/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "CommandLineFlags.h" #include "SkImageInfo.h" #include "SkLeanWindows.h" #include "SkPoint.h" #include "SkRect.h" #include "SkTraceEvent.h" #include "Test.h" static DEFINE_bool(slowTracingTest, false, "Artificially slow down tracing test to produce nicer JSON"); namespace { /** * Helper types for demonstrating usage of TRACE_EVENT_OBJECT_XXX macros. */ struct TracingShape { TracingShape() { TRACE_EVENT_OBJECT_CREATED_WITH_ID("skia.objects", this->typeName(), this); } virtual ~TracingShape() { TRACE_EVENT_OBJECT_DELETED_WITH_ID("skia.objects", this->typeName(), this); } void traceSnapshot() { // The state of an object can be specified at any point with the OBJECT_SNAPSHOT macro. // This takes the "name" (actually the type name), the ID of the object (typically a // pointer), and a single (unnnamed) argument, which is the "snapshot" of that object. // // Tracing viewer requires that all object macros use the same name and id for creation, // deletion, and snapshots. However: It's convenient to put creation and deletion in the // base-class constructor/destructor where the actual type name isn't known yet. That's // what we're doing here. The JSON for snapshots can therefore include the actual type // name, and a special tag that refers to the type name originally used at creation time. // Skia's JSON tracer handles this automatically, so SNAPSHOT macros can simply use the // derived type name, and the JSON will be formatted correctly to link the events. TRACE_EVENT_OBJECT_SNAPSHOT_WITH_ID("skia.objects", this->typeName(), this, TRACE_STR_COPY(this->toString().c_str())); } virtual const char* typeName() { return "TracingShape"; } virtual SkString toString() { return SkString("Shape()"); } }; struct TracingCircle : public TracingShape { TracingCircle(SkPoint center, SkScalar radius) : fCenter(center), fRadius(radius) {} const char* typeName() override { return "TracingCircle"; } SkString toString() override { return SkStringPrintf("Circle(%f, %f, %f)", fCenter.fX, fCenter.fY, fRadius); } SkPoint fCenter; SkScalar fRadius; }; struct TracingRect : public TracingShape { TracingRect(SkRect rect) : fRect(rect) {} const char* typeName() override { return "TracingRect"; } SkString toString() override { return SkStringPrintf("Rect(%f, %f, %f, %f)", fRect.fLeft, fRect.fTop, fRect.fRight, fRect.fBottom); } SkRect fRect; }; } static SkScalar gTracingTestWorkSink = 1.0f; static void do_work(int howMuchWork) { // Do busy work so the trace marker durations are large enough to be readable in trace viewer if (FLAGS_slowTracingTest) { for (int i = 0; i < howMuchWork * 100; ++i) { gTracingTestWorkSink += SkScalarSin(i); } } } static void test_trace_simple() { // Simple event that lasts until the end of the current scope. TRACE_FUNC is an easy way // to insert the current function name. TRACE_EVENT0("skia", TRACE_FUNC); { // There are versions of the macro that take 1 or 2 named arguments. The arguments // can be any simple type. Strings need to be static/literal - we just copy pointers. // Argument names & values are shown when the event is selected in the viewer. TRACE_EVENT1("skia", "Nested work", "isBGRA", kN32_SkColorType == kBGRA_8888_SkColorType); do_work(500); } { // If you must copy a string as an argument value, use the TRACE_STR_COPY macro. // This will instruct the tracing system (if one is active) to make a copy. SkString message = SkStringPrintf("%s %s", "Hello", "World"); TRACE_EVENT1("skia", "Dynamic String", "message", TRACE_STR_COPY(message.c_str())); do_work(500); } } static void test_trace_counters() { TRACE_EVENT0("skia", TRACE_FUNC); { TRACE_EVENT0("skia", "Single Counter"); // Counter macros allow recording a named value (which must be a 32-bit integer). // The value will be graphed in the viewer. for (int i = 0; i < 180; ++i) { SkScalar rad = SkDegreesToRadians(SkIntToScalar(i)); TRACE_COUNTER1("skia", "sin", SkScalarSin(rad) * 1000.0f + 1000.0f); do_work(10); } } { TRACE_EVENT0("skia", "Independent Counters"); // Recording multiple counters with separate COUNTER1 macros will make separate graphs. for (int i = 0; i < 180; ++i) { SkScalar rad = SkDegreesToRadians(SkIntToScalar(i)); TRACE_COUNTER1("skia", "sin", SkScalarSin(rad) * 1000.0f + 1000.0f); TRACE_COUNTER1("skia", "cos", SkScalarCos(rad) * 1000.0f + 1000.0f); do_work(10); } } { TRACE_EVENT0("skia", "Stacked Counters"); // Two counters can be recorded together with COUNTER2. They will be graphed together, // as a stacked bar graph. The combined graph needs a name, as does each data series. for (int i = 0; i < 180; ++i) { SkScalar rad = SkDegreesToRadians(SkIntToScalar(i)); TRACE_COUNTER2("skia", "trig", "sin", SkScalarSin(rad) * 1000.0f + 1000.0f, "cos", SkScalarCos(rad) * 1000.0f + 1000.0f); do_work(10); } } } static void test_trace_objects() { TRACE_EVENT0("skia", TRACE_FUNC); // Objects can be tracked through time with the TRACE_EVENT_OBJECT_ macros. // The macros in use (and their idiosyncracies) are commented in the TracingShape class above. TracingCircle* circle = new TracingCircle(SkPoint::Make(20, 20), 15); circle->traceSnapshot(); do_work(100); // Make another object. Objects with the same base type are shown in the same row in the viewer. TracingRect* rect = new TracingRect(SkRect::MakeWH(100, 50)); rect->traceSnapshot(); do_work(100); // We can create multiple snapshots of objects to reflect their state over time. circle->fCenter.offset(10, 10); circle->traceSnapshot(); { // Other events (duration or instant) can refer directly to objects. For Skia's JSON // tracer, having an argument whose name starts with '#' will trigger the creation of JSON // that links the event to the object (with a direct link to the most recent snapshot). TRACE_EVENT1("skia", "Processing Shape", "#shape", circle); do_work(100); } delete circle; delete rect; } DEF_TEST(Tracing, reporter) { test_trace_simple(); test_trace_counters(); test_trace_objects(); }