/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include #include #include "include/core/SkBitmap.h" #include "include/core/SkCanvas.h" #include "include/core/SkData.h" #include "include/core/SkImageEncoder.h" #include "include/core/SkImageGenerator.h" #include "include/core/SkPicture.h" #include "include/core/SkPictureRecorder.h" #include "include/core/SkRRect.h" #include "include/core/SkSerialProcs.h" #include "include/core/SkStream.h" #include "include/core/SkSurface.h" #include "include/gpu/GrContextThreadSafeProxy.h" #include "include/gpu/GrDirectContext.h" #include "src/core/SkAutoPixmapStorage.h" #include "src/core/SkColorSpacePriv.h" #include "src/core/SkImagePriv.h" #include "src/core/SkOpts.h" #include "src/gpu/GrDirectContextPriv.h" #include "src/gpu/GrGpu.h" #include "src/gpu/GrImageContextPriv.h" #include "src/gpu/GrRecordingContextPriv.h" #include "src/gpu/GrResourceCache.h" #include "src/gpu/GrTexture.h" #include "src/gpu/SkGr.h" #include "src/image/SkImage_Base.h" #include "src/image/SkImage_GpuYUVA.h" #include "tests/Test.h" #include "tools/Resources.h" #include "tools/ToolUtils.h" #include "tools/gpu/ManagedBackendTexture.h" #include "tools/gpu/ProxyUtils.h" using namespace sk_gpu_test; SkImageInfo read_pixels_info(SkImage* image) { if (image->colorSpace()) { return SkImageInfo::MakeS32(image->width(), image->height(), image->alphaType()); } return SkImageInfo::MakeN32(image->width(), image->height(), image->alphaType()); } // image `b` is assumed to be raster static void assert_equal(skiatest::Reporter* reporter, GrDirectContext* dContextA, SkImage* a, const SkIRect* subsetA, SkImage* b) { const int widthA = subsetA ? subsetA->width() : a->width(); const int heightA = subsetA ? subsetA->height() : a->height(); REPORTER_ASSERT(reporter, widthA == b->width()); REPORTER_ASSERT(reporter, heightA == b->height()); // see https://bug.skia.org/3965 //REPORTER_ASSERT(reporter, a->isOpaque() == b->isOpaque()); SkAutoPixmapStorage pmapA, pmapB; pmapA.alloc(read_pixels_info(a)); pmapB.alloc(read_pixels_info(b)); const int srcX = subsetA ? subsetA->x() : 0; const int srcY = subsetA ? subsetA->y() : 0; REPORTER_ASSERT(reporter, a->readPixels(dContextA, pmapA, srcX, srcY)); REPORTER_ASSERT(reporter, b->readPixels(nullptr, pmapB, 0, 0)); const size_t widthBytes = widthA * 4; for (int y = 0; y < heightA; ++y) { REPORTER_ASSERT(reporter, !memcmp(pmapA.addr32(0, y), pmapB.addr32(0, y), widthBytes)); } } static void draw_image_test_pattern(SkCanvas* canvas) { canvas->clear(SK_ColorWHITE); SkPaint paint; paint.setColor(SK_ColorBLACK); canvas->drawRect(SkRect::MakeXYWH(5, 5, 10, 10), paint); } static sk_sp create_image() { const SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType); auto surface(SkSurface::MakeRaster(info)); draw_image_test_pattern(surface->getCanvas()); return surface->makeImageSnapshot(); } static sk_sp create_image_data(SkImageInfo* info) { *info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType); const size_t rowBytes = info->minRowBytes(); sk_sp data(SkData::MakeUninitialized(rowBytes * info->height())); { SkBitmap bm; bm.installPixels(*info, data->writable_data(), rowBytes); SkCanvas canvas(bm); draw_image_test_pattern(&canvas); } return data; } static sk_sp create_data_image() { SkImageInfo info; sk_sp data(create_image_data(&info)); return SkImage::MakeRasterData(info, std::move(data), info.minRowBytes()); } static sk_sp create_image_large(int maxTextureSize) { const SkImageInfo info = SkImageInfo::MakeN32(maxTextureSize + 1, 32, kOpaque_SkAlphaType); auto surface(SkSurface::MakeRaster(info)); surface->getCanvas()->clear(SK_ColorWHITE); SkPaint paint; paint.setColor(SK_ColorBLACK); surface->getCanvas()->drawRect(SkRect::MakeXYWH(4000, 2, 28000, 30), paint); return surface->makeImageSnapshot(); } static sk_sp create_picture_image() { SkPictureRecorder recorder; SkCanvas* canvas = recorder.beginRecording(10, 10); canvas->clear(SK_ColorCYAN); return SkImage::MakeFromPicture(recorder.finishRecordingAsPicture(), SkISize::Make(10, 10), nullptr, nullptr, SkImage::BitDepth::kU8, SkColorSpace::MakeSRGB()); }; // Want to ensure that our Release is called when the owning image is destroyed struct RasterDataHolder { RasterDataHolder() : fReleaseCount(0) {} sk_sp fData; int fReleaseCount; static void Release(const void* pixels, void* context) { RasterDataHolder* self = static_cast(context); self->fReleaseCount++; self->fData.reset(); } }; static sk_sp create_rasterproc_image(RasterDataHolder* dataHolder) { SkASSERT(dataHolder); SkImageInfo info; dataHolder->fData = create_image_data(&info); return SkImage::MakeFromRaster(SkPixmap(info, dataHolder->fData->data(), info.minRowBytes()), RasterDataHolder::Release, dataHolder); } static sk_sp create_codec_image() { SkImageInfo info; sk_sp data(create_image_data(&info)); SkBitmap bitmap; bitmap.installPixels(info, data->writable_data(), info.minRowBytes()); auto src = SkEncodeBitmap(bitmap, SkEncodedImageFormat::kPNG, 100); return SkImage::MakeFromEncoded(std::move(src)); } static sk_sp create_gpu_image(GrRecordingContext* rContext, bool withMips = false, SkBudgeted budgeted = SkBudgeted::kYes) { const SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType); auto surface = SkSurface::MakeRenderTarget(rContext, budgeted, info, 0, kBottomLeft_GrSurfaceOrigin, nullptr, withMips); draw_image_test_pattern(surface->getCanvas()); return surface->makeImageSnapshot(); } static void test_encode(skiatest::Reporter* reporter, GrDirectContext* dContext, SkImage* image) { const SkIRect ir = SkIRect::MakeXYWH(5, 5, 10, 10); sk_sp origEncoded = image->encodeToData(); REPORTER_ASSERT(reporter, origEncoded); REPORTER_ASSERT(reporter, origEncoded->size() > 0); sk_sp decoded(SkImage::MakeFromEncoded(origEncoded)); if (!decoded) { ERRORF(reporter, "failed to decode image!"); return; } REPORTER_ASSERT(reporter, decoded); assert_equal(reporter, dContext, image, nullptr, decoded.get()); // Now see if we can instantiate an image from a subset of the surface/origEncoded decoded = SkImage::MakeFromEncoded(origEncoded)->makeSubset(ir); REPORTER_ASSERT(reporter, decoded); assert_equal(reporter, dContext, image, &ir, decoded.get()); } DEF_TEST(ImageEncode, reporter) { test_encode(reporter, nullptr, create_image().get()); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageEncode_Gpu, reporter, ctxInfo) { auto dContext = ctxInfo.directContext(); test_encode(reporter, dContext, create_gpu_image(dContext).get()); } DEF_TEST(Image_MakeFromRasterBitmap, reporter) { const struct { SkCopyPixelsMode fCPM; bool fExpectSameAsMutable; bool fExpectSameAsImmutable; } recs[] = { { kIfMutable_SkCopyPixelsMode, false, true }, { kAlways_SkCopyPixelsMode, false, false }, { kNever_SkCopyPixelsMode, true, true }, }; for (auto rec : recs) { SkPixmap pm; SkBitmap bm; bm.allocN32Pixels(100, 100); auto img = SkMakeImageFromRasterBitmap(bm, rec.fCPM); REPORTER_ASSERT(reporter, img->peekPixels(&pm)); const bool sameMutable = pm.addr32(0, 0) == bm.getAddr32(0, 0); REPORTER_ASSERT(reporter, rec.fExpectSameAsMutable == sameMutable); REPORTER_ASSERT(reporter, (bm.getGenerationID() == img->uniqueID()) == sameMutable); bm.notifyPixelsChanged(); // force a new generation ID bm.setImmutable(); img = SkMakeImageFromRasterBitmap(bm, rec.fCPM); REPORTER_ASSERT(reporter, img->peekPixels(&pm)); const bool sameImmutable = pm.addr32(0, 0) == bm.getAddr32(0, 0); REPORTER_ASSERT(reporter, rec.fExpectSameAsImmutable == sameImmutable); REPORTER_ASSERT(reporter, (bm.getGenerationID() == img->uniqueID()) == sameImmutable); } } // Test that image encoding failures do not break picture serialization/deserialization. DEF_TEST(Image_Serialize_Encoding_Failure, reporter) { auto surface(SkSurface::MakeRasterN32Premul(100, 100)); surface->getCanvas()->clear(SK_ColorGREEN); sk_sp image(surface->makeImageSnapshot()); REPORTER_ASSERT(reporter, image); SkPictureRecorder recorder; SkCanvas* canvas = recorder.beginRecording(100, 100); canvas->drawImage(image.get(), 0, 0, SkSamplingOptions()); sk_sp picture(recorder.finishRecordingAsPicture()); REPORTER_ASSERT(reporter, picture); REPORTER_ASSERT(reporter, picture->approximateOpCount() > 0); bool was_called = false; SkSerialProcs procs; procs.fImageProc = [](SkImage*, void* called) { *(bool*)called = true; return SkData::MakeEmpty(); }; procs.fImageCtx = &was_called; REPORTER_ASSERT(reporter, !was_called); auto data = picture->serialize(&procs); REPORTER_ASSERT(reporter, was_called); REPORTER_ASSERT(reporter, data && data->size() > 0); auto deserialized = SkPicture::MakeFromData(data->data(), data->size()); REPORTER_ASSERT(reporter, deserialized); REPORTER_ASSERT(reporter, deserialized->approximateOpCount() > 0); } // Test that a draw that only partially covers the drawing surface isn't // interpreted as covering the entire drawing surface (i.e., exercise one of the // conditions of SkCanvas::wouldOverwriteEntireSurface()). DEF_TEST(Image_RetainSnapshot, reporter) { const SkPMColor red = SkPackARGB32(0xFF, 0xFF, 0, 0); const SkPMColor green = SkPackARGB32(0xFF, 0, 0xFF, 0); SkImageInfo info = SkImageInfo::MakeN32Premul(2, 2); auto surface(SkSurface::MakeRaster(info)); surface->getCanvas()->clear(0xFF00FF00); SkPMColor pixels[4]; memset(pixels, 0xFF, sizeof(pixels)); // init with values we don't expect const SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(2, 2); const size_t dstRowBytes = 2 * sizeof(SkPMColor); sk_sp image1(surface->makeImageSnapshot()); REPORTER_ASSERT(reporter, image1->readPixels(nullptr, dstInfo, pixels, dstRowBytes, 0, 0)); for (size_t i = 0; i < SK_ARRAY_COUNT(pixels); ++i) { REPORTER_ASSERT(reporter, pixels[i] == green); } SkPaint paint; paint.setBlendMode(SkBlendMode::kSrc); paint.setColor(SK_ColorRED); surface->getCanvas()->drawRect(SkRect::MakeXYWH(1, 1, 1, 1), paint); sk_sp image2(surface->makeImageSnapshot()); REPORTER_ASSERT(reporter, image2->readPixels(nullptr, dstInfo, pixels, dstRowBytes, 0, 0)); REPORTER_ASSERT(reporter, pixels[0] == green); REPORTER_ASSERT(reporter, pixels[1] == green); REPORTER_ASSERT(reporter, pixels[2] == green); REPORTER_ASSERT(reporter, pixels[3] == red); } ///////////////////////////////////////////////////////////////////////////////////////////////// static void make_bitmap_mutable(SkBitmap* bm) { bm->allocN32Pixels(10, 10); } static void make_bitmap_immutable(SkBitmap* bm) { bm->allocN32Pixels(10, 10); bm->setImmutable(); } DEF_TEST(image_newfrombitmap, reporter) { const struct { void (*fMakeProc)(SkBitmap*); bool fExpectPeekSuccess; bool fExpectSharedID; bool fExpectLazy; } rec[] = { { make_bitmap_mutable, true, false, false }, { make_bitmap_immutable, true, true, false }, }; for (size_t i = 0; i < SK_ARRAY_COUNT(rec); ++i) { SkBitmap bm; rec[i].fMakeProc(&bm); sk_sp image(bm.asImage()); SkPixmap pmap; const bool sharedID = (image->uniqueID() == bm.getGenerationID()); REPORTER_ASSERT(reporter, sharedID == rec[i].fExpectSharedID); const bool peekSuccess = image->peekPixels(&pmap); REPORTER_ASSERT(reporter, peekSuccess == rec[i].fExpectPeekSuccess); const bool lazy = image->isLazyGenerated(); REPORTER_ASSERT(reporter, lazy == rec[i].fExpectLazy); } } /////////////////////////////////////////////////////////////////////////////////////////////////// #include "src/core/SkBitmapCache.h" /* * This tests the caching (and preemptive purge) of the raster equivalent of a gpu-image. * We cache it for performance when drawing into a raster surface. * * A cleaner test would know if each drawImage call triggered a read-back from the gpu, * but we don't have that facility (at the moment) so we use a little internal knowledge * of *how* the raster version is cached, and look for that. */ DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkImage_Gpu2Cpu, reporter, ctxInfo) { SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType); sk_sp image(create_gpu_image(ctxInfo.directContext())); const auto desc = SkBitmapCacheDesc::Make(image.get()); auto surface(SkSurface::MakeRaster(info)); // now we can test drawing a gpu-backed image into a cpu-backed surface { SkBitmap cachedBitmap; REPORTER_ASSERT(reporter, !SkBitmapCache::Find(desc, &cachedBitmap)); } surface->getCanvas()->drawImage(image, 0, 0); { SkBitmap cachedBitmap; if (SkBitmapCache::Find(desc, &cachedBitmap)) { REPORTER_ASSERT(reporter, cachedBitmap.isImmutable()); REPORTER_ASSERT(reporter, cachedBitmap.getPixels()); } else { // unexpected, but not really a bug, since the cache is global and this test may be // run w/ other threads competing for its budget. SkDebugf("SkImage_Gpu2Cpu : cachedBitmap was already purged\n"); } } image.reset(nullptr); { SkBitmap cachedBitmap; REPORTER_ASSERT(reporter, !SkBitmapCache::Find(desc, &cachedBitmap)); } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkImage_makeTextureImage, reporter, contextInfo) { auto dContext = contextInfo.directContext(); sk_gpu_test::TestContext* testContext = contextInfo.testContext(); GrContextFactory otherFactory; ContextInfo otherContextInfo = otherFactory.getContextInfo(contextInfo.type()); testContext->makeCurrent(); std::function()> imageFactories[] = { create_image, create_codec_image, create_data_image, // Create an image from a picture. create_picture_image, // Create a texture image. [dContext] { return create_gpu_image(dContext, true, SkBudgeted::kYes); }, [dContext] { return create_gpu_image(dContext, false, SkBudgeted::kNo); }, // Create a texture image in a another context. [otherContextInfo] { auto restore = otherContextInfo.testContext()->makeCurrentAndAutoRestore(); auto otherContextImage = create_gpu_image(otherContextInfo.directContext()); otherContextInfo.directContext()->flushAndSubmit(); return otherContextImage; }}; for (auto mipmapped : {GrMipmapped::kNo, GrMipmapped::kYes}) { for (const auto& factory : imageFactories) { sk_sp image(factory()); if (!image) { ERRORF(reporter, "Error creating image."); continue; } GrTextureProxy* origProxy = nullptr; bool origIsMippedTexture = false; if ((origProxy = sk_gpu_test::GetTextureImageProxy(image.get(), dContext))) { REPORTER_ASSERT(reporter, (origProxy->mipmapped() == GrMipmapped::kYes) == image->hasMipmaps()); origIsMippedTexture = image->hasMipmaps(); } for (auto budgeted : {SkBudgeted::kNo, SkBudgeted::kYes}) { auto texImage = image->makeTextureImage(dContext, mipmapped, budgeted); if (!texImage) { auto imageContext = as_IB(image)->context(); // We expect to fail if image comes from a different context if (!image->isTextureBacked() || imageContext->priv().matches(dContext)) { ERRORF(reporter, "makeTextureImage failed."); } continue; } if (!texImage->isTextureBacked()) { ERRORF(reporter, "makeTextureImage returned non-texture image."); continue; } GrTextureProxy* copyProxy = sk_gpu_test::GetTextureImageProxy(texImage.get(), dContext); SkASSERT(copyProxy); // Did we ask for MIPs on a context that supports them? bool validRequestForMips = (mipmapped == GrMipmapped::kYes && dContext->priv().caps()->mipmapSupport()); // Do we expect the "copy" to have MIPs? bool shouldBeMipped = origIsMippedTexture || validRequestForMips; REPORTER_ASSERT(reporter, shouldBeMipped == texImage->hasMipmaps()); REPORTER_ASSERT(reporter, shouldBeMipped == (copyProxy->mipmapped() == GrMipmapped::kYes)); // We should only make a copy of an already texture-backed image if it didn't // already have MIPs but we asked for MIPs and the context supports it. if (image->isTextureBacked() && (!validRequestForMips || origIsMippedTexture)) { if (origProxy->underlyingUniqueID() != copyProxy->underlyingUniqueID()) { ERRORF(reporter, "makeTextureImage made unnecessary texture copy."); } } else { GrTextureProxy* texProxy = sk_gpu_test::GetTextureImageProxy(texImage.get(), dContext); REPORTER_ASSERT(reporter, !texProxy->getUniqueKey().isValid()); REPORTER_ASSERT(reporter, texProxy->isBudgeted() == budgeted); } if (image->width() != texImage->width() || image->height() != texImage->height()) { ERRORF(reporter, "makeTextureImage changed the image size."); } if (image->alphaType() != texImage->alphaType()) { ERRORF(reporter, "makeTextureImage changed image alpha type."); } } } } dContext->flushAndSubmit(); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkImage_makeNonTextureImage, reporter, contextInfo) { auto dContext = contextInfo.directContext(); std::function()> imageFactories[] = { create_image, create_codec_image, create_data_image, create_picture_image, [dContext] { return create_gpu_image(dContext); }, }; for (const auto& factory : imageFactories) { sk_sp image = factory(); if (!image->isTextureBacked()) { REPORTER_ASSERT(reporter, image->makeNonTextureImage().get() == image.get()); if (!(image = image->makeTextureImage(dContext))) { continue; } } auto rasterImage = image->makeNonTextureImage(); if (!rasterImage) { ERRORF(reporter, "makeNonTextureImage failed for texture-backed image."); } REPORTER_ASSERT(reporter, !rasterImage->isTextureBacked()); assert_equal(reporter, dContext, image.get(), nullptr, rasterImage.get()); } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(GrContext_colorTypeSupportedAsImage, reporter, ctxInfo) { auto dContext = ctxInfo.directContext(); static constexpr int kSize = 10; for (int ct = 0; ct < kLastEnum_SkColorType; ++ct) { SkColorType colorType = static_cast(ct); bool can = dContext->colorTypeSupportedAsImage(colorType); auto mbet = sk_gpu_test::ManagedBackendTexture::MakeWithoutData( dContext, kSize, kSize, colorType, GrMipmapped::kNo, GrRenderable::kNo); sk_sp img; if (mbet) { img = SkImage::MakeFromTexture(dContext, mbet->texture(), kTopLeft_GrSurfaceOrigin, colorType, kOpaque_SkAlphaType, nullptr); } REPORTER_ASSERT(reporter, can == SkToBool(img), "colorTypeSupportedAsImage:%d, actual:%d, ct:%d", can, SkToBool(img), colorType); } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(UnpremulTextureImage, reporter, ctxInfo) { SkBitmap bmp; bmp.allocPixels( SkImageInfo::Make(256, 256, kRGBA_8888_SkColorType, kUnpremul_SkAlphaType, nullptr)); for (int y = 0; y < 256; ++y) { for (int x = 0; x < 256; ++x) { *bmp.getAddr32(x, y) = SkColorSetARGB((U8CPU)y, 255 - (U8CPU)y, (U8CPU)x, 255 - (U8CPU)x); } } auto dContext = ctxInfo.directContext(); auto texImage = bmp.asImage()->makeTextureImage(dContext); if (!texImage || texImage->alphaType() != kUnpremul_SkAlphaType) { ERRORF(reporter, "Failed to make unpremul texture image."); return; } SkBitmap unpremul; unpremul.allocPixels(SkImageInfo::Make(256, 256, kRGBA_8888_SkColorType, kUnpremul_SkAlphaType, nullptr)); if (!texImage->readPixels(dContext, unpremul.info(), unpremul.getPixels(), unpremul.rowBytes(), 0, 0)) { ERRORF(reporter, "Unpremul readback failed."); return; } for (int y = 0; y < 256; ++y) { for (int x = 0; x < 256; ++x) { if (*bmp.getAddr32(x, y) != *unpremul.getAddr32(x, y)) { ERRORF(reporter, "unpremul(0x%08x)->unpremul(0x%08x) at %d, %d.", *bmp.getAddr32(x, y), *unpremul.getAddr32(x, y), x, y); return; } } } SkBitmap premul; premul.allocPixels( SkImageInfo::Make(256, 256, kRGBA_8888_SkColorType, kPremul_SkAlphaType, nullptr)); if (!texImage->readPixels(dContext, premul.info(), premul.getPixels(), premul.rowBytes(), 0, 0)) { ERRORF(reporter, "Unpremul readback failed."); return; } for (int y = 0; y < 256; ++y) { for (int x = 0; x < 256; ++x) { uint32_t origColor = *bmp.getAddr32(x, y); int32_t origA = (origColor >> 24) & 0xff; float a = origA / 255.f; int32_t origB = sk_float_round2int(((origColor >> 16) & 0xff) * a); int32_t origG = sk_float_round2int(((origColor >> 8) & 0xff) * a); int32_t origR = sk_float_round2int(((origColor >> 0) & 0xff) * a); uint32_t read = *premul.getAddr32(x, y); int32_t readA = (read >> 24) & 0xff; int32_t readB = (read >> 16) & 0xff; int32_t readG = (read >> 8) & 0xff; int32_t readR = (read >> 0) & 0xff; // We expect that alpha=1 and alpha=0 should come out exact. Otherwise allow a little // bit of tolerance for GPU vs CPU premul math. int32_t tol = (origA == 0 || origA == 255) ? 0 : 1; if (origA != readA || SkTAbs(readB - origB) > tol || SkTAbs(readG - origG) > tol || SkTAbs(readR - origR) > tol) { ERRORF(reporter, "unpremul(0x%08x)->premul(0x%08x) expected(0x%08x) at %d, %d.", *bmp.getAddr32(x, y), *premul.getAddr32(x, y), origColor, x, y); return; } } } } DEF_GPUTEST(AbandonedContextImage, reporter, options) { using Factory = sk_gpu_test::GrContextFactory; for (int ct = 0; ct < Factory::kContextTypeCnt; ++ct) { auto type = static_cast(ct); std::unique_ptr factory(new Factory); if (!factory->get(type)) { continue; } sk_sp img; auto gsurf = SkSurface::MakeRenderTarget( factory->get(type), SkBudgeted::kYes, SkImageInfo::Make(100, 100, kRGBA_8888_SkColorType, kPremul_SkAlphaType), 1, nullptr); if (!gsurf) { continue; } img = gsurf->makeImageSnapshot(); gsurf.reset(); auto rsurf = SkSurface::MakeRaster(SkImageInfo::MakeN32Premul(100, 100)); REPORTER_ASSERT(reporter, img->isValid(factory->get(type))); REPORTER_ASSERT(reporter, img->isValid(rsurf->getCanvas()->recordingContext())); factory->get(type)->abandonContext(); REPORTER_ASSERT(reporter, !img->isValid(factory->get(type))); REPORTER_ASSERT(reporter, !img->isValid(rsurf->getCanvas()->recordingContext())); // This shouldn't crash. rsurf->getCanvas()->drawImage(img, 0, 0); // Give up all other refs on the context. factory.reset(nullptr); REPORTER_ASSERT(reporter, !img->isValid(rsurf->getCanvas()->recordingContext())); // This shouldn't crash. rsurf->getCanvas()->drawImage(img, 0, 0); } } class EmptyGenerator : public SkImageGenerator { public: EmptyGenerator() : SkImageGenerator(SkImageInfo::MakeN32Premul(0, 0)) {} }; DEF_TEST(ImageEmpty, reporter) { const SkImageInfo info = SkImageInfo::Make(0, 0, kN32_SkColorType, kPremul_SkAlphaType); SkPixmap pmap(info, nullptr, 0); REPORTER_ASSERT(reporter, nullptr == SkImage::MakeRasterCopy(pmap)); REPORTER_ASSERT(reporter, nullptr == SkImage::MakeRasterData(info, nullptr, 0)); REPORTER_ASSERT(reporter, nullptr == SkImage::MakeFromRaster(pmap, nullptr, nullptr)); REPORTER_ASSERT(reporter, nullptr == SkImage::MakeFromGenerator( std::make_unique())); } DEF_TEST(ImageDataRef, reporter) { SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1); size_t rowBytes = info.minRowBytes(); size_t size = info.computeByteSize(rowBytes); sk_sp data = SkData::MakeUninitialized(size); REPORTER_ASSERT(reporter, data->unique()); sk_sp image = SkImage::MakeRasterData(info, data, rowBytes); REPORTER_ASSERT(reporter, !data->unique()); image.reset(); REPORTER_ASSERT(reporter, data->unique()); } static bool has_pixels(const SkPMColor pixels[], int count, SkPMColor expected) { for (int i = 0; i < count; ++i) { if (pixels[i] != expected) { return false; } } return true; } static void image_test_read_pixels(GrDirectContext* dContext, skiatest::Reporter* reporter, SkImage* image) { if (!image) { ERRORF(reporter, "Failed to create image!"); return; } const SkPMColor expected = SkPreMultiplyColor(SK_ColorWHITE); const SkPMColor notExpected = ~expected; const int w = 2, h = 2; const size_t rowBytes = w * sizeof(SkPMColor); SkPMColor pixels[w*h]; SkImageInfo info; info = SkImageInfo::MakeUnknown(w, h); REPORTER_ASSERT(reporter, !image->readPixels(dContext, info, pixels, rowBytes, 0, 0)); // out-of-bounds should fail info = SkImageInfo::MakeN32Premul(w, h); REPORTER_ASSERT(reporter, !image->readPixels(dContext, info, pixels, rowBytes, -w, 0)); REPORTER_ASSERT(reporter, !image->readPixels(dContext, info, pixels, rowBytes, 0, -h)); REPORTER_ASSERT(reporter, !image->readPixels(dContext, info, pixels, rowBytes, image->width(), 0)); REPORTER_ASSERT(reporter, !image->readPixels(dContext, info, pixels, rowBytes, 0, image->height())); // top-left should succeed sk_memset32(pixels, notExpected, w*h); REPORTER_ASSERT(reporter, image->readPixels(dContext, info, pixels, rowBytes, 0, 0)); REPORTER_ASSERT(reporter, has_pixels(pixels, w*h, expected)); // bottom-right should succeed sk_memset32(pixels, notExpected, w*h); REPORTER_ASSERT(reporter, image->readPixels(dContext, info, pixels, rowBytes, image->width() - w, image->height() - h)); REPORTER_ASSERT(reporter, has_pixels(pixels, w*h, expected)); // partial top-left should succeed sk_memset32(pixels, notExpected, w*h); REPORTER_ASSERT(reporter, image->readPixels(dContext, info, pixels, rowBytes, -1, -1)); REPORTER_ASSERT(reporter, pixels[3] == expected); REPORTER_ASSERT(reporter, has_pixels(pixels, w*h - 1, notExpected)); // partial bottom-right should succeed sk_memset32(pixels, notExpected, w*h); REPORTER_ASSERT(reporter, image->readPixels(dContext, info, pixels, rowBytes, image->width() - 1, image->height() - 1)); REPORTER_ASSERT(reporter, pixels[0] == expected); REPORTER_ASSERT(reporter, has_pixels(&pixels[1], w*h - 1, notExpected)); } DEF_TEST(ImageReadPixels, reporter) { sk_sp image(create_image()); image_test_read_pixels(nullptr, reporter, image.get()); image = create_data_image(); image_test_read_pixels(nullptr, reporter, image.get()); RasterDataHolder dataHolder; image = create_rasterproc_image(&dataHolder); image_test_read_pixels(nullptr, reporter, image.get()); image.reset(); REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount); image = create_codec_image(); image_test_read_pixels(nullptr, reporter, image.get()); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageReadPixels_Gpu, reporter, ctxInfo) { auto dContext = ctxInfo.directContext(); image_test_read_pixels(dContext, reporter, create_gpu_image(dContext).get()); } static void check_legacy_bitmap(skiatest::Reporter* reporter, GrDirectContext* dContext, const SkImage* image, const SkBitmap& bitmap) { REPORTER_ASSERT(reporter, image->width() == bitmap.width()); REPORTER_ASSERT(reporter, image->height() == bitmap.height()); REPORTER_ASSERT(reporter, image->alphaType() == bitmap.alphaType()); REPORTER_ASSERT(reporter, bitmap.isImmutable()); REPORTER_ASSERT(reporter, bitmap.getPixels()); const SkImageInfo info = SkImageInfo::MakeN32(1, 1, bitmap.alphaType()); SkPMColor imageColor; REPORTER_ASSERT(reporter, image->readPixels(dContext, info, &imageColor, sizeof(SkPMColor), 0, 0)); REPORTER_ASSERT(reporter, imageColor == *bitmap.getAddr32(0, 0)); } static void test_legacy_bitmap(skiatest::Reporter* reporter, GrDirectContext* dContext, const SkImage* image) { if (!image) { ERRORF(reporter, "Failed to create image."); return; } SkBitmap bitmap; REPORTER_ASSERT(reporter, image->asLegacyBitmap(&bitmap)); check_legacy_bitmap(reporter, dContext, image, bitmap); // Test subsetting to exercise the rowBytes logic. SkBitmap tmp; REPORTER_ASSERT(reporter, bitmap.extractSubset(&tmp, SkIRect::MakeWH(image->width() / 2, image->height() / 2))); sk_sp subsetImage(tmp.asImage()); REPORTER_ASSERT(reporter, subsetImage.get()); SkBitmap subsetBitmap; REPORTER_ASSERT(reporter, subsetImage->asLegacyBitmap(&subsetBitmap)); check_legacy_bitmap(reporter, nullptr, subsetImage.get(), subsetBitmap); } DEF_TEST(ImageLegacyBitmap, reporter) { sk_sp image(create_image()); test_legacy_bitmap(reporter, nullptr, image.get()); image = create_data_image(); test_legacy_bitmap(reporter, nullptr, image.get()); RasterDataHolder dataHolder; image = create_rasterproc_image(&dataHolder); test_legacy_bitmap(reporter, nullptr, image.get()); image.reset(); REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount); image = create_codec_image(); test_legacy_bitmap(reporter, nullptr, image.get()); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageLegacyBitmap_Gpu, reporter, ctxInfo) { auto dContext = ctxInfo.directContext(); sk_sp image(create_gpu_image(dContext)); test_legacy_bitmap(reporter, dContext, image.get()); } static void test_peek(skiatest::Reporter* reporter, SkImage* image, bool expectPeekSuccess) { if (!image) { ERRORF(reporter, "Failed to create image!"); return; } SkPixmap pm; bool success = image->peekPixels(&pm); REPORTER_ASSERT(reporter, expectPeekSuccess == success); if (success) { const SkImageInfo& info = pm.info(); REPORTER_ASSERT(reporter, 20 == info.width()); REPORTER_ASSERT(reporter, 20 == info.height()); REPORTER_ASSERT(reporter, kN32_SkColorType == info.colorType()); REPORTER_ASSERT(reporter, kPremul_SkAlphaType == info.alphaType() || kOpaque_SkAlphaType == info.alphaType()); REPORTER_ASSERT(reporter, info.minRowBytes() <= pm.rowBytes()); REPORTER_ASSERT(reporter, SkPreMultiplyColor(SK_ColorWHITE) == *pm.addr32(0, 0)); } } DEF_TEST(ImagePeek, reporter) { sk_sp image(create_image()); test_peek(reporter, image.get(), true); image = create_data_image(); test_peek(reporter, image.get(), true); RasterDataHolder dataHolder; image = create_rasterproc_image(&dataHolder); test_peek(reporter, image.get(), true); image.reset(); REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount); image = create_codec_image(); test_peek(reporter, image.get(), false); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImagePeek_Gpu, reporter, ctxInfo) { sk_sp image(create_gpu_image(ctxInfo.directContext())); test_peek(reporter, image.get(), false); } struct TextureReleaseChecker { TextureReleaseChecker() : fReleaseCount(0) {} int fReleaseCount; static void Release(void* self) { static_cast(self)->fReleaseCount++; } }; DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(SkImage_NewFromTextureRelease, reporter, ctxInfo) { const int kWidth = 10; const int kHeight = 10; auto dContext = ctxInfo.directContext(); auto mbet = sk_gpu_test::ManagedBackendTexture::MakeWithoutData(dContext, kWidth, kHeight, kRGBA_8888_SkColorType, GrMipmapped::kNo, GrRenderable::kNo, GrProtected::kNo); if (!mbet) { ERRORF(reporter, "couldn't create backend texture\n"); return; } TextureReleaseChecker releaseChecker; GrSurfaceOrigin texOrigin = kBottomLeft_GrSurfaceOrigin; sk_sp refImg = SkImage::MakeFromTexture( dContext, mbet->texture(), texOrigin, kRGBA_8888_SkColorType, kPremul_SkAlphaType, /*color space*/nullptr, sk_gpu_test::ManagedBackendTexture::ReleaseProc, mbet->releaseContext(TextureReleaseChecker::Release, &releaseChecker)); GrSurfaceOrigin readBackOrigin; GrBackendTexture readBackBackendTex = refImg->getBackendTexture(false, &readBackOrigin); if (!GrBackendTexture::TestingOnly_Equals(readBackBackendTex, mbet->texture())) { ERRORF(reporter, "backend mismatch\n"); } REPORTER_ASSERT(reporter, GrBackendTexture::TestingOnly_Equals(readBackBackendTex, mbet->texture())); if (readBackOrigin != texOrigin) { ERRORF(reporter, "origin mismatch %d %d\n", readBackOrigin, texOrigin); } REPORTER_ASSERT(reporter, readBackOrigin == texOrigin); // Now exercise the release proc REPORTER_ASSERT(reporter, 0 == releaseChecker.fReleaseCount); refImg.reset(nullptr); // force a release of the image REPORTER_ASSERT(reporter, 1 == releaseChecker.fReleaseCount); } static void test_cross_context_image(skiatest::Reporter* reporter, const GrContextOptions& options, const char* testName, std::function(GrDirectContext*)> imageMaker) { for (int i = 0; i < GrContextFactory::kContextTypeCnt; ++i) { GrContextFactory testFactory(options); GrContextFactory::ContextType ctxType = static_cast(i); ContextInfo ctxInfo = testFactory.getContextInfo(ctxType); auto dContext = ctxInfo.directContext(); if (!dContext) { continue; } // If we don't have proper support for this feature, the factory will fallback to returning // codec-backed images. Those will "work", but some of our checks will fail because we // expect the cross-context images not to work on multiple contexts at once. if (!dContext->priv().caps()->crossContextTextureSupport()) { continue; } // We test three lifetime patterns for a single context: // 1) Create image, free image // 2) Create image, draw, flush, free image // 3) Create image, draw, free image, flush // ... and then repeat the last two patterns with drawing on a second* context: // 4) Create image, draw*, flush*, free image // 5) Create image, draw*, free iamge, flush* // Case #1: Create image, free image { sk_sp refImg(imageMaker(dContext)); refImg.reset(nullptr); // force a release of the image } SkImageInfo info = SkImageInfo::MakeN32Premul(128, 128); sk_sp surface = SkSurface::MakeRenderTarget(dContext, SkBudgeted::kNo, info); if (!surface) { ERRORF(reporter, "SkSurface::MakeRenderTarget failed for %s.", testName); continue; } SkCanvas* canvas = surface->getCanvas(); // Case #2: Create image, draw, flush, free image { sk_sp refImg(imageMaker(dContext)); canvas->drawImage(refImg, 0, 0); surface->flushAndSubmit(); refImg.reset(nullptr); // force a release of the image } // Case #3: Create image, draw, free image, flush { sk_sp refImg(imageMaker(dContext)); canvas->drawImage(refImg, 0, 0); refImg.reset(nullptr); // force a release of the image surface->flushAndSubmit(); } // Configure second context sk_gpu_test::TestContext* testContext = ctxInfo.testContext(); ContextInfo otherContextInfo = testFactory.getSharedContextInfo(dContext); auto otherCtx = otherContextInfo.directContext(); sk_gpu_test::TestContext* otherTestContext = otherContextInfo.testContext(); // Creating a context in a share group may fail if (!otherCtx) { continue; } surface = SkSurface::MakeRenderTarget(otherCtx, SkBudgeted::kNo, info); canvas = surface->getCanvas(); // Case #4: Create image, draw*, flush*, free image { testContext->makeCurrent(); sk_sp refImg(imageMaker(dContext)); otherTestContext->makeCurrent(); canvas->drawImage(refImg, 0, 0); surface->flushAndSubmit(); testContext->makeCurrent(); refImg.reset(nullptr); // force a release of the image } // Case #5: Create image, draw*, free image, flush* { testContext->makeCurrent(); sk_sp refImg(imageMaker(dContext)); otherTestContext->makeCurrent(); canvas->drawImage(refImg, 0, 0); testContext->makeCurrent(); refImg.reset(nullptr); // force a release of the image otherTestContext->makeCurrent(); // Sync is specifically here for vulkan to guarantee the command buffer will finish // which is when we call the ReleaseProc. surface->flushAndSubmit(true); } // Case #6: Verify that only one context can be using the image at a time { // Suppress warnings about trying to use a texture in two contexts. GrRecordingContextPriv::AutoSuppressWarningMessages aswm(otherCtx); testContext->makeCurrent(); sk_sp refImg(imageMaker(dContext)); GrSurfaceProxyView view, otherView, viewSecondRef; // Any context should be able to borrow the texture at this point std::tie(view, std::ignore) = as_IB(refImg)->asView(dContext, GrMipmapped::kNo); REPORTER_ASSERT(reporter, view); // But once it's borrowed, no other context should be able to borrow otherTestContext->makeCurrent(); std::tie(otherView, std::ignore) = as_IB(refImg)->asView(otherCtx, GrMipmapped::kNo); REPORTER_ASSERT(reporter, !otherView); // Original context (that's already borrowing) should be okay testContext->makeCurrent(); std::tie(viewSecondRef, std::ignore) = as_IB(refImg)->asView(dContext, GrMipmapped::kNo); REPORTER_ASSERT(reporter, viewSecondRef); // Release first ref from the original context view.reset(); // We released one proxy but not the other from the current borrowing context. Make sure // a new context is still not able to borrow the texture. otherTestContext->makeCurrent(); std::tie(otherView, std::ignore) = as_IB(refImg)->asView(otherCtx, GrMipmapped::kNo); REPORTER_ASSERT(reporter, !otherView); // Release second ref from the original context testContext->makeCurrent(); viewSecondRef.reset(); // Now we should be able to borrow the texture from the other context otherTestContext->makeCurrent(); std::tie(otherView, std::ignore) = as_IB(refImg)->asView(otherCtx, GrMipmapped::kNo); REPORTER_ASSERT(reporter, otherView); // Release everything otherView.reset(); refImg.reset(nullptr); } } } DEF_GPUTEST(SkImage_MakeCrossContextFromPixmapRelease, reporter, options) { SkBitmap bitmap; SkPixmap pixmap; if (!GetResourceAsBitmap("images/mandrill_128.png", &bitmap) || !bitmap.peekPixels(&pixmap)) { ERRORF(reporter, "missing resource"); return; } test_cross_context_image(reporter, options, "SkImage_MakeCrossContextFromPixmapRelease", [&pixmap](GrDirectContext* dContext) { return SkImage::MakeCrossContextFromPixmap(dContext, pixmap, false); }); } DEF_GPUTEST(SkImage_CrossContextGrayAlphaConfigs, reporter, options) { for (SkColorType ct : { kGray_8_SkColorType, kAlpha_8_SkColorType }) { SkAutoPixmapStorage pixmap; pixmap.alloc(SkImageInfo::Make(4, 4, ct, kPremul_SkAlphaType)); for (int i = 0; i < GrContextFactory::kContextTypeCnt; ++i) { GrContextFactory testFactory(options); GrContextFactory::ContextType ctxType = static_cast(i); ContextInfo ctxInfo = testFactory.getContextInfo(ctxType); auto dContext = ctxInfo.directContext(); if (!dContext || !dContext->priv().caps()->crossContextTextureSupport()) { continue; } sk_sp image = SkImage::MakeCrossContextFromPixmap(dContext, pixmap, false); REPORTER_ASSERT(reporter, image); auto [view, viewCT] = as_IB(image)->asView(dContext, GrMipmapped::kNo); REPORTER_ASSERT(reporter, view); REPORTER_ASSERT(reporter, GrColorTypeToSkColorType(viewCT) == ct); bool expectAlpha = kAlpha_8_SkColorType == ct; GrColorType grCT = SkColorTypeToGrColorType(image->colorType()); REPORTER_ASSERT(reporter, expectAlpha == GrColorTypeIsAlphaOnly(grCT)); } } } DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(makeBackendTexture, reporter, ctxInfo) { auto context = ctxInfo.directContext(); sk_gpu_test::TestContext* testContext = ctxInfo.testContext(); sk_sp proxy = context->threadSafeProxy(); GrContextFactory otherFactory; ContextInfo otherContextInfo = otherFactory.getContextInfo(ctxInfo.type()); testContext->makeCurrent(); REPORTER_ASSERT(reporter, proxy); auto createLarge = [context] { return create_image_large(context->priv().caps()->maxTextureSize()); }; struct TestCase { std::function()> fImageFactory; bool fExpectation; bool fCanTakeDirectly; }; TestCase testCases[] = { { create_image, true, false }, { create_codec_image, true, false }, { create_data_image, true, false }, { create_picture_image, true, false }, { [context] { return create_gpu_image(context); }, true, true }, // Create a texture image in a another context. { [otherContextInfo] { auto restore = otherContextInfo.testContext()->makeCurrentAndAutoRestore(); sk_sp otherContextImage = create_gpu_image(otherContextInfo.directContext()); otherContextInfo.directContext()->flushAndSubmit(); return otherContextImage; }, false, false }, // Create an image that is too large to be texture backed. { createLarge, false, false } }; for (const TestCase& testCase : testCases) { sk_sp image(testCase.fImageFactory()); if (!image) { ERRORF(reporter, "Failed to create image!"); continue; } GrBackendTexture origBackend = image->getBackendTexture(true); if (testCase.fCanTakeDirectly) { SkASSERT(origBackend.isValid()); } GrBackendTexture newBackend; SkImage::BackendTextureReleaseProc proc; bool result = SkImage::MakeBackendTextureFromSkImage(context, std::move(image), &newBackend, &proc); if (result != testCase.fExpectation) { static const char *const kFS[] = { "fail", "succeed" }; ERRORF(reporter, "This image was expected to %s but did not.", kFS[testCase.fExpectation]); } if (result) { SkASSERT(newBackend.isValid()); } bool tookDirectly = result && GrBackendTexture::TestingOnly_Equals(origBackend, newBackend); if (testCase.fCanTakeDirectly != tookDirectly) { static const char *const kExpectedState[] = { "not expected", "expected" }; ERRORF(reporter, "This backend texture was %s to be taken directly.", kExpectedState[testCase.fCanTakeDirectly]); } context->flushAndSubmit(); } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageBackendAccessAbandoned_Gpu, reporter, ctxInfo) { auto dContext = ctxInfo.directContext(); sk_sp image(create_gpu_image(ctxInfo.directContext())); if (!image) { return; } GrBackendTexture beTex = image->getBackendTexture(true); REPORTER_ASSERT(reporter, beTex.isValid()); dContext->abandonContext(); // After abandoning the context the backend texture should not be valid. beTex = image->getBackendTexture(true); REPORTER_ASSERT(reporter, !beTex.isValid()); } /////////////////////////////////////////////////////////////////////////////////////////////////// static sk_sp create_picture_image(sk_sp space) { SkPictureRecorder recorder; SkCanvas* canvas = recorder.beginRecording(10, 10); canvas->clear(SK_ColorCYAN); return SkImage::MakeFromPicture(recorder.finishRecordingAsPicture(), SkISize::Make(10, 10), nullptr, nullptr, SkImage::BitDepth::kU8, std::move(space)); }; DEF_TEST(Image_ColorSpace, r) { sk_sp srgb = SkColorSpace::MakeSRGB(); sk_sp image = GetResourceAsImage("images/mandrill_512_q075.jpg"); REPORTER_ASSERT(r, srgb.get() == image->colorSpace()); image = GetResourceAsImage("images/webp-color-profile-lossy.webp"); skcms_TransferFunction fn; bool success = image->colorSpace()->isNumericalTransferFn(&fn); REPORTER_ASSERT(r, success); REPORTER_ASSERT(r, color_space_almost_equal(1.8f, fn.g)); sk_sp rec2020 = SkColorSpace::MakeRGB(SkNamedTransferFn::kSRGB, SkNamedGamut::kRec2020); image = create_picture_image(rec2020); REPORTER_ASSERT(r, SkColorSpace::Equals(rec2020.get(), image->colorSpace())); SkBitmap bitmap; SkImageInfo info = SkImageInfo::MakeN32(10, 10, kPremul_SkAlphaType, rec2020); bitmap.allocPixels(info); image = bitmap.asImage(); REPORTER_ASSERT(r, SkColorSpace::Equals(rec2020.get(), image->colorSpace())); sk_sp surface = SkSurface::MakeRaster( SkImageInfo::MakeN32Premul(SkISize::Make(10, 10))); image = surface->makeImageSnapshot(); REPORTER_ASSERT(r, nullptr == image->colorSpace()); surface = SkSurface::MakeRaster(info); image = surface->makeImageSnapshot(); REPORTER_ASSERT(r, SkColorSpace::Equals(rec2020.get(), image->colorSpace())); } DEF_TEST(Image_makeColorSpace, r) { sk_sp p3 = SkColorSpace::MakeRGB(SkNamedTransferFn::kSRGB, SkNamedGamut::kDisplayP3); skcms_TransferFunction fn; fn.a = 1.f; fn.b = 0.f; fn.c = 0.f; fn.d = 0.f; fn.e = 0.f; fn.f = 0.f; fn.g = 1.8f; sk_sp adobeGamut = SkColorSpace::MakeRGB(fn, SkNamedGamut::kAdobeRGB); SkBitmap srgbBitmap; srgbBitmap.allocPixels(SkImageInfo::MakeS32(1, 1, kOpaque_SkAlphaType)); *srgbBitmap.getAddr32(0, 0) = SkSwizzle_RGBA_to_PMColor(0xFF604020); srgbBitmap.setImmutable(); sk_sp srgbImage = srgbBitmap.asImage(); sk_sp p3Image = srgbImage->makeColorSpace(p3, nullptr); SkBitmap p3Bitmap; bool success = p3Image->asLegacyBitmap(&p3Bitmap); auto almost_equal = [](int a, int b) { return SkTAbs(a - b) <= 2; }; REPORTER_ASSERT(r, success); REPORTER_ASSERT(r, almost_equal(0x28, SkGetPackedR32(*p3Bitmap.getAddr32(0, 0)))); REPORTER_ASSERT(r, almost_equal(0x40, SkGetPackedG32(*p3Bitmap.getAddr32(0, 0)))); REPORTER_ASSERT(r, almost_equal(0x5E, SkGetPackedB32(*p3Bitmap.getAddr32(0, 0)))); sk_sp adobeImage = srgbImage->makeColorSpace(adobeGamut, nullptr); SkBitmap adobeBitmap; success = adobeImage->asLegacyBitmap(&adobeBitmap); REPORTER_ASSERT(r, success); REPORTER_ASSERT(r, almost_equal(0x21, SkGetPackedR32(*adobeBitmap.getAddr32(0, 0)))); REPORTER_ASSERT(r, almost_equal(0x31, SkGetPackedG32(*adobeBitmap.getAddr32(0, 0)))); REPORTER_ASSERT(r, almost_equal(0x4C, SkGetPackedB32(*adobeBitmap.getAddr32(0, 0)))); srgbImage = GetResourceAsImage("images/1x1.png"); p3Image = srgbImage->makeColorSpace(p3, nullptr); success = p3Image->asLegacyBitmap(&p3Bitmap); REPORTER_ASSERT(r, success); REPORTER_ASSERT(r, almost_equal(0x8B, SkGetPackedR32(*p3Bitmap.getAddr32(0, 0)))); REPORTER_ASSERT(r, almost_equal(0x82, SkGetPackedG32(*p3Bitmap.getAddr32(0, 0)))); REPORTER_ASSERT(r, almost_equal(0x77, SkGetPackedB32(*p3Bitmap.getAddr32(0, 0)))); } /////////////////////////////////////////////////////////////////////////////////////////////////// static void make_all_premul(SkBitmap* bm) { bm->allocPixels(SkImageInfo::MakeN32(256, 256, kPremul_SkAlphaType)); for (int a = 0; a < 256; ++a) { for (int r = 0; r < 256; ++r) { // make all valid premul combinations int c = std::min(a, r); *bm->getAddr32(a, r) = SkPackARGB32(a, c, c, c); } } } static bool equal(const SkBitmap& a, const SkBitmap& b) { SkASSERT(a.width() == b.width()); SkASSERT(a.height() == b.height()); for (int y = 0; y < a.height(); ++y) { for (int x = 0; x < a.width(); ++x) { SkPMColor pa = *a.getAddr32(x, y); SkPMColor pb = *b.getAddr32(x, y); if (pa != pb) { return false; } } } return true; } DEF_TEST(image_roundtrip_encode, reporter) { SkBitmap bm0; make_all_premul(&bm0); auto img0 = bm0.asImage(); sk_sp data = img0->encodeToData(SkEncodedImageFormat::kPNG, 100); auto img1 = SkImage::MakeFromEncoded(data); SkBitmap bm1; bm1.allocPixels(SkImageInfo::MakeN32(256, 256, kPremul_SkAlphaType)); img1->readPixels(nullptr, bm1.info(), bm1.getPixels(), bm1.rowBytes(), 0, 0); REPORTER_ASSERT(reporter, equal(bm0, bm1)); } DEF_TEST(image_roundtrip_premul, reporter) { SkBitmap bm0; make_all_premul(&bm0); SkBitmap bm1; bm1.allocPixels(SkImageInfo::MakeN32(256, 256, kUnpremul_SkAlphaType)); bm0.readPixels(bm1.info(), bm1.getPixels(), bm1.rowBytes(), 0, 0); SkBitmap bm2; bm2.allocPixels(SkImageInfo::MakeN32(256, 256, kPremul_SkAlphaType)); bm1.readPixels(bm2.info(), bm2.getPixels(), bm2.rowBytes(), 0, 0); REPORTER_ASSERT(reporter, equal(bm0, bm2)); } /////////////////////////////////////////////////////////////////////////////////////////////////// static void check_scaled_pixels(skiatest::Reporter* reporter, SkPixmap* pmap, uint32_t expected) { // Verify that all pixels contain the original test color for (auto y = 0; y < pmap->height(); ++y) { for (auto x = 0; x < pmap->width(); ++x) { uint32_t pixel = *pmap->addr32(x, y); if (pixel != expected) { ERRORF(reporter, "Expected scaled pixels to be the same. At %d,%d 0x%08x != 0x%08x", x, y, pixel, expected); return; } } } } static void test_scale_pixels(skiatest::Reporter* reporter, const SkImage* image, uint32_t expected) { SkImageInfo info = SkImageInfo::MakeN32Premul(image->width() * 2, image->height() * 2); // Make sure to test kDisallow first, so we don't just get a cache hit in that case for (auto chint : { SkImage::kDisallow_CachingHint, SkImage::kAllow_CachingHint }) { SkAutoPixmapStorage scaled; scaled.alloc(info); if (!image->scalePixels(scaled, SkSamplingOptions(SkFilterMode::kLinear), chint)) { ERRORF(reporter, "Failed to scale image"); continue; } check_scaled_pixels(reporter, &scaled, expected); } } DEF_TEST(ImageScalePixels, reporter) { const SkPMColor pmRed = SkPackARGB32(0xFF, 0xFF, 0, 0); const SkColor red = SK_ColorRED; // Test raster image SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1); sk_sp surface = SkSurface::MakeRaster(info); surface->getCanvas()->clear(red); sk_sp rasterImage = surface->makeImageSnapshot(); test_scale_pixels(reporter, rasterImage.get(), pmRed); // Test encoded image sk_sp data = rasterImage->encodeToData(); sk_sp codecImage = SkImage::MakeFromEncoded(data); test_scale_pixels(reporter, codecImage.get(), pmRed); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageScalePixels_Gpu, reporter, ctxInfo) { const SkPMColor pmRed = SkPackARGB32(0xFF, 0xFF, 0, 0); const SkColor red = SK_ColorRED; SkImageInfo info = SkImageInfo::MakeN32Premul(16, 16); sk_sp surface = SkSurface::MakeRenderTarget(ctxInfo.directContext(), SkBudgeted::kNo, info); surface->getCanvas()->clear(red); sk_sp gpuImage = surface->makeImageSnapshot(); test_scale_pixels(reporter, gpuImage.get(), pmRed); } static sk_sp any_image_will_do() { return GetResourceAsImage("images/mandrill_32.png"); } DEF_TEST(Image_nonfinite_dst, reporter) { auto surf = SkSurface::MakeRasterN32Premul(10, 10); auto img = any_image_will_do(); for (SkScalar bad : { SK_ScalarInfinity, SK_ScalarNaN}) { for (int bits = 1; bits <= 15; ++bits) { SkRect dst = { 0, 0, 10, 10 }; if (bits & 1) dst.fLeft = bad; if (bits & 2) dst.fTop = bad; if (bits & 4) dst.fRight = bad; if (bits & 8) dst.fBottom = bad; surf->getCanvas()->drawImageRect(img, dst, SkSamplingOptions()); // we should draw nothing ToolUtils::PixelIter iter(surf.get()); while (void* addr = iter.next()) { REPORTER_ASSERT(reporter, *(SkPMColor*)addr == 0); } } } } static sk_sp make_yuva_image(GrDirectContext* dContext) { SkAutoPixmapStorage pm; pm.alloc(SkImageInfo::Make(1, 1, kAlpha_8_SkColorType, kPremul_SkAlphaType)); SkYUVAInfo yuvaInfo({1, 1}, SkYUVAInfo::PlaneConfig::kY_U_V, SkYUVAInfo::Subsampling::k444, kJPEG_Full_SkYUVColorSpace); const SkPixmap pmaps[] = {pm, pm, pm}; auto yuvaPixmaps = SkYUVAPixmaps::FromExternalPixmaps(yuvaInfo, pmaps); return SkImage::MakeFromYUVAPixmaps(dContext, yuvaPixmaps); } DEF_GPUTEST_FOR_ALL_CONTEXTS(ImageFlush, reporter, ctxInfo) { auto dContext = ctxInfo.directContext(); auto ii = SkImageInfo::Make(10, 10, kRGBA_8888_SkColorType, kPremul_SkAlphaType); auto s = SkSurface::MakeRenderTarget(dContext, SkBudgeted::kYes, ii, 1, nullptr); s->getCanvas()->clear(SK_ColorRED); auto i0 = s->makeImageSnapshot(); s->getCanvas()->clear(SK_ColorBLUE); auto i1 = s->makeImageSnapshot(); s->getCanvas()->clear(SK_ColorGREEN); // Make a YUVA image. auto i2 = make_yuva_image(dContext); // Flush all the setup work we did above and then make little lambda that reports the flush // count delta since the last time it was called. dContext->flushAndSubmit(); auto numSubmits = [dContext, submitCnt = dContext->priv().getGpu()->stats()->numSubmitToGpus()]() mutable { int curr = dContext->priv().getGpu()->stats()->numSubmitToGpus(); int n = curr - submitCnt; submitCnt = curr; return n; }; // Images aren't used therefore flush is ignored, but submit is still called. i0->flushAndSubmit(dContext); i1->flushAndSubmit(dContext); i2->flushAndSubmit(dContext); REPORTER_ASSERT(reporter, numSubmits() == 3); // Syncing forces the flush to happen even if the images aren't used. i0->flush(dContext); dContext->submit(true); REPORTER_ASSERT(reporter, numSubmits() == 1); i1->flush(dContext); dContext->submit(true); REPORTER_ASSERT(reporter, numSubmits() == 1); i2->flush(dContext); dContext->submit(true); REPORTER_ASSERT(reporter, numSubmits() == 1); // Use image 1 s->getCanvas()->drawImage(i1, 0, 0); // Flushing image 0 should do nothing, but submit is still called. i0->flushAndSubmit(dContext); REPORTER_ASSERT(reporter, numSubmits() == 1); // Flushing image 1 should flush. i1->flushAndSubmit(dContext); REPORTER_ASSERT(reporter, numSubmits() == 1); // Flushing image 2 should do nothing, but submit is still called. i2->flushAndSubmit(dContext); REPORTER_ASSERT(reporter, numSubmits() == 1); // Use image 2 s->getCanvas()->drawImage(i2, 0, 0); // Flushing image 0 should do nothing, but submit is still called. i0->flushAndSubmit(dContext); REPORTER_ASSERT(reporter, numSubmits() == 1); // Flushing image 1 do nothing, but submit is still called. i1->flushAndSubmit(dContext); REPORTER_ASSERT(reporter, numSubmits() == 1); // Flushing image 2 should flush. i2->flushAndSubmit(dContext); REPORTER_ASSERT(reporter, numSubmits() == 1); REPORTER_ASSERT(reporter, static_cast(as_IB(i2.get()))->isTextureBacked()); s->getCanvas()->drawImage(i2, 0, 0); // Flushing image 0 should do nothing, but submit is still called. i0->flushAndSubmit(dContext); REPORTER_ASSERT(reporter, numSubmits() == 1); // Flushing image 1 do nothing, but submit is still called. i1->flushAndSubmit(dContext); REPORTER_ASSERT(reporter, numSubmits() == 1); // Flushing image 2 should flush. i2->flushAndSubmit(dContext); REPORTER_ASSERT(reporter, numSubmits() == 1); } #include "src/shaders/SkImageShader.h" constexpr SkM44 gCentripetalCatmulRom (0.0f/2, -1.0f/2, 2.0f/2, -1.0f/2, 2.0f/2, 0.0f/2, -5.0f/2, 3.0f/2, 0.0f/2, 1.0f/2, 4.0f/2, -3.0f/2, 0.0f/2, 0.0f/2, -1.0f/2, 1.0f/2); constexpr SkM44 gMitchellNetravali ( 1.0f/18, -9.0f/18, 15.0f/18, -7.0f/18, 16.0f/18, 0.0f/18, -36.0f/18, 21.0f/18, 1.0f/18, 9.0f/18, 27.0f/18, -21.0f/18, 0.0f/18, 0.0f/18, -6.0f/18, 7.0f/18); DEF_TEST(image_cubicresampler, reporter) { auto diff = [reporter](const SkM44& a, const SkM44& b) { const float tolerance = 0.000001f; for (int r = 0; r < 4; ++r) { for (int c = 0; c < 4; ++c) { float d = std::abs(a.rc(r, c) - b.rc(r, c)); REPORTER_ASSERT(reporter, d <= tolerance); } } }; diff(SkImageShader::CubicResamplerMatrix(1.0f/3, 1.0f/3), gMitchellNetravali); diff(SkImageShader::CubicResamplerMatrix(0, 1.0f/2), gCentripetalCatmulRom); } DEF_TEST(image_subset_encode_skbug_7752, reporter) { sk_sp image = GetResourceAsImage("images/mandrill_128.png"); const int W = image->width(); const int H = image->height(); auto check_roundtrip = [&](sk_sp img) { auto img2 = SkImage::MakeFromEncoded(img->encodeToData()); REPORTER_ASSERT(reporter, ToolUtils::equal_pixels(img.get(), img2.get())); }; check_roundtrip(image); // should trivially pass check_roundtrip(image->makeSubset({0, 0, W/2, H/2})); check_roundtrip(image->makeSubset({W/2, H/2, W, H})); check_roundtrip(image->makeColorSpace(SkColorSpace::MakeSRGBLinear())); }