/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gm/gm.h" #include "include/core/SkBitmap.h" #include "include/core/SkBlendMode.h" #include "include/core/SkCanvas.h" #include "include/core/SkColor.h" #include "include/core/SkColorFilter.h" #include "include/core/SkColorPriv.h" #include "include/core/SkColorSpace.h" #include "include/core/SkFilterQuality.h" #include "include/core/SkFont.h" #include "include/core/SkFontStyle.h" #include "include/core/SkFontTypes.h" #include "include/core/SkImage.h" #include "include/core/SkImageGenerator.h" #include "include/core/SkImageInfo.h" #include "include/core/SkMatrix.h" #include "include/core/SkPaint.h" #include "include/core/SkPath.h" #include "include/core/SkPixmap.h" #include "include/core/SkPoint.h" #include "include/core/SkRect.h" #include "include/core/SkRefCnt.h" #include "include/core/SkScalar.h" #include "include/core/SkSize.h" #include "include/core/SkString.h" #include "include/core/SkTypeface.h" #include "include/core/SkTypes.h" #include "include/core/SkYUVAIndex.h" #include "include/core/SkYUVASizeInfo.h" #include "include/gpu/GrBackendSurface.h" #include "include/gpu/GrConfig.h" #include "include/gpu/GrContext.h" #include "include/gpu/GrTypes.h" #include "include/private/GrTypesPriv.h" #include "include/private/SkTArray.h" #include "include/private/SkTDArray.h" #include "include/private/SkTemplates.h" #include "include/utils/SkTextUtils.h" #include "src/gpu/GrContextPriv.h" #include "src/gpu/GrGpu.h" #include "tools/ToolUtils.h" #include #include #include #include #include class GrRenderTargetContext; static const int kTileWidthHeight = 128; static const int kLabelWidth = 64; static const int kLabelHeight = 32; static const int kDomainPadding = 8; static const int kPad = 1; enum YUVFormat { // 4:2:0 formats, 24 bpp kP016_YUVFormat, // 16-bit Y plane + 2x2 down sampled interleaved U/V plane (2 textures) // 4:2:0 formats, "15 bpp" (but really 24 bpp) kP010_YUVFormat, // same as kP016 except "10 bpp". Note that it is the same memory layout // except that the bottom 6 bits are zeroed out (2 textures) // TODO: we're cheating a bit w/ P010 and just treating it as unorm 16. This means its // fully saturated values are 65504 rather than 65535 (that is just .9995 out of 1.0 though). // 4:4:4 formats, 64 bpp kY416_YUVFormat, // 16-bit AVYU values all interleaved (1 texture) // 4:4:4 formats, 32 bpp kAYUV_YUVFormat, // 8-bit YUVA values all interleaved (1 texture) kY410_YUVFormat, // AVYU w/ 10bpp for YUV and 2 for A all interleaved (1 texture) // 4:2:0 formats, 12 bpp kNV12_YUVFormat, // 8-bit Y plane + 2x2 down sampled interleaved U/V planes (2 textures) kNV21_YUVFormat, // same as kNV12 but w/ U/V reversed in the interleaved texture (2 textures) kI420_YUVFormat, // 8-bit Y plane + separate 2x2 down sampled U and V planes (3 textures) kYV12_YUVFormat, // 8-bit Y plane + separate 2x2 down sampled V and U planes (3 textures) kLast_YUVFormat = kYV12_YUVFormat }; static bool format_uses_16_bpp(YUVFormat yuvFormat) { return kP016_YUVFormat == yuvFormat || kP010_YUVFormat == yuvFormat || kY416_YUVFormat == yuvFormat; } static bool format_has_builtin_alpha(YUVFormat yuvFormat) { return kY416_YUVFormat == yuvFormat || kAYUV_YUVFormat == yuvFormat || kY410_YUVFormat == yuvFormat; } static bool format_cant_be_represented_with_pixmaps(YUVFormat yuvFormat) { return kP016_YUVFormat == yuvFormat || // bc missing SkColorType::kRG_1616 and kR_16 kP010_YUVFormat == yuvFormat || // bc missing SkColorType::kRG_1616 and kR_16 kY416_YUVFormat == yuvFormat || // bc missing SkColorType::kRGBA_16161616 kNV12_YUVFormat == yuvFormat || // bc missing SkColorType::kRG_88 kNV21_YUVFormat == yuvFormat; // bc missing SkColorType::kRG_88 } // Helper to setup the SkYUVAIndex array correctly // Skia allows the client to tack an additional alpha plane onto any of the standard opaque // formats (via the addExtraAlpha) flag. In this case it is assumed to be a stand-alone single- // channel plane. static void setup_yuv_indices(YUVFormat yuvFormat, bool addExtraAlpha, SkYUVAIndex yuvaIndices[4]) { switch (yuvFormat) { case kP016_YUVFormat: // fall through case kP010_YUVFormat: yuvaIndices[0].fIndex = 0; yuvaIndices[0].fChannel = SkColorChannel::kR; // bc 16bit is stored in R16 format yuvaIndices[1].fIndex = 1; yuvaIndices[1].fChannel = SkColorChannel::kR; yuvaIndices[2].fIndex = 1; yuvaIndices[2].fChannel = SkColorChannel::kG; if (addExtraAlpha) { yuvaIndices[3].fIndex = 2; yuvaIndices[3].fChannel = SkColorChannel::kR; // bc 16bit is stored in R16 format } else { yuvaIndices[3].fIndex = -1; // No alpha channel } break; case kY416_YUVFormat: SkASSERT(!addExtraAlpha); // this format already has an alpha channel yuvaIndices[0].fIndex = 0; yuvaIndices[0].fChannel = SkColorChannel::kG; yuvaIndices[1].fIndex = 0; yuvaIndices[1].fChannel = SkColorChannel::kB; yuvaIndices[2].fIndex = 0; yuvaIndices[2].fChannel = SkColorChannel::kR; yuvaIndices[3].fIndex = 0; yuvaIndices[3].fChannel = SkColorChannel::kA; break; case kAYUV_YUVFormat: SkASSERT(!addExtraAlpha); // this format already has an alpha channel yuvaIndices[0].fIndex = 0; yuvaIndices[0].fChannel = SkColorChannel::kR; yuvaIndices[1].fIndex = 0; yuvaIndices[1].fChannel = SkColorChannel::kG; yuvaIndices[2].fIndex = 0; yuvaIndices[2].fChannel = SkColorChannel::kB; yuvaIndices[3].fIndex = 0; yuvaIndices[3].fChannel = SkColorChannel::kA; break; case kY410_YUVFormat: SkASSERT(!addExtraAlpha); // this format already has an alpha channel yuvaIndices[0].fIndex = 0; yuvaIndices[0].fChannel = SkColorChannel::kG; yuvaIndices[1].fIndex = 0; yuvaIndices[1].fChannel = SkColorChannel::kB; yuvaIndices[2].fIndex = 0; yuvaIndices[2].fChannel = SkColorChannel::kR; yuvaIndices[3].fIndex = 0; yuvaIndices[3].fChannel = SkColorChannel::kA; break; case kNV12_YUVFormat: yuvaIndices[0].fIndex = 0; yuvaIndices[0].fChannel = SkColorChannel::kR; yuvaIndices[1].fIndex = 1; yuvaIndices[1].fChannel = SkColorChannel::kR; yuvaIndices[2].fIndex = 1; yuvaIndices[2].fChannel = SkColorChannel::kG; if (addExtraAlpha) { yuvaIndices[3].fIndex = 2; yuvaIndices[3].fChannel = SkColorChannel::kA; } else { yuvaIndices[3].fIndex = -1; // No alpha channel } break; case kNV21_YUVFormat: yuvaIndices[0].fIndex = 0; yuvaIndices[0].fChannel = SkColorChannel::kR; yuvaIndices[1].fIndex = 1; yuvaIndices[1].fChannel = SkColorChannel::kG; yuvaIndices[2].fIndex = 1; yuvaIndices[2].fChannel = SkColorChannel::kR; if (addExtraAlpha) { yuvaIndices[3].fIndex = 2; yuvaIndices[3].fChannel = SkColorChannel::kA; } else { yuvaIndices[3].fIndex = -1; // No alpha channel } break; case kI420_YUVFormat: yuvaIndices[0].fIndex = 0; yuvaIndices[0].fChannel = SkColorChannel::kR; yuvaIndices[1].fIndex = 1; yuvaIndices[1].fChannel = SkColorChannel::kR; yuvaIndices[2].fIndex = 2; yuvaIndices[2].fChannel = SkColorChannel::kR; if (addExtraAlpha) { yuvaIndices[3].fIndex = 3; yuvaIndices[3].fChannel = SkColorChannel::kA; } else { yuvaIndices[3].fIndex = -1; // No alpha channel } break; case kYV12_YUVFormat: yuvaIndices[0].fIndex = 0; yuvaIndices[0].fChannel = SkColorChannel::kR; yuvaIndices[1].fIndex = 2; yuvaIndices[1].fChannel = SkColorChannel::kR; yuvaIndices[2].fIndex = 1; yuvaIndices[2].fChannel = SkColorChannel::kR; if (addExtraAlpha) { yuvaIndices[3].fIndex = 3; yuvaIndices[3].fChannel = SkColorChannel::kA; } else { yuvaIndices[3].fIndex = -1; // No alpha channel } break; } } // All the planes we need to construct the various YUV formats struct PlaneData { SkBitmap fYFull; SkBitmap fUFull; SkBitmap fVFull; SkBitmap fAFull; SkBitmap fUQuarter; // 2x2 downsampled U channel SkBitmap fVQuarter; // 2x2 downsampled V channel }; // Add a portion of a circle to 'path'. The points 'o1' and 'o2' are on the border of the circle // and have tangents 'v1' and 'v2'. static void add_arc(SkPath* path, const SkPoint& o1, const SkVector& v1, const SkPoint& o2, const SkVector& v2, SkTDArray* circles, bool takeLongWayRound) { SkVector v3 = { -v1.fY, v1.fX }; SkVector v4 = { v2.fY, -v2.fX }; SkScalar t = ((o2.fX - o1.fX) * v4.fY - (o2.fY - o1.fY) * v4.fX) / v3.cross(v4); SkPoint center = { o1.fX + t * v3.fX, o1.fY + t * v3.fY }; SkRect r = { center.fX - t, center.fY - t, center.fX + t, center.fY + t }; if (circles) { circles->push_back(r); } SkVector startV = o1 - center, endV = o2 - center; startV.normalize(); endV.normalize(); SkScalar startDeg = SkRadiansToDegrees(SkScalarATan2(startV.fY, startV.fX)); SkScalar endDeg = SkRadiansToDegrees(SkScalarATan2(endV.fY, endV.fX)); startDeg += 360.0f; startDeg = fmodf(startDeg, 360.0f); endDeg += 360.0f; endDeg = fmodf(endDeg, 360.0f); if (endDeg < startDeg) { endDeg += 360.0f; } SkScalar sweepDeg = SkTAbs(endDeg - startDeg); if (!takeLongWayRound) { sweepDeg = sweepDeg - 360; } path->arcTo(r, startDeg, sweepDeg, false); } static SkPath create_splat(const SkPoint& o, SkScalar innerRadius, SkScalar outerRadius, SkScalar ratio, int numLobes, SkTDArray* circles) { if (numLobes <= 1) { return SkPath(); } SkPath p; int numDivisions = 2 * numLobes; SkScalar fullLobeDegrees = 360.0f / numLobes; SkScalar outDegrees = ratio * fullLobeDegrees / (ratio + 1.0f); SkScalar innerDegrees = fullLobeDegrees / (ratio + 1.0f); SkMatrix outerStep, innerStep; outerStep.setRotate(outDegrees); innerStep.setRotate(innerDegrees); SkVector curV = SkVector::Make(0.0f, 1.0f); if (circles) { circles->push_back(SkRect::MakeLTRB(o.fX - innerRadius, o.fY - innerRadius, o.fX + innerRadius, o.fY + innerRadius)); } p.moveTo(o.fX + innerRadius * curV.fX, o.fY + innerRadius * curV.fY); for (int i = 0; i < numDivisions; ++i) { SkVector nextV; if (0 == (i % 2)) { nextV = outerStep.mapVector(curV.fX, curV.fY); SkPoint top = SkPoint::Make(o.fX + outerRadius * curV.fX, o.fY + outerRadius * curV.fY); SkPoint nextTop = SkPoint::Make(o.fX + outerRadius * nextV.fX, o.fY + outerRadius * nextV.fY); p.lineTo(top); add_arc(&p, top, curV, nextTop, nextV, circles, true); } else { nextV = innerStep.mapVector(curV.fX, curV.fY); SkPoint bot = SkPoint::Make(o.fX + innerRadius * curV.fX, o.fY + innerRadius * curV.fY); SkPoint nextBot = SkPoint::Make(o.fX + innerRadius * nextV.fX, o.fY + innerRadius * nextV.fY); p.lineTo(bot); add_arc(&p, bot, curV, nextBot, nextV, nullptr, false); } curV = nextV; } p.close(); return p; } static SkBitmap make_bitmap(SkColorType colorType, const SkPath& path, const SkTDArray& circles, bool opaque, bool padWithRed) { const SkColor kGreen = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 178, 240, 104)); const SkColor kBlue = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 173, 167, 252)); const SkColor kYellow = ToolUtils::color_to_565(SkColorSetARGB(0xFF, 255, 221, 117)); int widthHeight = kTileWidthHeight + (padWithRed ? 2 * kDomainPadding : 0); SkImageInfo ii = SkImageInfo::Make(widthHeight, widthHeight, colorType, kPremul_SkAlphaType); SkBitmap bm; bm.allocPixels(ii); std::unique_ptr canvas = SkCanvas::MakeRasterDirect(ii, bm.getPixels(), bm.rowBytes()); if (padWithRed) { canvas->clear(SK_ColorRED); canvas->translate(kDomainPadding, kDomainPadding); canvas->clipRect(SkRect::MakeWH(kTileWidthHeight, kTileWidthHeight)); } canvas->clear(opaque ? kGreen : SK_ColorTRANSPARENT); SkPaint paint; paint.setAntiAlias(false); // serialize-8888 doesn't seem to work well w/ partial transparency paint.setColor(kBlue); canvas->drawPath(path, paint); paint.setColor(opaque ? kYellow : SK_ColorTRANSPARENT); paint.setBlendMode(SkBlendMode::kSrc); for (int i = 0; i < circles.count(); ++i) { SkRect r = circles[i]; r.inset(r.width()/4, r.height()/4); canvas->drawOval(r, paint); } return bm; } static void convert_rgba_to_yuva_601_shared(SkColor col, uint8_t yuv[4], uint8_t off, uint8_t range) { static const float Kr = 0.299f; static const float Kb = 0.114f; static const float Kg = 1.0f - Kr - Kb; float r = SkColorGetR(col) / 255.0f; float g = SkColorGetG(col) / 255.0f; float b = SkColorGetB(col) / 255.0f; float Ey = Kr * r + Kg * g + Kb * b; float Ecb = (b - Ey) / 1.402f; float Ecr = (r - Ey) / 1.772; SkASSERT(Ey >= 0.0f && Ey <= 1.0f); SkASSERT(Ecb >= -0.5f && Ecb <= 0.5f); SkASSERT(Ecr >= -0.5f && Ecr <= 0.5f); yuv[0] = SkScalarRoundToInt( range * Ey + off ); yuv[1] = SkScalarRoundToInt( 224 * Ecb + 128 ); yuv[2] = SkScalarRoundToInt( 224 * Ecr + 128 ); yuv[3] = SkColorGetA(col); } static void convert_rgba_to_yuva_jpeg(SkColor col, uint8_t yuv[4]) { // full swing from 0..255 convert_rgba_to_yuva_601_shared(col, yuv, 0, 255); } static void convert_rgba_to_yuva_601(SkColor col, uint8_t yuv[4]) { // partial swing from 16..235 convert_rgba_to_yuva_601_shared(col, yuv, 16, 219); } static void convert_rgba_to_yuva_709(SkColor col, uint8_t yuv[4]) { static const float Kr = 0.2126f; static const float Kb = 0.0722f; static const float Kg = 1.0f - Kr - Kb; float r = SkColorGetR(col) / 255.0f; float g = SkColorGetG(col) / 255.0f; float b = SkColorGetB(col) / 255.0f; float Ey = Kr * r + Kg * g + Kb * b; float Ecb = (b - Ey) / 1.8556f; float Ecr = (r - Ey) / 1.5748; SkASSERT(Ey >= 0.0f && Ey <= 1.0f); SkASSERT(Ecb >= -0.5f && Ecb <= 0.5f); SkASSERT(Ecr >= -0.5f && Ecr <= 0.5f); yuv[0] = SkScalarRoundToInt( 219 * Ey + 16 ); yuv[1] = SkScalarRoundToInt( 224 * Ecb + 128 ); yuv[2] = SkScalarRoundToInt( 224 * Ecr + 128 ); yuv[3] = SkColorGetA(col); } static SkPMColor convert_yuva_to_rgba_jpeg(uint8_t y, uint8_t u, uint8_t v, uint8_t a) { uint8_t r = SkScalarPin(SkScalarRoundToInt( 1.0f * y + 1.402f * v - 0.703749f * 255), 0, 255); uint8_t g = SkScalarPin(SkScalarRoundToInt( 1.0f * y - (0.344136f * u) - (0.714136f * v) + 0.531211f * 255), 0, 255); uint8_t b = SkScalarPin(SkScalarRoundToInt( 1.0f * y + 1.772f * u - 0.889475f * 255), 0, 255); SkPMColor c = SkPremultiplyARGBInline(a, b, g, r); return c; } static SkPMColor convert_yuva_to_rgba_601(uint8_t y, uint8_t u, uint8_t v, uint8_t a) { uint8_t r = SkScalarPin(SkScalarRoundToInt( 1.164f * y + 1.596f * v - 0.87075f * 255), 0, 255); uint8_t g = SkScalarPin(SkScalarRoundToInt( 1.164f * y - (0.391f * u) - (0.813f * v) + 0.52925f * 255), 0, 255); uint8_t b = SkScalarPin(SkScalarRoundToInt( 1.164f * y + 2.018f * u - 1.08175f * 255), 0, 255); SkPMColor c = SkPremultiplyARGBInline(a, b, g, r); return c; } static SkPMColor convert_yuva_to_rgba_709(uint8_t y, uint8_t u, uint8_t v, uint8_t a) { uint8_t r = SkScalarPin(SkScalarRoundToInt( 1.164f * y + (1.793f * v) - 0.96925f * 255), 0, 255); uint8_t g = SkScalarPin(SkScalarRoundToInt( 1.164f * y - (0.213f * u) - (0.533f * v) + 0.30025f * 255), 0, 255); uint8_t b = SkScalarPin(SkScalarRoundToInt( 1.164f * y + (2.112f * u) - 1.12875f * 255), 0, 255); SkPMColor c = SkPremultiplyARGBInline(a, b, g, r); return c; } static void extract_planes(const SkBitmap& bm, SkYUVColorSpace yuvColorSpace, PlaneData* planes) { if (kIdentity_SkYUVColorSpace == yuvColorSpace) { // To test the identity color space we use JPEG YUV planes yuvColorSpace = kJPEG_SkYUVColorSpace; } SkASSERT(!(bm.width() % 2)); SkASSERT(!(bm.height() % 2)); planes->fYFull.allocPixels(SkImageInfo::Make(bm.width(), bm.height(), kGray_8_SkColorType, kUnpremul_SkAlphaType)); planes->fUFull.allocPixels(SkImageInfo::Make(bm.width(), bm.height(), kGray_8_SkColorType, kUnpremul_SkAlphaType)); planes->fVFull.allocPixels(SkImageInfo::Make(bm.width(), bm.height(), kGray_8_SkColorType, kUnpremul_SkAlphaType)); planes->fAFull.allocPixels(SkImageInfo::MakeA8(bm.width(), bm.height())); planes->fUQuarter.allocPixels(SkImageInfo::Make(bm.width()/2, bm.height()/2, kGray_8_SkColorType, kUnpremul_SkAlphaType)); planes->fVQuarter.allocPixels(SkImageInfo::Make(bm.width()/2, bm.height()/2, kGray_8_SkColorType, kUnpremul_SkAlphaType)); for (int y = 0; y < bm.height(); ++y) { for (int x = 0; x < bm.width(); ++x) { SkColor col = bm.getColor(x, y); uint8_t yuva[4]; if (kJPEG_SkYUVColorSpace == yuvColorSpace) { convert_rgba_to_yuva_jpeg(col, yuva); } else if (kRec601_SkYUVColorSpace == yuvColorSpace) { convert_rgba_to_yuva_601(col, yuva); } else { SkASSERT(kRec709_SkYUVColorSpace == yuvColorSpace); convert_rgba_to_yuva_709(col, yuva); } *planes->fYFull.getAddr8(x, y) = yuva[0]; *planes->fUFull.getAddr8(x, y) = yuva[1]; *planes->fVFull.getAddr8(x, y) = yuva[2]; *planes->fAFull.getAddr8(x, y) = yuva[3]; } } for (int y = 0; y < bm.height()/2; ++y) { for (int x = 0; x < bm.width()/2; ++x) { uint32_t uAccum = 0, vAccum = 0; uAccum += *planes->fUFull.getAddr8(2*x, 2*y); uAccum += *planes->fUFull.getAddr8(2*x+1, 2*y); uAccum += *planes->fUFull.getAddr8(2*x, 2*y+1); uAccum += *planes->fUFull.getAddr8(2*x+1, 2*y+1); *planes->fUQuarter.getAddr8(x, y) = uAccum / 4.0f; vAccum += *planes->fVFull.getAddr8(2*x, 2*y); vAccum += *planes->fVFull.getAddr8(2*x+1, 2*y); vAccum += *planes->fVFull.getAddr8(2*x, 2*y+1); vAccum += *planes->fVFull.getAddr8(2*x+1, 2*y+1); *planes->fVQuarter.getAddr8(x, y) = vAccum / 4.0f; } } } // Create a 2x2 downsampled SkBitmap. It is stored in an RGBA texture. It can optionally be // uv (i.e., for P016, P010 and NV12) or vu (i.e., NV21). static SkBitmap make_quarter_2_channel(const SkBitmap& fullY, const SkBitmap& quarterU, const SkBitmap& quarterV, bool uv) { SkBitmap result; // There isn't a RG color type. Approx w/ RGBA. result.allocPixels(SkImageInfo::Make(fullY.width()/2, fullY.height()/2, kRGBA_8888_SkColorType, kUnpremul_SkAlphaType)); for (int y = 0; y < fullY.height()/2; ++y) { for (int x = 0; x < fullY.width()/2; ++x) { uint8_t u8 = *quarterU.getAddr8(x, y); uint8_t v8 = *quarterV.getAddr8(x, y); if (uv) { // NOT premul! // U and 0 swapped to match RGBA layout *result.getAddr32(x, y) = SkColorSetARGB(0xFF, 0, v8, u8); } else { // NOT premul! // V and 0 swapped to match RGBA layout *result.getAddr32(x, y) = SkColorSetARGB(0xFF, 0, u8, v8); } } } return result; } // Recombine the separate planes into some YUV format static void create_YUV(const PlaneData& planes, YUVFormat yuvFormat, SkBitmap resultBMs[], SkYUVAIndex yuvaIndices[4], bool opaque) { int nextLayer = 0; switch (yuvFormat) { case kY416_YUVFormat: { // Although this is 16 bpp, store the data in an 8 bpp SkBitmap SkBitmap yuvaFull; yuvaFull.allocPixels(SkImageInfo::Make(planes.fYFull.width(), planes.fYFull.height(), kRGBA_8888_SkColorType, kUnpremul_SkAlphaType)); for (int y = 0; y < planes.fYFull.height(); ++y) { for (int x = 0; x < planes.fYFull.width(); ++x) { uint8_t Y = *planes.fYFull.getAddr8(x, y); uint8_t U = *planes.fUFull.getAddr8(x, y); uint8_t V = *planes.fVFull.getAddr8(x, y); uint8_t A = *planes.fAFull.getAddr8(x, y); // NOT premul! // U and V swapped to match RGBA layout SkColor c = SkColorSetARGB(A, U, Y, V); *yuvaFull.getAddr32(x, y) = c; } } resultBMs[nextLayer++] = yuvaFull; setup_yuv_indices(yuvFormat, false, yuvaIndices); break; } case kAYUV_YUVFormat: { SkBitmap yuvaFull; yuvaFull.allocPixels(SkImageInfo::Make(planes.fYFull.width(), planes.fYFull.height(), kRGBA_8888_SkColorType, kUnpremul_SkAlphaType)); for (int y = 0; y < planes.fYFull.height(); ++y) { for (int x = 0; x < planes.fYFull.width(); ++x) { uint8_t Y = *planes.fYFull.getAddr8(x, y); uint8_t U = *planes.fUFull.getAddr8(x, y); uint8_t V = *planes.fVFull.getAddr8(x, y); uint8_t A = *planes.fAFull.getAddr8(x, y); // NOT premul! // V and Y swapped to match RGBA layout SkColor c = SkColorSetARGB(A, V, U, Y); *yuvaFull.getAddr32(x, y) = c; } } resultBMs[nextLayer++] = yuvaFull; setup_yuv_indices(yuvFormat, false, yuvaIndices); break; } case kY410_YUVFormat: { SkBitmap yuvaFull; uint32_t Y, U, V; uint8_t A; yuvaFull.allocPixels(SkImageInfo::Make(planes.fYFull.width(), planes.fYFull.height(), kRGBA_1010102_SkColorType, kUnpremul_SkAlphaType)); for (int y = 0; y < planes.fYFull.height(); ++y) { for (int x = 0; x < planes.fYFull.width(); ++x) { Y = SkScalarRoundToInt((*planes.fYFull.getAddr8(x, y) / 255.0f) * 1023.0f); U = SkScalarRoundToInt((*planes.fUFull.getAddr8(x, y) / 255.0f) * 1023.0f); V = SkScalarRoundToInt((*planes.fVFull.getAddr8(x, y) / 255.0f) * 1023.0f); A = SkScalarRoundToInt((*planes.fAFull.getAddr8(x, y) / 255.0f) * 3.0f); // NOT premul! // AVYU but w/ V and U swapped to match RGBA layout *yuvaFull.getAddr32(x, y) = (A << 30) | (U << 20) | (Y << 10) | (V << 0); } } resultBMs[nextLayer++] = yuvaFull; setup_yuv_indices(yuvFormat, false, yuvaIndices); break; } case kP016_YUVFormat: // fall through case kP010_YUVFormat: // fall through case kNV12_YUVFormat: { SkBitmap uvQuarter = make_quarter_2_channel(planes.fYFull, planes.fUQuarter, planes.fVQuarter, true); resultBMs[nextLayer++] = planes.fYFull; resultBMs[nextLayer++] = uvQuarter; setup_yuv_indices(yuvFormat, !opaque, yuvaIndices); break; } case kNV21_YUVFormat: { SkBitmap vuQuarter = make_quarter_2_channel(planes.fYFull, planes.fUQuarter, planes.fVQuarter, false); resultBMs[nextLayer++] = planes.fYFull; resultBMs[nextLayer++] = vuQuarter; setup_yuv_indices(yuvFormat, !opaque, yuvaIndices); break; } case kI420_YUVFormat: resultBMs[nextLayer++] = planes.fYFull; resultBMs[nextLayer++] = planes.fUQuarter; resultBMs[nextLayer++] = planes.fVQuarter; setup_yuv_indices(yuvFormat, !opaque, yuvaIndices); break; case kYV12_YUVFormat: resultBMs[nextLayer++] = planes.fYFull; resultBMs[nextLayer++] = planes.fVQuarter; resultBMs[nextLayer++] = planes.fUQuarter; setup_yuv_indices(yuvFormat, !opaque, yuvaIndices); break; } if (!format_has_builtin_alpha(yuvFormat) && !opaque) { resultBMs[nextLayer] = planes.fAFull; } } static uint8_t look_up(float x1, float y1, const SkBitmap& bm, SkColorChannel channel) { uint8_t result; SkASSERT(x1 > 0 && x1 < 1.0f); SkASSERT(y1 > 0 && y1 < 1.0f); int x = SkScalarFloorToInt(x1 * bm.width()); int y = SkScalarFloorToInt(y1 * bm.height()); if (kAlpha_8_SkColorType == bm.colorType() || kGray_8_SkColorType == bm.colorType()) { SkASSERT(SkColorChannel::kA == channel || SkColorChannel::kR == channel); result = *bm.getAddr8(x, y); } else if (kRGBA_8888_SkColorType == bm.colorType()) { SkColor c = *bm.getAddr32(x, y); switch (channel) { case SkColorChannel::kR: result = SkColorGetB(c); break; case SkColorChannel::kG: result = SkColorGetG(c); break; case SkColorChannel::kB: result = SkColorGetR(c); break; case SkColorChannel::kA: result = SkColorGetA(c); break; } } else { SkASSERT(kRGBA_1010102_SkColorType == bm.colorType()); SkColor c = *bm.getAddr32(x, y); switch (channel) { case SkColorChannel::kR: result = SkScalarRoundToInt(((c >> 0) & 0x3ff) * (255.0f/1023.0f)); break; case SkColorChannel::kG: result = SkScalarRoundToInt(((c >> 10) & 0x3ff) * (255.0f/1023.0f)); break; case SkColorChannel::kB: result = SkScalarRoundToInt(((c >> 20) & 0x3ff) * (255.0f/1023.0f)); break; case SkColorChannel::kA: result = SkScalarRoundToInt(((c >> 30) & 0x3) * (255.0f/3.0f)); break; } } return result; } class YUVGenerator : public SkImageGenerator { public: YUVGenerator(const SkImageInfo& ii, SkYUVColorSpace yuvColorSpace, SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount], SkBitmap bitmaps[SkYUVASizeInfo::kMaxCount]) : SkImageGenerator(ii) , fYUVColorSpace(yuvColorSpace) , fAllA8(true) { memcpy(fYUVAIndices, yuvaIndices, sizeof(fYUVAIndices)); SkAssertResult(SkYUVAIndex::AreValidIndices(fYUVAIndices, &fNumBitmaps)); SkASSERT(fNumBitmaps > 0 && fNumBitmaps <= SkYUVASizeInfo::kMaxCount); for (int i = 0; i < fNumBitmaps; ++i) { fYUVBitmaps[i] = bitmaps[i]; if (kAlpha_8_SkColorType != fYUVBitmaps[i].colorType()) { fAllA8 = false; } } } protected: bool onGetPixels(const SkImageInfo& info, void* pixels, size_t rowBytes, const Options&) override { if (kUnknown_SkColorType == fFlattened.colorType()) { fFlattened.allocPixels(info); SkASSERT(kPremul_SkAlphaType == info.alphaType()); for (int y = 0; y < info.height(); ++y) { for (int x = 0; x < info.width(); ++x) { float x1 = (x + 0.5f) / info.width(); float y1 = (y + 0.5f) / info.height(); uint8_t Y = look_up(x1, y1, fYUVBitmaps[fYUVAIndices[0].fIndex], fYUVAIndices[0].fChannel); uint8_t U = look_up(x1, y1, fYUVBitmaps[fYUVAIndices[1].fIndex], fYUVAIndices[1].fChannel); uint8_t V = look_up(x1, y1, fYUVBitmaps[fYUVAIndices[2].fIndex], fYUVAIndices[2].fChannel); uint8_t A = 255; if (fYUVAIndices[3].fIndex >= 0) { A = look_up(x1, y1, fYUVBitmaps[fYUVAIndices[3].fIndex], fYUVAIndices[3].fChannel); } // Making premul here. switch (fYUVColorSpace) { case kJPEG_SkYUVColorSpace: *fFlattened.getAddr32(x, y) = convert_yuva_to_rgba_jpeg(Y, U, V, A); break; case kRec601_SkYUVColorSpace: *fFlattened.getAddr32(x, y) = convert_yuva_to_rgba_601(Y, U, V, A); break; case kRec709_SkYUVColorSpace: *fFlattened.getAddr32(x, y) = convert_yuva_to_rgba_709(Y, U, V, A); break; case kIdentity_SkYUVColorSpace: *fFlattened.getAddr32(x, y) = SkPremultiplyARGBInline(A, V, U, Y); break; } } } } return fFlattened.readPixels(info, pixels, rowBytes, 0, 0); } bool onQueryYUVA8(SkYUVASizeInfo* size, SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount], SkYUVColorSpace* yuvColorSpace) const override { // The onQueryYUVA8/onGetYUVA8Planes can only handle A8 planes if (!fAllA8) { return false; } memcpy(yuvaIndices, fYUVAIndices, sizeof(fYUVAIndices)); *yuvColorSpace = fYUVColorSpace; int i = 0; for ( ; i < fNumBitmaps; ++i) { size->fSizes[i].fWidth = fYUVBitmaps[i].width(); size->fSizes[i].fHeight = fYUVBitmaps[i].height(); size->fWidthBytes[i] = fYUVBitmaps[i].rowBytes(); } for ( ; i < SkYUVASizeInfo::kMaxCount; ++i) { size->fSizes[i].fWidth = 0; size->fSizes[i].fHeight = 0; size->fWidthBytes[i] = 0; } return true; } bool onGetYUVA8Planes(const SkYUVASizeInfo&, const SkYUVAIndex[SkYUVAIndex::kIndexCount], void* planes[SkYUVASizeInfo::kMaxCount]) override { SkASSERT(fAllA8); for (int i = 0; i < fNumBitmaps; ++i) { planes[i] = fYUVBitmaps[i].getPixels(); } return true; } private: SkYUVColorSpace fYUVColorSpace; SkYUVAIndex fYUVAIndices[SkYUVAIndex::kIndexCount]; int fNumBitmaps; SkBitmap fYUVBitmaps[SkYUVASizeInfo::kMaxCount]; SkBitmap fFlattened; bool fAllA8; // are all the SkBitmaps in "fYUVBitmaps" A8? }; static sk_sp make_yuv_gen_image(const SkImageInfo& ii, SkYUVColorSpace yuvColorSpace, SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount], SkBitmap bitmaps[]) { std::unique_ptr gen(new YUVGenerator(ii, yuvColorSpace, yuvaIndices, bitmaps)); return SkImage::MakeFromGenerator(std::move(gen)); } static void draw_col_label(SkCanvas* canvas, int x, int yuvColorSpace, bool opaque) { static const char* kYUVColorSpaceNames[] = { "JPEG", "601", "709", "Identity" }; GR_STATIC_ASSERT(SK_ARRAY_COUNT(kYUVColorSpaceNames) == kLastEnum_SkYUVColorSpace+1); SkPaint paint; SkFont font(ToolUtils::create_portable_typeface(nullptr, SkFontStyle::Bold()), 16); font.setEdging(SkFont::Edging::kAlias); SkRect textRect; SkString colLabel; colLabel.printf("%s", kYUVColorSpaceNames[yuvColorSpace]); font.measureText(colLabel.c_str(), colLabel.size(), SkTextEncoding::kUTF8, &textRect); int y = textRect.height(); SkTextUtils::DrawString(canvas, colLabel.c_str(), x, y, font, paint, SkTextUtils::kCenter_Align); colLabel.printf("%s", opaque ? "Opaque" : "Transparent"); font.measureText(colLabel.c_str(), colLabel.size(), SkTextEncoding::kUTF8, &textRect); y += textRect.height(); SkTextUtils::DrawString(canvas, colLabel.c_str(), x, y, font, paint, SkTextUtils::kCenter_Align); } static void draw_row_label(SkCanvas* canvas, int y, int yuvFormat) { static const char* kYUVFormatNames[] = { "P016", "P010", "Y416", "AYUV", "Y410", "NV12", "NV21", "I420", "YV12" }; GR_STATIC_ASSERT(SK_ARRAY_COUNT(kYUVFormatNames) == kLast_YUVFormat+1); SkPaint paint; SkFont font(ToolUtils::create_portable_typeface(nullptr, SkFontStyle::Bold()), 16); font.setEdging(SkFont::Edging::kAlias); SkRect textRect; SkString rowLabel; rowLabel.printf("%s", kYUVFormatNames[yuvFormat]); font.measureText(rowLabel.c_str(), rowLabel.size(), SkTextEncoding::kUTF8, &textRect); y += kTileWidthHeight/2 + textRect.height()/2; canvas->drawString(rowLabel, 0, y, font, paint); } static void make_RG_88(const GrCaps* caps, const SkBitmap& bm, YUVFormat yuvFormat, SkAutoTMalloc* pixels, GrBackendFormat* format, size_t* rowBytes) { SkASSERT(kNV12_YUVFormat == yuvFormat || kNV21_YUVFormat == yuvFormat); SkASSERT(kRGBA_8888_SkColorType == bm.colorType()); // uv stored in rg *rowBytes = bm.width() * 2 * sizeof(uint8_t); pixels->reset(*rowBytes * bm.height()); uint8_t* currPixel = pixels->get(); for (int y = 0; y < bm.height(); ++y) { for (int x = 0; x < bm.width(); ++x) { SkColor color = bm.getColor(x, y); uint8_t u8 = SkColorGetR(color); uint8_t v8 = SkColorGetG(color); currPixel[0] = u8; currPixel[1] = v8; currPixel += 2; } } *format = caps->getDefaultBackendFormat(GrColorType::kRG_88, GrRenderable::kNo); } static void make_RG_1616(const GrCaps* caps, const SkBitmap& bm, YUVFormat yuvFormat, SkAutoTMalloc* pixels, GrBackendFormat* format, size_t* rowBytes) { SkASSERT(kP016_YUVFormat == yuvFormat || kP010_YUVFormat == yuvFormat); SkASSERT(kRGBA_8888_SkColorType == bm.colorType()); // uv stored in rg uint16_t u16, v16; *rowBytes = bm.width() * 2 * sizeof(uint16_t); pixels->reset(*rowBytes * bm.height()); uint16_t* currPixel = (uint16_t*) pixels->get(); for (int y = 0; y < bm.height(); ++y) { for (int x = 0; x < bm.width(); ++x) { SkColor color = bm.getColor(x, y); if (kP016_YUVFormat == yuvFormat) { u16 = SkScalarRoundToInt((SkColorGetR(color) / 255.0f) * 65535.0f); v16 = SkScalarRoundToInt((SkColorGetG(color) / 255.0f) * 65535.0f); } else { u16 = SkScalarRoundToInt((SkColorGetR(color) / 255.0f) * 1023.0f); v16 = SkScalarRoundToInt((SkColorGetG(color) / 255.0f) * 1023.0f); u16 <<= 6; v16 <<= 6; } currPixel[0] = u16; currPixel[1] = v16; currPixel += 2; } } *format = caps->getDefaultBackendFormat(GrColorType::kRG_1616, GrRenderable::kNo); } static void make_RGBA_16(const GrCaps* caps, const SkBitmap& bm, YUVFormat yuvFormat, SkAutoTMalloc* pixels, GrBackendFormat* format, size_t* rowBytes) { SkASSERT(kY416_YUVFormat == yuvFormat); SkASSERT(kRGBA_8888_SkColorType == bm.colorType()); uint16_t y16, u16, v16, a16; *rowBytes = 4 * sizeof(uint16_t) * bm.width(); pixels->reset(*rowBytes * bm.height()); uint16_t* currPixel = (uint16_t*) pixels->get(); for (int y = 0; y < bm.height(); ++y) { for (int x = 0; x < bm.width(); ++x) { SkColor color = bm.getColor(x, y); y16 = SkScalarRoundToInt((SkColorGetR(color) / 255.0f) * 65535.0f); u16 = SkScalarRoundToInt((SkColorGetG(color) / 255.0f) * 65535.0f); v16 = SkScalarRoundToInt((SkColorGetB(color) / 255.0f) * 65535.0f); a16 = SkScalarRoundToInt((SkColorGetA(color) / 255.0f) * 65535.0f); currPixel[0] = y16; currPixel[1] = u16; currPixel[2] = v16; currPixel[3] = a16; currPixel += 4; } } *format = caps->getDefaultBackendFormat(GrColorType::kRGBA_16161616, GrRenderable::kNo); return; } static void make_R_16(const GrCaps* caps, const SkBitmap& bm, YUVFormat yuvFormat, SkAutoTMalloc* pixels, GrBackendFormat* format, size_t* rowBytes) { SkASSERT(kP016_YUVFormat == yuvFormat || kP010_YUVFormat == yuvFormat); SkASSERT(kGray_8_SkColorType == bm.colorType() || kAlpha_8_SkColorType == bm.colorType()); uint16_t y16; *rowBytes = sizeof(uint16_t) * bm.width(); pixels->reset(*rowBytes * bm.height()); uint16_t* currPixel = (uint16_t*) pixels->get(); for (int y = 0; y < bm.height(); ++y) { for (int x = 0; x < bm.width(); ++x) { uint8_t y8 = *bm.getAddr8(x, y); if (kP016_YUVFormat == yuvFormat) { y16 = SkScalarRoundToInt((y8 / 255.0f) * 65535.0f); } else { y16 = SkScalarRoundToInt((y8 / 255.0f) * 1023.0f); y16 <<= 6; } currPixel[0] = y16; currPixel += 1; } } *format = caps->getDefaultBackendFormat(GrColorType::kR_16, GrRenderable::kNo); } static GrBackendTexture create_yuva_texture(GrContext* context, const SkBitmap& bm, SkYUVAIndex yuvaIndices[4], int texIndex, YUVFormat yuvFormat) { SkASSERT(texIndex >= 0 && texIndex <= 3); int channelCount = 0; for (int i = 0; i < SkYUVAIndex::kIndexCount; ++i) { if (yuvaIndices[i].fIndex == texIndex) { ++channelCount; } } GrBackendTexture tex; if (format_uses_16_bpp(yuvFormat) || 2 == channelCount) { // Due to the limitations of SkPixmap these cases need to be handled separately const GrCaps* caps = context->priv().caps(); GrGpu* gpu = context->priv().getGpu(); SkAutoTMalloc pixels; GrBackendFormat format; size_t rowBytes; if (2 == channelCount) { if (format_uses_16_bpp(yuvFormat)) { make_RG_1616(caps, bm, yuvFormat, &pixels, &format, &rowBytes); } else { make_RG_88(caps, bm, yuvFormat, &pixels, &format, &rowBytes); } } else { if (kRGBA_8888_SkColorType == bm.colorType()) { make_RGBA_16(caps, bm, yuvFormat, &pixels, &format, &rowBytes); } else { make_R_16(caps, bm, yuvFormat, &pixels, &format, &rowBytes); } } // TODO: SkColorType needs to be expanded to allow this to be done via the // GrContext::createBackendTexture API tex = gpu->createBackendTexture(bm.width(), bm.height(), format, GrMipMapped::kNo, GrRenderable::kNo, pixels, rowBytes, nullptr, GrProtected::kNo); } else { tex = context->priv().createBackendTexture(&bm.pixmap(), 1, GrRenderable::kNo, GrProtected::kNo); } return tex; } static sk_sp yuv_to_rgb_colorfilter() { static const float kJPEGConversionMatrix[20] = { 1.0f, 0.0f, 1.402f, 0.0f, -180.0f/255, 1.0f, -0.344136f, -0.714136f, 0.0f, 136.0f/255, 1.0f, 1.772f, 0.0f, 0.0f, -227.6f/255, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f }; return SkColorFilters::Matrix(kJPEGConversionMatrix); } namespace skiagm { // This GM creates an opaque and transparent bitmap, extracts the planes and then recombines // them into various YUV formats. It then renders the results in the grid: // // JPEG 601 709 Identity // Transparent Opaque Transparent Opaque Transparent Opaque Transparent Opaque // originals // P016 // P010 // Y416 // AYUV // Y410 // NV12 // NV21 // I420 // YV12 class WackyYUVFormatsGM : public GM { public: WackyYUVFormatsGM(bool useTargetColorSpace, bool useDomain) : fUseTargetColorSpace(useTargetColorSpace) , fUseDomain(useDomain) { this->setBGColor(0xFFCCCCCC); } protected: SkString onShortName() override { SkString name("wacky_yuv_formats"); if (fUseTargetColorSpace) { name += "_cs"; } if (fUseDomain) { name += "_domain"; } return name; } SkISize onISize() override { int numCols = 2 * (kLastEnum_SkYUVColorSpace + 1); // opacity x color-space int numRows = 1 + (kLast_YUVFormat + 1); // origin + # yuv formats int wh = SkScalarCeilToInt(kTileWidthHeight * (fUseDomain ? 1.5f : 1.f)); return SkISize::Make(kLabelWidth + numCols * (wh + kPad), kLabelHeight + numRows * (wh + kPad)); } void onOnceBeforeDraw() override { SkPoint origin = { kTileWidthHeight/2.0f, kTileWidthHeight/2.0f }; float outerRadius = kTileWidthHeight/2.0f - 20.0f; float innerRadius = 20.0f; { // transparent SkTDArray circles; SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 5, &circles); fOriginalBMs[0] = make_bitmap(kRGBA_8888_SkColorType, path, circles, false, fUseDomain); } { // opaque SkTDArray circles; SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 7, &circles); fOriginalBMs[1] = make_bitmap(kRGBA_8888_SkColorType, path, circles, true, fUseDomain); } if (fUseTargetColorSpace) { fTargetColorSpace = SkColorSpace::MakeSRGB()->makeColorSpin(); } } void createImages(GrContext* context) { int counter = 0; for (bool opaque : { false, true }) { for (int cs = kJPEG_SkYUVColorSpace; cs <= kLastEnum_SkYUVColorSpace; ++cs) { PlaneData planes; extract_planes(fOriginalBMs[opaque], (SkYUVColorSpace) cs, &planes); for (int format = kP016_YUVFormat; format <= kLast_YUVFormat; ++format) { SkBitmap resultBMs[4]; SkYUVAIndex yuvaIndices[4]; create_YUV(planes, (YUVFormat) format, resultBMs, yuvaIndices, opaque); int numTextures; if (!SkYUVAIndex::AreValidIndices(yuvaIndices, &numTextures)) { continue; } if (context) { if (context->abandoned()) { return; } GrBackendTexture yuvaTextures[4]; SkPixmap yuvaPixmaps[4]; for (int i = 0; i < numTextures; ++i) { yuvaTextures[i] = create_yuva_texture(context, resultBMs[i], yuvaIndices, i, (YUVFormat) format); if (yuvaTextures[i].isValid()) { fBackendTextures.push_back(yuvaTextures[i]); } yuvaPixmaps[i] = resultBMs[i].pixmap(); } int counterMod = counter % 3; if (format_cant_be_represented_with_pixmaps((YUVFormat) format) && counterMod == 2) { // These formats don't work as pixmaps counterMod = 1; } else if (fUseDomain && counterMod == 0) { // Copies flatten to RGB when they copy the YUVA data, which doesn't // know about the intended domain and the domain padding bleeds in counterMod = 1; } switch (counterMod) { case 0: fImages[opaque][cs][format] = SkImage::MakeFromYUVATexturesCopy( context, (SkYUVColorSpace)cs, yuvaTextures, yuvaIndices, { fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() }, kTopLeft_GrSurfaceOrigin); break; case 1: fImages[opaque][cs][format] = SkImage::MakeFromYUVATextures( context, (SkYUVColorSpace)cs, yuvaTextures, yuvaIndices, { fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() }, kTopLeft_GrSurfaceOrigin); break; case 2: default: fImages[opaque][cs][format] = SkImage::MakeFromYUVAPixmaps( context, (SkYUVColorSpace)cs, yuvaPixmaps, yuvaIndices, { fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() }, kTopLeft_GrSurfaceOrigin, true); break; } ++counter; } else { fImages[opaque][cs][format] = make_yuv_gen_image( fOriginalBMs[opaque].info(), (SkYUVColorSpace) cs, yuvaIndices, resultBMs); } } } } } void onDraw(SkCanvas* canvas) override { this->createImages(canvas->getGrContext()); SkRect srcRect = SkRect::MakeWH(fOriginalBMs[0].width(), fOriginalBMs[0].height()); SkRect dstRect = SkRect::MakeXYWH(kLabelWidth, 0.f, srcRect.width(), srcRect.height()); SkCanvas::SrcRectConstraint constraint = SkCanvas::kFast_SrcRectConstraint; if (fUseDomain) { srcRect.inset(kDomainPadding, kDomainPadding); // Draw a larger rectangle to ensure bilerp filtering would normally read outside the // srcRect and hit the red pixels, if strict constraint weren't used. dstRect.fRight = kLabelWidth + 1.5f * srcRect.width(); dstRect.fBottom = 1.5f * srcRect.height(); constraint = SkCanvas::kStrict_SrcRectConstraint; } for (int cs = kJPEG_SkYUVColorSpace; cs <= kLastEnum_SkYUVColorSpace; ++cs) { SkPaint paint; paint.setFilterQuality(kLow_SkFilterQuality); if (kIdentity_SkYUVColorSpace == cs) { // The identity color space needs post processing to appear correctly paint.setColorFilter(yuv_to_rgb_colorfilter()); } for (int opaque : { 0, 1 }) { dstRect.offsetTo(dstRect.fLeft, kLabelHeight); draw_col_label(canvas, dstRect.fLeft + dstRect.height() / 2, cs, opaque); canvas->drawBitmapRect(fOriginalBMs[opaque], srcRect, dstRect, nullptr, constraint); dstRect.offset(0.f, dstRect.height() + kPad); for (int format = kP016_YUVFormat; format <= kLast_YUVFormat; ++format) { draw_row_label(canvas, dstRect.fTop, format); if (fUseTargetColorSpace && fImages[opaque][cs][format]) { // Making a CS-specific version of a kIdentity_SkYUVColorSpace YUV image // doesn't make a whole lot of sense. The colorSpace conversion will // operate on the YUV components rather than the RGB components. sk_sp csImage = fImages[opaque][cs][format]->makeColorSpace(fTargetColorSpace); canvas->drawImageRect(csImage, srcRect, dstRect, &paint, constraint); } else { canvas->drawImageRect(fImages[opaque][cs][format], srcRect, dstRect, &paint, constraint); } dstRect.offset(0.f, dstRect.height() + kPad); } dstRect.offset(dstRect.width() + kPad, 0.f); } } if (auto context = canvas->getGrContext()) { if (!context->abandoned()) { context->flush(); GrGpu* gpu = context->priv().getGpu(); SkASSERT(gpu); gpu->testingOnly_flushGpuAndSync(); for (const auto& tex : fBackendTextures) { context->deleteBackendTexture(tex); } fBackendTextures.reset(); } } SkASSERT(!fBackendTextures.count()); } private: SkBitmap fOriginalBMs[2]; sk_sp fImages[2][kLastEnum_SkYUVColorSpace + 1][kLast_YUVFormat + 1]; SkTArray fBackendTextures; bool fUseTargetColorSpace; bool fUseDomain; sk_sp fTargetColorSpace; typedef GM INHERITED; }; ////////////////////////////////////////////////////////////////////////////// DEF_GM(return new WackyYUVFormatsGM(/* cs */ false, /* domain */ false);) DEF_GM(return new WackyYUVFormatsGM(/* cs */ true, /* domain */ false);) DEF_GM(return new WackyYUVFormatsGM(/* cs */ false, /* domain */ true);) class YUVMakeColorSpaceGM : public GpuGM { public: YUVMakeColorSpaceGM() { this->setBGColor(0xFFCCCCCC); } protected: SkString onShortName() override { return SkString("yuv_make_color_space"); } SkISize onISize() override { int numCols = 4; // (transparent, opaque) x (untagged, tagged) int numRows = 5; // original, YUV, subset, readPixels, makeNonTextureImage return SkISize::Make(numCols * (kTileWidthHeight + kPad) + kPad, numRows * (kTileWidthHeight + kPad) + kPad); } void onOnceBeforeDraw() override { SkPoint origin = { kTileWidthHeight/2.0f, kTileWidthHeight/2.0f }; float outerRadius = kTileWidthHeight/2.0f - 20.0f; float innerRadius = 20.0f; { // transparent SkTDArray circles; SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 5, &circles); fOriginalBMs[0] = make_bitmap(kN32_SkColorType, path, circles, false, false); } { // opaque SkTDArray circles; SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 7, &circles); fOriginalBMs[1] = make_bitmap(kN32_SkColorType, path, circles, true, false); } fTargetColorSpace = SkColorSpace::MakeSRGB()->makeColorSpin(); } void createImages(GrContext* context) { for (bool opaque : { false, true }) { PlaneData planes; extract_planes(fOriginalBMs[opaque], kJPEG_SkYUVColorSpace, &planes); SkBitmap resultBMs[4]; SkYUVAIndex yuvaIndices[4]; create_YUV(planes, kAYUV_YUVFormat, resultBMs, yuvaIndices, opaque); int numTextures; if (!SkYUVAIndex::AreValidIndices(yuvaIndices, &numTextures)) { continue; } GrBackendTexture yuvaTextures[4]; for (int i = 0; i < numTextures; ++i) { yuvaTextures[i] = create_yuva_texture(context, resultBMs[i], yuvaIndices, i, kAYUV_YUVFormat); if (yuvaTextures[i].isValid()) { fBackendTextures.push_back(yuvaTextures[i]); } } fImages[opaque][0] = SkImage::MakeFromYUVATextures( context, kJPEG_SkYUVColorSpace, yuvaTextures, yuvaIndices, { fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() }, kTopLeft_GrSurfaceOrigin); fImages[opaque][1] = SkImage::MakeFromYUVATextures( context, kJPEG_SkYUVColorSpace, yuvaTextures, yuvaIndices, { fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() }, kTopLeft_GrSurfaceOrigin, SkColorSpace::MakeSRGB()); } } void onDraw(GrContext* context, GrRenderTargetContext*, SkCanvas* canvas) override { this->createImages(context); int x = kPad; for (int tagged : { 0, 1 }) { for (int opaque : { 0, 1 }) { int y = kPad; auto raster = SkImage::MakeFromBitmap(fOriginalBMs[opaque]) ->makeColorSpace(fTargetColorSpace); canvas->drawImage(raster, x, y); y += kTileWidthHeight + kPad; auto yuv = fImages[opaque][tagged]->makeColorSpace(fTargetColorSpace); SkASSERT(SkColorSpace::Equals(yuv->colorSpace(), fTargetColorSpace.get())); canvas->drawImage(yuv, x, y); y += kTileWidthHeight + kPad; auto subset = yuv->makeSubset(SkIRect::MakeWH(kTileWidthHeight / 2, kTileWidthHeight / 2)); canvas->drawImage(subset, x, y); y += kTileWidthHeight + kPad; auto nonTexture = yuv->makeNonTextureImage(); canvas->drawImage(nonTexture, x, y); y += kTileWidthHeight + kPad; SkBitmap readBack; readBack.allocPixels(yuv->imageInfo()); yuv->readPixels(readBack.pixmap(), 0, 0); canvas->drawBitmap(readBack, x, y); x += kTileWidthHeight + kPad; } } context->flush(); GrGpu* gpu = context->priv().getGpu(); SkASSERT(gpu); gpu->testingOnly_flushGpuAndSync(); for (const auto& tex : fBackendTextures) { context->deleteBackendTexture(tex); } fBackendTextures.reset(); } private: SkBitmap fOriginalBMs[2]; sk_sp fImages[2][2]; SkTArray fBackendTextures; sk_sp fTargetColorSpace; typedef GM INHERITED; }; DEF_GM(return new YUVMakeColorSpaceGM();) } /////////////// #include "include/effects/SkColorMatrix.h" #include "src/core/SkAutoPixmapStorage.h" #include "src/core/SkYUVMath.h" #include "tools/Resources.h" static void draw_into_alpha(const SkImage* img, sk_sp cf, const SkPixmap& dst) { auto canvas = SkCanvas::MakeRasterDirect(dst.info(), dst.writable_addr(), dst.rowBytes()); canvas->scale(1.0f * dst.width() / img->width(), 1.0f * dst.height() / img->height()); SkPaint paint; paint.setFilterQuality(kLow_SkFilterQuality); paint.setColorFilter(cf); paint.setBlendMode(SkBlendMode::kSrc); canvas->drawImage(img, 0, 0, &paint); } static void split_into_yuv(const SkImage* img, SkYUVColorSpace cs, const SkPixmap dst[3]) { float m[20]; SkColorMatrix_RGB2YUV(cs, m); memcpy(m + 15, m + 0, 5 * sizeof(float)); // copy Y into A draw_into_alpha(img, SkColorFilters::Matrix(m), dst[0]); memcpy(m + 15, m + 5, 5 * sizeof(float)); // copy U into A draw_into_alpha(img, SkColorFilters::Matrix(m), dst[1]); memcpy(m + 15, m + 10, 5 * sizeof(float)); // copy V into A draw_into_alpha(img, SkColorFilters::Matrix(m), dst[2]); } static void draw_diff(SkCanvas* canvas, SkScalar x, SkScalar y, const SkImage* a, const SkImage* b) { auto sh = SkShaders::Blend(SkBlendMode::kDifference, a->makeShader(), b->makeShader()); SkPaint paint; paint.setShader(sh); canvas->save(); canvas->translate(x, y); canvas->drawRect(SkRect::MakeWH(a->width(), a->height()), paint); SkColorMatrix cm; cm.setScale(64, 64, 64); paint.setShader(sh->makeWithColorFilter(SkColorFilters::Matrix(cm))); canvas->translate(0, a->height()); canvas->drawRect(SkRect::MakeWH(a->width(), a->height()), paint); canvas->restore(); } // Exercises SkColorMatrix_RGB2YUV for yuv colorspaces, showing the planes, and the // resulting (recombined) images (gpu only for now). // class YUVSplitterGM : public skiagm::GM { sk_sp fOrig; SkAutoPixmapStorage fStorage[3]; SkPixmap fPM[3]; public: YUVSplitterGM() {} protected: SkString onShortName() override { return SkString("yuv_splitter"); } SkISize onISize() override { return SkISize::Make(1024, 768); } void onOnceBeforeDraw() override { fOrig = GetResourceAsImage("images/mandrill_256.png"); SkImageInfo info = SkImageInfo::Make(fOrig->width(), fOrig->height(), kAlpha_8_SkColorType, kPremul_SkAlphaType); fStorage[0].alloc(info); if (0) { // if you want to scale U,V down by 1/2 info = info.makeWH(info.width()/2, info.height()/2); } fStorage[1].alloc(info); fStorage[2].alloc(info); for (int i = 0; i < 3; ++i) { fPM[i] = fStorage[i]; } } void onDraw(SkCanvas* canvas) override { SkYUVAIndex indices[4]; indices[SkYUVAIndex::kY_Index] = {0, SkColorChannel::kR}; indices[SkYUVAIndex::kU_Index] = {1, SkColorChannel::kR}; indices[SkYUVAIndex::kV_Index] = {2, SkColorChannel::kR}; indices[SkYUVAIndex::kA_Index] = {-1, SkColorChannel::kR}; canvas->translate(fOrig->width(), 0); canvas->save(); for (auto cs : {kRec709_SkYUVColorSpace, kRec601_SkYUVColorSpace, kJPEG_SkYUVColorSpace}) { split_into_yuv(fOrig.get(), cs, fPM); auto img = SkImage::MakeFromYUVAPixmaps(canvas->getGrContext(), cs, fPM, indices, fPM[0].info().dimensions(), kTopLeft_GrSurfaceOrigin, false, false, nullptr); if (img) { canvas->drawImage(img, 0, 0, nullptr); draw_diff(canvas, 0, fOrig->height(), fOrig.get(), img.get()); } canvas->translate(fOrig->width(), 0); } canvas->restore(); canvas->translate(-fOrig->width(), 0); canvas->drawImage(SkImage::MakeRasterCopy(fPM[0]), 0, 0, nullptr); canvas->drawImage(SkImage::MakeRasterCopy(fPM[1]), 0, fPM[0].height(), nullptr); canvas->drawImage(SkImage::MakeRasterCopy(fPM[2]), 0, fPM[0].height() + fPM[1].height(), nullptr); } private: typedef GM INHERITED; }; DEF_GM( return new YUVSplitterGM; )