/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Resources.h" #include "SkBitmapSource.h" #include "SkCanvas.h" #include "SkMallocPixelRef.h" #include "SkOSFile.h" #include "SkPictureRecorder.h" #include "SkTemplates.h" #include "SkTypeface.h" #include "SkWriteBuffer.h" #include "SkValidatingReadBuffer.h" #include "SkXfermodeImageFilter.h" #include "Test.h" static const uint32_t kArraySize = 64; static const int kBitmapSize = 256; template static void TestAlignment(T* testObj, skiatest::Reporter* reporter) { // Test memory read/write functions directly unsigned char dataWritten[1024]; size_t bytesWrittenToMemory = testObj->writeToMemory(dataWritten); REPORTER_ASSERT(reporter, SkAlign4(bytesWrittenToMemory) == bytesWrittenToMemory); size_t bytesReadFromMemory = testObj->readFromMemory(dataWritten, bytesWrittenToMemory); REPORTER_ASSERT(reporter, SkAlign4(bytesReadFromMemory) == bytesReadFromMemory); } template struct SerializationUtils { // Generic case for flattenables static void Write(SkWriteBuffer& writer, const T* flattenable) { writer.writeFlattenable(flattenable); } static void Read(SkValidatingReadBuffer& reader, T** flattenable) { *flattenable = (T*)reader.readFlattenable(T::GetFlattenableType()); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, const SkMatrix* matrix) { writer.writeMatrix(*matrix); } static void Read(SkValidatingReadBuffer& reader, SkMatrix* matrix) { reader.readMatrix(matrix); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, const SkPath* path) { writer.writePath(*path); } static void Read(SkValidatingReadBuffer& reader, SkPath* path) { reader.readPath(path); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, const SkRegion* region) { writer.writeRegion(*region); } static void Read(SkValidatingReadBuffer& reader, SkRegion* region) { reader.readRegion(region); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, const SkString* string) { writer.writeString(string->c_str()); } static void Read(SkValidatingReadBuffer& reader, SkString* string) { reader.readString(string); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, unsigned char* data, uint32_t arraySize) { writer.writeByteArray(data, arraySize); } static bool Read(SkValidatingReadBuffer& reader, unsigned char* data, uint32_t arraySize) { return reader.readByteArray(data, arraySize); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, SkColor* data, uint32_t arraySize) { writer.writeColorArray(data, arraySize); } static bool Read(SkValidatingReadBuffer& reader, SkColor* data, uint32_t arraySize) { return reader.readColorArray(data, arraySize); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, int32_t* data, uint32_t arraySize) { writer.writeIntArray(data, arraySize); } static bool Read(SkValidatingReadBuffer& reader, int32_t* data, uint32_t arraySize) { return reader.readIntArray(data, arraySize); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, SkPoint* data, uint32_t arraySize) { writer.writePointArray(data, arraySize); } static bool Read(SkValidatingReadBuffer& reader, SkPoint* data, uint32_t arraySize) { return reader.readPointArray(data, arraySize); } }; template<> struct SerializationUtils { static void Write(SkWriteBuffer& writer, SkScalar* data, uint32_t arraySize) { writer.writeScalarArray(data, arraySize); } static bool Read(SkValidatingReadBuffer& reader, SkScalar* data, uint32_t arraySize) { return reader.readScalarArray(data, arraySize); } }; template struct SerializationTestUtils { static void InvalidateData(unsigned char* data) {} }; template<> struct SerializationTestUtils { static void InvalidateData(unsigned char* data) { data[3] |= 0x80; // Reverse sign of 1st integer } }; template static void TestObjectSerializationNoAlign(T* testObj, skiatest::Reporter* reporter) { SkWriteBuffer writer(SkWriteBuffer::kValidation_Flag); SerializationUtils::Write(writer, testObj); size_t bytesWritten = writer.bytesWritten(); REPORTER_ASSERT(reporter, SkAlign4(bytesWritten) == bytesWritten); unsigned char dataWritten[1024]; writer.writeToMemory(dataWritten); SerializationTestUtils::InvalidateData(dataWritten); // Make sure this fails when it should (test with smaller size, but still multiple of 4) SkValidatingReadBuffer buffer(dataWritten, bytesWritten - 4); T obj; SerializationUtils::Read(buffer, &obj); REPORTER_ASSERT(reporter, !buffer.isValid()); // Make sure this succeeds when it should SkValidatingReadBuffer buffer2(dataWritten, bytesWritten); const unsigned char* peekBefore = static_cast(buffer2.skip(0)); T obj2; SerializationUtils::Read(buffer2, &obj2); const unsigned char* peekAfter = static_cast(buffer2.skip(0)); // This should have succeeded, since there are enough bytes to read this REPORTER_ASSERT(reporter, buffer2.isValid() == !testInvalid); // Note: This following test should always succeed, regardless of whether the buffer is valid, // since if it is invalid, it will simply skip to the end, as if it had read the whole buffer. REPORTER_ASSERT(reporter, static_cast(peekAfter - peekBefore) == bytesWritten); } template static void TestObjectSerialization(T* testObj, skiatest::Reporter* reporter) { TestObjectSerializationNoAlign(testObj, reporter); TestAlignment(testObj, reporter); } template static T* TestFlattenableSerialization(T* testObj, bool shouldSucceed, skiatest::Reporter* reporter) { SkWriteBuffer writer(SkWriteBuffer::kValidation_Flag); SerializationUtils::Write(writer, testObj); size_t bytesWritten = writer.bytesWritten(); REPORTER_ASSERT(reporter, SkAlign4(bytesWritten) == bytesWritten); unsigned char dataWritten[1024]; SkASSERT(bytesWritten <= sizeof(dataWritten)); writer.writeToMemory(dataWritten); // Make sure this fails when it should (test with smaller size, but still multiple of 4) SkValidatingReadBuffer buffer(dataWritten, bytesWritten - 4); T* obj = NULL; SerializationUtils::Read(buffer, &obj); REPORTER_ASSERT(reporter, !buffer.isValid()); REPORTER_ASSERT(reporter, NULL == obj); // Make sure this succeeds when it should SkValidatingReadBuffer buffer2(dataWritten, bytesWritten); const unsigned char* peekBefore = static_cast(buffer2.skip(0)); T* obj2 = NULL; SerializationUtils::Read(buffer2, &obj2); const unsigned char* peekAfter = static_cast(buffer2.skip(0)); if (shouldSucceed) { // This should have succeeded, since there are enough bytes to read this REPORTER_ASSERT(reporter, buffer2.isValid()); REPORTER_ASSERT(reporter, static_cast(peekAfter - peekBefore) == bytesWritten); REPORTER_ASSERT(reporter, obj2); } else { // If the deserialization was supposed to fail, make sure it did REPORTER_ASSERT(reporter, !buffer.isValid()); REPORTER_ASSERT(reporter, NULL == obj2); } return obj2; // Return object to perform further validity tests on it } template static void TestArraySerialization(T* data, skiatest::Reporter* reporter) { SkWriteBuffer writer(SkWriteBuffer::kValidation_Flag); SerializationUtils::Write(writer, data, kArraySize); size_t bytesWritten = writer.bytesWritten(); // This should write the length (in 4 bytes) and the array REPORTER_ASSERT(reporter, (4 + kArraySize * sizeof(T)) == bytesWritten); unsigned char dataWritten[1024]; writer.writeToMemory(dataWritten); // Make sure this fails when it should SkValidatingReadBuffer buffer(dataWritten, bytesWritten); T dataRead[kArraySize]; bool success = SerializationUtils::Read(buffer, dataRead, kArraySize / 2); // This should have failed, since the provided size was too small REPORTER_ASSERT(reporter, !success); // Make sure this succeeds when it should SkValidatingReadBuffer buffer2(dataWritten, bytesWritten); success = SerializationUtils::Read(buffer2, dataRead, kArraySize); // This should have succeeded, since there are enough bytes to read this REPORTER_ASSERT(reporter, success); } static void TestBitmapSerialization(const SkBitmap& validBitmap, const SkBitmap& invalidBitmap, bool shouldSucceed, skiatest::Reporter* reporter) { SkAutoTUnref validBitmapSource(SkBitmapSource::Create(validBitmap)); SkAutoTUnref invalidBitmapSource(SkBitmapSource::Create(invalidBitmap)); SkAutoTUnref mode(SkXfermode::Create(SkXfermode::kSrcOver_Mode)); SkAutoTUnref xfermodeImageFilter( SkXfermodeImageFilter::Create(mode, invalidBitmapSource, validBitmapSource)); SkAutoTUnref deserializedFilter( TestFlattenableSerialization( xfermodeImageFilter, shouldSucceed, reporter)); // Try to render a small bitmap using the invalid deserialized filter // to make sure we don't crash while trying to render it if (shouldSucceed) { SkBitmap bitmap; bitmap.allocN32Pixels(24, 24); SkCanvas canvas(bitmap); canvas.clear(0x00000000); SkPaint paint; paint.setImageFilter(deserializedFilter); canvas.clipRect(SkRect::MakeXYWH(0, 0, SkIntToScalar(24), SkIntToScalar(24))); canvas.drawBitmap(bitmap, 0, 0, &paint); } } static void TestXfermodeSerialization(skiatest::Reporter* reporter) { for (size_t i = 0; i <= SkXfermode::kLastMode; ++i) { if (i == SkXfermode::kSrcOver_Mode) { // skip SrcOver, as it is allowed to return NULL from Create() continue; } SkAutoTUnref mode(SkXfermode::Create(static_cast(i))); REPORTER_ASSERT(reporter, mode.get()); SkAutoTUnref copy( TestFlattenableSerialization(mode.get(), true, reporter)); } } static SkBitmap draw_picture(SkPicture& picture) { SkBitmap bitmap; bitmap.allocN32Pixels(SkScalarCeilToInt(picture.cullRect().width()), SkScalarCeilToInt(picture.cullRect().height())); SkCanvas canvas(bitmap); picture.playback(&canvas); return bitmap; } static void compare_bitmaps(skiatest::Reporter* reporter, const SkBitmap& b1, const SkBitmap& b2) { REPORTER_ASSERT(reporter, b1.width() == b2.width()); REPORTER_ASSERT(reporter, b1.height() == b2.height()); SkAutoLockPixels autoLockPixels1(b1); SkAutoLockPixels autoLockPixels2(b2); if ((b1.width() != b2.width()) || (b1.height() != b2.height())) { return; } int pixelErrors = 0; for (int y = 0; y < b2.height(); ++y) { for (int x = 0; x < b2.width(); ++x) { if (b1.getColor(x, y) != b2.getColor(x, y)) ++pixelErrors; } } REPORTER_ASSERT(reporter, 0 == pixelErrors); } static void TestPictureTypefaceSerialization(skiatest::Reporter* reporter) { // Load typeface form file. // This test cannot run if there is no resource path. SkString resourcePath = GetResourcePath(); if (resourcePath.isEmpty()) { SkDebugf("Could not run fontstream test because resourcePath not specified."); return; } SkString filename = SkOSPath::Join(resourcePath.c_str(), "test.ttc"); SkTypeface* typeface = SkTypeface::CreateFromFile(filename.c_str(), 1); if (!typeface) { SkDebugf("Could not run fontstream test because test.ttc not found."); return; } // Create a paint with the typeface we loaded. SkPaint paint; paint.setColor(SK_ColorGRAY); paint.setTextSize(SkIntToScalar(30)); SkSafeUnref(paint.setTypeface(typeface)); // Paint some text. SkPictureRecorder recorder; SkIRect canvasRect = SkIRect::MakeWH(kBitmapSize, kBitmapSize); SkCanvas* canvas = recorder.beginRecording(SkIntToScalar(canvasRect.width()), SkIntToScalar(canvasRect.height()), NULL, 0); canvas->drawColor(SK_ColorWHITE); canvas->drawText("A!", 2, 24, 32, paint); SkAutoTUnref picture(recorder.endRecording()); // Serlialize picture and create its clone from stream. SkDynamicMemoryWStream stream; picture->serialize(&stream); SkAutoTUnref inputStream(stream.detachAsStream()); SkAutoTUnref loadedPicture(SkPicture::CreateFromStream(inputStream.get())); // Draw both original and clone picture and compare bitmaps -- they should be identical. SkBitmap origBitmap = draw_picture(*picture); SkBitmap destBitmap = draw_picture(*loadedPicture); compare_bitmaps(reporter, origBitmap, destBitmap); } static void setup_bitmap_for_canvas(SkBitmap* bitmap) { bitmap->allocN32Pixels(kBitmapSize, kBitmapSize); } static void make_checkerboard_bitmap(SkBitmap& bitmap) { setup_bitmap_for_canvas(&bitmap); SkCanvas canvas(bitmap); canvas.clear(0x00000000); SkPaint darkPaint; darkPaint.setColor(0xFF804020); SkPaint lightPaint; lightPaint.setColor(0xFF244484); const int i = kBitmapSize / 8; const SkScalar f = SkIntToScalar(i); for (int y = 0; y < kBitmapSize; y += i) { for (int x = 0; x < kBitmapSize; x += i) { canvas.save(); canvas.translate(SkIntToScalar(x), SkIntToScalar(y)); canvas.drawRect(SkRect::MakeXYWH(0, 0, f, f), darkPaint); canvas.drawRect(SkRect::MakeXYWH(f, 0, f, f), lightPaint); canvas.drawRect(SkRect::MakeXYWH(0, f, f, f), lightPaint); canvas.drawRect(SkRect::MakeXYWH(f, f, f, f), darkPaint); canvas.restore(); } } } static void draw_something(SkCanvas* canvas) { SkPaint paint; SkBitmap bitmap; make_checkerboard_bitmap(bitmap); canvas->save(); canvas->scale(0.5f, 0.5f); canvas->drawBitmap(bitmap, 0, 0, NULL); canvas->restore(); const char beforeStr[] = "before circle"; const char afterStr[] = "after circle"; paint.setAntiAlias(true); paint.setColor(SK_ColorRED); canvas->drawData(beforeStr, sizeof(beforeStr)); canvas->drawCircle(SkIntToScalar(kBitmapSize/2), SkIntToScalar(kBitmapSize/2), SkIntToScalar(kBitmapSize/3), paint); canvas->drawData(afterStr, sizeof(afterStr)); paint.setColor(SK_ColorBLACK); paint.setTextSize(SkIntToScalar(kBitmapSize/3)); canvas->drawText("Picture", 7, SkIntToScalar(kBitmapSize/2), SkIntToScalar(kBitmapSize/4), paint); } DEF_TEST(Serialization, reporter) { // Test matrix serialization { SkMatrix matrix = SkMatrix::I(); TestObjectSerialization(&matrix, reporter); } // Test path serialization { SkPath path; TestObjectSerialization(&path, reporter); } // Test region serialization { SkRegion region; TestObjectSerialization(®ion, reporter); } // Test xfermode serialization { TestXfermodeSerialization(reporter); } // Test string serialization { SkString string("string"); TestObjectSerializationNoAlign(&string, reporter); TestObjectSerializationNoAlign(&string, reporter); } // Test rrect serialization { // SkRRect does not initialize anything. // An uninitialized SkRRect can be serialized, // but will branch on uninitialized data when deserialized. SkRRect rrect; SkRect rect = SkRect::MakeXYWH(1, 2, 20, 30); SkVector corners[4] = { {1, 2}, {2, 3}, {3,4}, {4,5} }; rrect.setRectRadii(rect, corners); TestAlignment(&rrect, reporter); } // Test readByteArray { unsigned char data[kArraySize] = { 1, 2, 3 }; TestArraySerialization(data, reporter); } // Test readColorArray { SkColor data[kArraySize] = { SK_ColorBLACK, SK_ColorWHITE, SK_ColorRED }; TestArraySerialization(data, reporter); } // Test readIntArray { int32_t data[kArraySize] = { 1, 2, 4, 8 }; TestArraySerialization(data, reporter); } // Test readPointArray { SkPoint data[kArraySize] = { {6, 7}, {42, 128} }; TestArraySerialization(data, reporter); } // Test readScalarArray { SkScalar data[kArraySize] = { SK_Scalar1, SK_ScalarHalf, SK_ScalarMax }; TestArraySerialization(data, reporter); } // Test invalid deserializations { SkImageInfo info = SkImageInfo::MakeN32Premul(kBitmapSize, kBitmapSize); SkBitmap validBitmap; validBitmap.setInfo(info); // Create a bitmap with a really large height SkBitmap invalidBitmap; invalidBitmap.setInfo(info.makeWH(info.width(), 1000000000)); // The deserialization should succeed, and the rendering shouldn't crash, // even when the device fails to initialize, due to its size TestBitmapSerialization(validBitmap, invalidBitmap, true, reporter); } // Test simple SkPicture serialization { SkPictureRecorder recorder; draw_something(recorder.beginRecording(SkIntToScalar(kBitmapSize), SkIntToScalar(kBitmapSize), NULL, 0)); SkAutoTUnref pict(recorder.endRecording()); // Serialize picture SkWriteBuffer writer(SkWriteBuffer::kValidation_Flag); pict->flatten(writer); size_t size = writer.bytesWritten(); SkAutoTMalloc data(size); writer.writeToMemory(static_cast(data.get())); // Deserialize picture SkValidatingReadBuffer reader(static_cast(data.get()), size); SkAutoTUnref readPict( SkPicture::CreateFromBuffer(reader)); REPORTER_ASSERT(reporter, readPict.get()); } TestPictureTypefaceSerialization(reporter); }