current_width = largest_possible_tile_size; // Set fTileWidth to be the width of the widest tile, so that each canvas is large enough // to draw each tile. fTileWidth = current_width; while (current_width >= fTileMinPowerOf2Width) { // It is very important this is a bitwise AND. if (current_width & rounded_value) { *fTileRects.append() = SkRect::MakeXYWH(SkIntToScalar(tile_x_start), SkIntToScalar(tile_y_start), SkIntToScalar(current_width), SkIntToScalar(fTileHeight)); tile_x_start += current_width; } current_width >>= 1; } } } /** * Draw the specified playback to the canvas translated to rectangle provided, so that this mini * canvas represents the rectangle's portion of the overall picture. * Saves and restores so that the initial clip and matrix return to their state before this function * is called. */ template static void DrawTileToCanvas(SkCanvas* canvas, const SkRect& tileRect, T* playback) { int saveCount = canvas->save(); // Translate so that we draw the correct portion of the picture canvas->translate(-tileRect.fLeft, -tileRect.fTop); playback->draw(canvas); canvas->restoreToCount(saveCount); canvas->flush(); } /////////////////////////////////////////////////////////////////////////////////////////////// bool TiledPictureRenderer::render(const SkString* path) { SkASSERT(fPicture != NULL); if (NULL == fPicture) { return false; } // Reuse one canvas for all tiles. SkCanvas* canvas = this->setupCanvas(fTileWidth, fTileHeight); SkAutoUnref aur(canvas); bool success = true; for (int i = 0; i < fTileRects.count(); ++i) { DrawTileToCanvas(canvas, fTileRects[i], fPicture); if (NULL != path) { success &= writeAppendNumber(canvas, path, i); } } return success; } SkCanvas* TiledPictureRenderer::setupCanvas(int width, int height) { SkCanvas* canvas = this->INHERITED::setupCanvas(width, height); SkASSERT(fPicture != NULL); // Clip the tile to an area that is completely in what the SkPicture says is the // drawn-to area. This is mostly important for tiles on the right and bottom edges // as they may go over this area and the picture may have some commands that // draw outside of this area and so should not actually be written. SkRect clip = SkRect::MakeWH(SkIntToScalar(fPicture->width()), SkIntToScalar(fPicture->height())); canvas->clipRect(clip); return canvas; } SkString TiledPictureRenderer::getConfigNameInternal() { SkString name; if (fTileMinPowerOf2Width > 0) { name.append("pow2tile_"); name.appendf("%i", fTileMinPowerOf2Width); } else { name.append("tile_"); if (fTileWidthPercentage > 0) { name.appendf("%.f%%", fTileWidthPercentage); } else { name.appendf("%i", fTileWidth); } } name.append("x"); if (fTileHeightPercentage > 0) { name.appendf("%.f%%", fTileHeightPercentage); } else { name.appendf("%i", fTileHeight); } return name; } /////////////////////////////////////////////////////////////////////////////////////////////// // Holds all of the information needed to draw a set of tiles. class CloneData : public SkRunnable { public: CloneData(SkPicture* clone, SkCanvas* canvas, SkTDArray& rects, int start, int end, SkRunnable* done) : fClone(clone) , fCanvas(canvas) , fPath(NULL) , fRects(rects) , fStart(start) , fEnd(end) , fSuccess(NULL) , fDone(done) { SkASSERT(fDone != NULL); } virtual void run() SK_OVERRIDE { SkGraphics::SetTLSFontCacheLimit(1024 * 1024); for (int i = fStart; i < fEnd; i++) { DrawTileToCanvas(fCanvas, fRects[i], fClone); if (fPath != NULL && !writeAppendNumber(fCanvas, fPath, i) && fSuccess != NULL) { *fSuccess = false; // If one tile fails to write to a file, do not continue drawing the rest. break; } } fDone->run(); } void setPathAndSuccess(const SkString* path, bool* success) { fPath = path; fSuccess = success; } private: // All pointers unowned. SkPicture* fClone; // Picture to draw from. Each CloneData has a unique one which // is threadsafe. SkCanvas* fCanvas; // Canvas to draw to. Reused for each tile. const SkString* fPath; // If non-null, path to write the result to as a PNG. SkTDArray& fRects; // All tiles of the picture. const int fStart; // Range of tiles drawn by this thread. const int fEnd; bool* fSuccess; // Only meaningful if path is non-null. Shared by all threads, // and only set to false upon failure to write to a PNG. SkRunnable* fDone; }; MultiCorePictureRenderer::MultiCorePictureRenderer(int threadCount) : fNumThreads(threadCount) , fThreadPool(threadCount) , fCountdown(threadCount) { // Only need to create fNumThreads - 1 clones, since one thread will use the base // picture. fPictureClones = SkNEW_ARRAY(SkPicture, fNumThreads - 1); fCloneData = SkNEW_ARRAY(CloneData*, fNumThreads); } void MultiCorePictureRenderer::init(SkPicture *pict) { // Set fPicture and the tiles. this->INHERITED::init(pict); for (int i = 0; i < fNumThreads; ++i) { *fCanvasPool.append() = this->setupCanvas(this->getTileWidth(), this->getTileHeight()); } // Only need to create fNumThreads - 1 clones, since one thread will use the base picture. fPicture->clone(fPictureClones, fNumThreads - 1); // Populate each thread with the appropriate data. // Group the tiles into nearly equal size chunks, rounding up so we're sure to cover them all. const int chunkSize = (fTileRects.count() + fNumThreads - 1) / fNumThreads; for (int i = 0; i < fNumThreads; i++) { SkPicture* pic; if (i == fNumThreads-1) { // The last set will use the original SkPicture. pic = fPicture; } else { pic = &fPictureClones[i]; } const int start = i * chunkSize; const int end = SkMin32(start + chunkSize, fTileRects.count()); fCloneData[i] = SkNEW_ARGS(CloneData, (pic, fCanvasPool[i], fTileRects, start, end, &fCountdown)); } } bool MultiCorePictureRenderer::render(const SkString *path) { bool success = true; if (path != NULL) { for (int i = 0; i < fNumThreads-1; i++) { fCloneData[i]->setPathAndSuccess(path, &success); } } fCountdown.reset(fNumThreads); for (int i = 0; i < fNumThreads; i++) { fThreadPool.add(fCloneData[i]); } fCountdown.wait(); return success; } void MultiCorePictureRenderer::end() { for (int i = 0; i < fNumThreads - 1; i++) { SkDELETE(fCloneData[i]); fCloneData[i] = NULL; } fCanvasPool.unrefAll(); this->INHERITED::end(); } MultiCorePictureRenderer::~MultiCorePictureRenderer() { // Each individual CloneData was deleted in end. SkDELETE_ARRAY(fCloneData); SkDELETE_ARRAY(fPictureClones); } SkString MultiCorePictureRenderer::getConfigNameInternal() { SkString name = this->INHERITED::getConfigNameInternal(); name.appendf("_multi_%i_threads", fNumThreads); return name; } /////////////////////////////////////////////////////////////////////////////////////////////// void PlaybackCreationRenderer::setup() { fReplayer.reset(this->createPicture()); SkCanvas* recorder = fReplayer->beginRecording(fPicture->width(), fPicture->height(), this->recordFlags()); fPicture->draw(recorder); } bool PlaybackCreationRenderer::render(const SkString*) { fReplayer->endRecording(); // Since this class does not actually render, return false. return false; } SkString PlaybackCreationRenderer::getConfigNameInternal() { return SkString("playback_creation"); } /////////////////////////////////////////////////////////////////////////////////////////////// // SkPicture variants for each BBoxHierarchy type class RTreePicture : public SkPicture { public: virtual SkBBoxHierarchy* createBBoxHierarchy() const SK_OVERRIDE{ static const int kRTreeMinChildren = 6; static const int kRTreeMaxChildren = 11; SkScalar aspectRatio = SkScalarDiv(SkIntToScalar(fWidth), SkIntToScalar(fHeight)); return SkRTree::Create(kRTreeMinChildren, kRTreeMaxChildren, aspectRatio); } }; SkPicture* PictureRenderer::createPicture() { switch (fBBoxHierarchyType) { case kNone_BBoxHierarchyType: return SkNEW(SkPicture); case kRTree_BBoxHierarchyType: return SkNEW(RTreePicture); } SkASSERT(0); // invalid bbhType return NULL; } } // namespace sk_tools