/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrPaint_DEFINED #define GrPaint_DEFINED #include "GrColor.h" #include "GrColorSpaceXform.h" #include "GrFragmentProcessor.h" #include "GrXferProcessor.h" #include "SkBlendMode.h" #include "SkRefCnt.h" #include "SkRegion.h" #include "SkTLazy.h" #include "effects/GrPorterDuffXferProcessor.h" class GrTextureProxy; /** * The paint describes how color and coverage are computed at each pixel by GrContext draw * functions and the how color is blended with the destination pixel. * * The paint allows installation of custom color and coverage stages. New types of stages are * created by subclassing GrProcessor. * * The primitive color computation starts with the color specified by setColor(). This color is the * input to the first color stage. Each color stage feeds its output to the next color stage. * * Fractional pixel coverage follows a similar flow. The GrGeometryProcessor (specified elsewhere) * provides the initial coverage which is passed to the first coverage fragment processor, which * feeds its output to next coverage fragment processor. * * setXPFactory is used to control blending between the output color and dest. It also implements * the application of fractional coverage from the coverage pipeline. */ class GrPaint { public: GrPaint() = default; explicit GrPaint(const GrPaint&) = default; ~GrPaint() = default; /** * The initial color of the drawn primitive. Defaults to solid white. */ void setColor4f(const GrColor4f& color) { fColor = color; } const GrColor4f& getColor4f() const { return fColor; } /** * Legacy getter, until all code handles 4f directly. */ GrColor getColor() const { return fColor.toGrColor(); } /** * Should shader output conversion from linear to sRGB be disabled. * Only relevant if the destination is sRGB. Defaults to false. */ void setDisableOutputConversionToSRGB(bool srgb) { fDisableOutputConversionToSRGB = srgb; } bool getDisableOutputConversionToSRGB() const { return fDisableOutputConversionToSRGB; } /** * Should sRGB inputs be allowed to perform sRGB to linear conversion. With this flag * set to false, sRGB textures will be treated as linear (including filtering). */ void setAllowSRGBInputs(bool allowSRGBInputs) { fAllowSRGBInputs = allowSRGBInputs; } bool getAllowSRGBInputs() const { return fAllowSRGBInputs; } /** * Does one of the fragment processors need a field of distance vectors to the nearest edge? */ bool usesDistanceVectorField() const { return fUsesDistanceVectorField; } /** * Should rendering be gamma-correct, end-to-end. Causes sRGB render targets to behave * as such (with linear blending), and sRGB inputs to be filtered and decoded correctly. */ void setGammaCorrect(bool gammaCorrect) { setDisableOutputConversionToSRGB(!gammaCorrect); setAllowSRGBInputs(gammaCorrect); } void setXPFactory(const GrXPFactory* xpFactory) { fXPFactory = xpFactory; } void setPorterDuffXPFactory(SkBlendMode mode) { fXPFactory = GrPorterDuffXPFactory::Get(mode); } void setCoverageSetOpXPFactory(SkRegion::Op, bool invertCoverage = false); /** * Appends an additional color processor to the color computation. */ void addColorFragmentProcessor(sk_sp fp) { SkASSERT(fp); fUsesDistanceVectorField |= fp->usesDistanceVectorField(); fColorFragmentProcessors.push_back(std::move(fp)); } /** * Appends an additional coverage processor to the coverage computation. */ void addCoverageFragmentProcessor(sk_sp fp) { SkASSERT(fp); fUsesDistanceVectorField |= fp->usesDistanceVectorField(); fCoverageFragmentProcessors.push_back(std::move(fp)); } /** * Helpers for adding color or coverage effects that sample a texture. The matrix is applied * to the src space position to compute texture coordinates. */ void addColorTextureProcessor(GrTexture*, sk_sp, const SkMatrix&); void addCoverageTextureProcessor(GrTexture*, const SkMatrix&); void addColorTextureProcessor(GrTexture*, sk_sp, const SkMatrix&, const GrSamplerParams&); void addCoverageTextureProcessor(GrTexture*, const SkMatrix&, const GrSamplerParams&); void addColorTextureProcessor(GrContext*, sk_sp, sk_sp, const SkMatrix&); void addColorTextureProcessor(GrContext*, sk_sp, sk_sp, const SkMatrix&, const GrSamplerParams&); void addCoverageTextureProcessor(GrContext*, sk_sp, const SkMatrix&); void addCoverageTextureProcessor(GrContext*, sk_sp, const SkMatrix&, const GrSamplerParams&); int numColorFragmentProcessors() const { return fColorFragmentProcessors.count(); } int numCoverageFragmentProcessors() const { return fCoverageFragmentProcessors.count(); } int numTotalFragmentProcessors() const { return this->numColorFragmentProcessors() + this->numCoverageFragmentProcessors(); } const GrXPFactory* getXPFactory() const { return fXPFactory; } GrFragmentProcessor* getColorFragmentProcessor(int i) const { return fColorFragmentProcessors[i].get(); } GrFragmentProcessor* getCoverageFragmentProcessor(int i) const { return fCoverageFragmentProcessors[i].get(); } /** * Returns true if the paint's output color will be constant after blending. If the result is * true, constantColor will be updated to contain the constant color. Note that we can conflate * coverage and color, so the actual values written to pixels with partial coverage may still * not seem constant, even if this function returns true. */ bool isConstantBlendedColor(GrColor* constantColor) const { GrColor paintColor = this->getColor(); if (!fXPFactory && fColorFragmentProcessors.empty()) { if (!GrColorIsOpaque(paintColor)) { return false; } *constantColor = paintColor; return true; } return this->internalIsConstantBlendedColor(paintColor, constantColor); } private: template class MoveOrImpl; public: /** * A temporary instance of this class can be used to select between moving an existing paint or * a temporary copy of an existing paint into a call site. MoveOrClone(paint, false) is a rvalue * reference to paint while MoveOrClone(paint, true) is a rvalue reference to a copy of paint. */ using MoveOrClone = MoveOrImpl; /** * A temporary instance of this class can be used to select between moving an existing or a * newly default constructed paint into a call site. MoveOrNew(paint, false) is a rvalue * reference to paint while MoveOrNew(paint, true) is a rvalue reference to a default paint. */ using MoveOrNew = MoveOrImpl; private: GrPaint& operator=(const GrPaint&) = delete; friend class GrProcessorSet; bool internalIsConstantBlendedColor(GrColor paintColor, GrColor* constantColor) const; const GrXPFactory* fXPFactory = nullptr; SkSTArray<4, sk_sp> fColorFragmentProcessors; SkSTArray<2, sk_sp> fCoverageFragmentProcessors; bool fDisableOutputConversionToSRGB = false; bool fAllowSRGBInputs = false; bool fUsesDistanceVectorField = false; GrColor4f fColor = GrColor4f::OpaqueWhite(); }; /** This is the implementation of MoveOrCopy and MoveOrNew. */ template class GrPaint::MoveOrImpl { public: MoveOrImpl(GrPaint& paint, bool newPaint) { if (newPaint) { if (COPY_IF_NEW) { fStorage.init(paint); } else { fStorage.init(); }; fPaint = fStorage.get(); } else { fPaint = &paint; } } operator GrPaint&&() && { return std::move(*fPaint); } GrPaint& paint() { return *fPaint; } private: SkTLazy fStorage; GrPaint* fPaint; }; #endif