/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gm.h" #include "sk_tool_utils.h" #include "SkColorPriv.h" #include "SkImageGenerator.h" #include "SkPath.h" #include "SkTextUtils.h" #include "SkYUVAIndex.h" #if SK_SUPPORT_GPU #include "GrBackendSurface.h" #include "GrContextPriv.h" #include "GrGpu.h" #include "SkImage_GpuYUVA.h" #endif static const int kTileWidthHeight = 128; static const int kLabelWidth = 64; static const int kLabelHeight = 32; static const int kPad = 1; enum YUVFormat { // 4:4:4 formats, 32 bpp kAYUV_YUVFormat, // 8-bit YUVA values all interleaved // 4:2:0 formats, 12 bpp kNV12_YUVFormat, // 8-bit Y plane + 2x2 down sampled interleaved U/V planes kNV21_YUVFormat, // same as kNV12 but w/ U/V reversed in the interleaved plane kI420_YUVFormat, // 8-bit Y plane + 2x2 down sampled U and V planes kYV12_YUVFormat, // 8-bit Y plane + 2x2 down sampled V and U planes kLast_YUVFormat = kYV12_YUVFormat }; // All the planes we need to construct the various YUV formats struct PlaneData { SkBitmap fYFull; SkBitmap fUFull; SkBitmap fVFull; SkBitmap fAFull; SkBitmap fUQuarter; // 2x2 downsampled U channel SkBitmap fVQuarter; // 2x2 downsampled V channel }; // Add a portion of a circle to 'path'. The points 'o1' and 'o2' are on the border of the circle // and have tangents 'v1' and 'v2'. static void add_arc(SkPath* path, const SkPoint& o1, const SkVector& v1, const SkPoint& o2, const SkVector& v2, SkTDArray* circles, bool takeLongWayRound) { SkVector v3 = { -v1.fY, v1.fX }; SkVector v4 = { v2.fY, -v2.fX }; SkScalar t = ((o2.fX - o1.fX) * v4.fY - (o2.fY - o1.fY) * v4.fX) / v3.cross(v4); SkPoint center = { o1.fX + t * v3.fX, o1.fY + t * v3.fY }; SkRect r = { center.fX - t, center.fY - t, center.fX + t, center.fY + t }; if (circles) { circles->push_back(r); } SkVector startV = o1 - center, endV = o2 - center; startV.normalize(); endV.normalize(); SkScalar startDeg = SkRadiansToDegrees(SkScalarATan2(startV.fY, startV.fX)); SkScalar endDeg = SkRadiansToDegrees(SkScalarATan2(endV.fY, endV.fX)); startDeg += 360.0f; startDeg = fmodf(startDeg, 360.0f); endDeg += 360.0f; endDeg = fmodf(endDeg, 360.0f); if (endDeg < startDeg) { endDeg += 360.0f; } SkScalar sweepDeg = SkTAbs(endDeg - startDeg); if (!takeLongWayRound) { sweepDeg = sweepDeg - 360; } path->arcTo(r, startDeg, sweepDeg, false); } static SkPath create_splat(const SkPoint& o, SkScalar innerRadius, SkScalar outerRadius, SkScalar ratio, int numLobes, SkTDArray* circles) { if (numLobes <= 1) { return SkPath(); } SkPath p; int numDivisions = 2 * numLobes; SkScalar fullLobeDegrees = 360.0f / numLobes; SkScalar outDegrees = ratio * fullLobeDegrees / (ratio + 1.0f); SkScalar innerDegrees = fullLobeDegrees / (ratio + 1.0f); SkMatrix outerStep, innerStep; outerStep.setRotate(outDegrees); innerStep.setRotate(innerDegrees); SkVector curV = SkVector::Make(0.0f, 1.0f); if (circles) { circles->push_back(SkRect::MakeLTRB(o.fX - innerRadius, o.fY - innerRadius, o.fX + innerRadius, o.fY + innerRadius)); } p.moveTo(o.fX + innerRadius * curV.fX, o.fY + innerRadius * curV.fY); for (int i = 0; i < numDivisions; ++i) { SkVector nextV; if (0 == (i % 2)) { nextV = outerStep.mapVector(curV.fX, curV.fY); SkPoint top = SkPoint::Make(o.fX + outerRadius * curV.fX, o.fY + outerRadius * curV.fY); SkPoint nextTop = SkPoint::Make(o.fX + outerRadius * nextV.fX, o.fY + outerRadius * nextV.fY); p.lineTo(top); add_arc(&p, top, curV, nextTop, nextV, circles, true); } else { nextV = innerStep.mapVector(curV.fX, curV.fY); SkPoint bot = SkPoint::Make(o.fX + innerRadius * curV.fX, o.fY + innerRadius * curV.fY); SkPoint nextBot = SkPoint::Make(o.fX + innerRadius * nextV.fX, o.fY + innerRadius * nextV.fY); p.lineTo(bot); add_arc(&p, bot, curV, nextBot, nextV, nullptr, false); } curV = nextV; } p.close(); return p; } static SkBitmap make_bitmap(const SkPath& path, const SkTDArray& circles, bool opaque) { const SkColor kGreen = sk_tool_utils::color_to_565(SkColorSetARGB(0xFF, 178, 240, 104)); const SkColor kBlue = sk_tool_utils::color_to_565(SkColorSetARGB(0xFF, 173, 167, 252)); const SkColor kYellow = sk_tool_utils::color_to_565(SkColorSetARGB(0xFF, 255, 221, 117)); SkImageInfo ii = SkImageInfo::MakeN32(kTileWidthHeight, kTileWidthHeight, kPremul_SkAlphaType); SkBitmap bm; bm.allocPixels(ii); std::unique_ptr canvas = SkCanvas::MakeRasterDirectN32(ii.width(), ii.height(), (SkPMColor*)bm.getPixels(), bm.rowBytes()); canvas->clear(opaque ? kGreen : SK_ColorTRANSPARENT); SkPaint paint; paint.setAntiAlias(false); // serialize-8888 doesn't seem to work well w/ partial transparency paint.setColor(kBlue); canvas->drawPath(path, paint); paint.setColor(opaque ? kYellow : SK_ColorTRANSPARENT); paint.setBlendMode(SkBlendMode::kSrc); for (int i = 0; i < circles.count(); ++i) { SkRect r = circles[i]; r.inset(r.width()/4, r.height()/4); canvas->drawOval(r, paint); } return bm; } static void convert_rgba_to_yuva_601_shared(SkColor col, uint8_t yuv[4], uint8_t off, uint8_t range) { static const float Kr = 0.299f; static const float Kb = 0.114f; static const float Kg = 1.0f - Kr - Kb; float r = SkColorGetR(col) / 255.0f; float g = SkColorGetG(col) / 255.0f; float b = SkColorGetB(col) / 255.0f; float Ey = Kr * r + Kg * g + Kb * b; float Ecb = (b - Ey) / 1.402f; float Ecr = (r - Ey) / 1.772; yuv[0] = SkScalarRoundToInt( range * Ey + off ); yuv[1] = SkScalarRoundToInt( 224 * Ecb + 128 ); yuv[2] = SkScalarRoundToInt( 224 * Ecr + 128 ); yuv[3] = SkColorGetA(col); } static void convert_rgba_to_yuva_jpeg(SkColor col, uint8_t yuv[4]) { // full swing from 0..255 convert_rgba_to_yuva_601_shared(col, yuv, 0, 255); } static void convert_rgba_to_yuva_601(SkColor col, uint8_t yuv[4]) { // partial swing from 16..235 convert_rgba_to_yuva_601_shared(col, yuv, 16, 219); } static void convert_rgba_to_yuva_709(SkColor col, uint8_t yuv[4]) { static const float Kr = 0.2126f; static const float Kb = 0.0722f; static const float Kg = 1.0f - Kr - Kb; float r = SkColorGetR(col) / 255.0f; float g = SkColorGetG(col) / 255.0f; float b = SkColorGetB(col) / 255.0f; float Ey = Kr * r + Kg * g + Kb * b; float Ecb = (b - Ey) / 1.8556f; float Ecr = (r - Ey) / 1.5748; yuv[0] = SkScalarRoundToInt( 219 * Ey + 16 ); yuv[1] = SkScalarRoundToInt( 224 * Ecb + 128 ); yuv[2] = SkScalarRoundToInt( 224 * Ecr + 128 ); yuv[3] = SkColorGetA(col); } static SkPMColor convert_yuva_to_rgba_jpeg(uint8_t y, uint8_t u, uint8_t v, uint8_t a) { int c = y; int d = u - 128; int e = v - 128; uint8_t r = SkScalarPin(SkScalarRoundToInt( 1.0f * c + 1.402f * e ), 0, 255); uint8_t g = SkScalarPin(SkScalarRoundToInt( 1.0f * c - (0.344136f * d) - (0.714136f * e)), 0, 255); uint8_t b = SkScalarPin(SkScalarRoundToInt( 1.0f * c + 1.773f * d ), 0, 255); return SkPremultiplyARGBInline(a, r, g, b); } static SkPMColor convert_yuva_to_rgba_601(uint8_t y, uint8_t u, uint8_t v, uint8_t a) { int c = y - 16; int d = u - 128; int e = v - 128; uint8_t r = SkScalarPin(SkScalarRoundToInt( 1.164f * c + 1.596f * e ), 0, 255); uint8_t g = SkScalarPin(SkScalarRoundToInt( 1.164f * c - (0.391f * d) - (0.813f * e)), 0, 255); uint8_t b = SkScalarPin(SkScalarRoundToInt( 1.164f * c + 2.018f * d ), 0, 255); return SkPremultiplyARGBInline(a, r, g, b); } static SkPMColor convert_yuva_to_rgba_709(uint8_t y, uint8_t u, uint8_t v, uint8_t a) { int c = y - 16; int d = u - 128; int e = v - 128; uint8_t r = SkScalarPin(SkScalarRoundToInt( 1.164f * c + 1.793f * e ), 0, 255); uint8_t g = SkScalarPin(SkScalarRoundToInt( 1.164f * c - (0.213f * d) - (0.533f * e)), 0, 255); uint8_t b = SkScalarPin(SkScalarRoundToInt( 1.164f * c + 2.112f * d ), 0, 255); return SkPremultiplyARGBInline(a, r, g, b); } static void extract_planes(const SkBitmap& bm, SkYUVColorSpace yuvColorSpace, PlaneData* planes) { SkASSERT(!(bm.width() % 2)); SkASSERT(!(bm.height() % 2)); planes->fYFull.allocPixels(SkImageInfo::MakeA8(bm.width(), bm.height())); planes->fUFull.allocPixels(SkImageInfo::MakeA8(bm.width(), bm.height())); planes->fVFull.allocPixels(SkImageInfo::MakeA8(bm.width(), bm.height())); planes->fAFull.allocPixels(SkImageInfo::MakeA8(bm.width(), bm.height())); planes->fUQuarter.allocPixels(SkImageInfo::MakeA8(bm.width()/2, bm.height()/2)); planes->fVQuarter.allocPixels(SkImageInfo::MakeA8(bm.width()/2, bm.height()/2)); for (int y = 0; y < bm.height(); ++y) { for (int x = 0; x < bm.width(); ++x) { SkColor col = bm.getColor(x, y); uint8_t yuva[4]; if (kJPEG_SkYUVColorSpace == yuvColorSpace) { convert_rgba_to_yuva_jpeg(col, yuva); } else if (kRec601_SkYUVColorSpace == yuvColorSpace) { convert_rgba_to_yuva_601(col, yuva); } else { SkASSERT(kRec709_SkYUVColorSpace == yuvColorSpace); convert_rgba_to_yuva_709(col, yuva); } *planes->fYFull.getAddr8(x, y) = yuva[0]; *planes->fUFull.getAddr8(x, y) = yuva[1]; *planes->fVFull.getAddr8(x, y) = yuva[2]; *planes->fAFull.getAddr8(x, y) = yuva[3]; } } for (int y = 0; y < bm.height()/2; ++y) { for (int x = 0; x < bm.width()/2; ++x) { uint32_t uAccum = 0, vAccum = 0; uAccum += *planes->fUFull.getAddr8(2*x, 2*y); uAccum += *planes->fUFull.getAddr8(2*x+1, 2*y); uAccum += *planes->fUFull.getAddr8(2*x, 2*y+1); uAccum += *planes->fUFull.getAddr8(2*x+1, 2*y+1); *planes->fUQuarter.getAddr8(x, y) = uAccum / 4.0f; vAccum += *planes->fVFull.getAddr8(2*x, 2*y); vAccum += *planes->fVFull.getAddr8(2*x+1, 2*y); vAccum += *planes->fVFull.getAddr8(2*x, 2*y+1); vAccum += *planes->fVFull.getAddr8(2*x+1, 2*y+1); *planes->fVQuarter.getAddr8(x, y) = vAccum / 4.0f; } } } // Recombine the separate planes into some YUV format static void create_YUV(const PlaneData& planes, YUVFormat yuvFormat, SkBitmap resultBMs[], SkYUVAIndex yuvaIndices[4], bool opaque) { int nextLayer = 0; switch (yuvFormat) { case kAYUV_YUVFormat: { SkBitmap yuvaFull; yuvaFull.allocPixels(SkImageInfo::Make(planes.fYFull.width(), planes.fYFull.height(), kRGBA_8888_SkColorType, kUnpremul_SkAlphaType)); for (int y = 0; y < planes.fYFull.height(); ++y) { for (int x = 0; x < planes.fYFull.width(); ++x) { uint8_t Y = *planes.fYFull.getAddr8(x, y); uint8_t U = *planes.fUFull.getAddr8(x, y); uint8_t V = *planes.fVFull.getAddr8(x, y); uint8_t A = *planes.fAFull.getAddr8(x, y); // NOT premul! // V and Y swapped to match RGBA layout *yuvaFull.getAddr32(x, y) = SkColorSetARGB(A, V, U, Y); } } resultBMs[nextLayer++] = yuvaFull; yuvaIndices[0].fIndex = 0; yuvaIndices[0].fChannel = SkColorChannel::kR; yuvaIndices[1].fIndex = 0; yuvaIndices[1].fChannel = SkColorChannel::kG; yuvaIndices[2].fIndex = 0; yuvaIndices[2].fChannel = SkColorChannel::kB; yuvaIndices[3].fIndex = 0; yuvaIndices[3].fChannel = SkColorChannel::kA; break; } case kNV12_YUVFormat: { SkBitmap uvQuarter; // There isn't a RG color type. Approx w/ RGBA. uvQuarter.allocPixels(SkImageInfo::Make(planes.fYFull.width()/2, planes.fYFull.height()/2, kRGBA_8888_SkColorType, kUnpremul_SkAlphaType)); for (int y = 0; y < planes.fYFull.height()/2; ++y) { for (int x = 0; x < planes.fYFull.width()/2; ++x) { uint8_t U = *planes.fUQuarter.getAddr8(x, y); uint8_t V = *planes.fVQuarter.getAddr8(x, y); // NOT premul! // U and 0 swapped to match RGBA layout *uvQuarter.getAddr32(x, y) = SkColorSetARGB(0, 0, V, U); } } resultBMs[nextLayer++] = planes.fYFull; resultBMs[nextLayer++] = uvQuarter; yuvaIndices[0].fIndex = 0; yuvaIndices[0].fChannel = SkColorChannel::kA; yuvaIndices[1].fIndex = 1; yuvaIndices[1].fChannel = SkColorChannel::kR; yuvaIndices[2].fIndex = 1; yuvaIndices[2].fChannel = SkColorChannel::kG; break; } case kNV21_YUVFormat: { SkBitmap vuQuarter; // There isn't a RG color type. Approx w/ RGBA. vuQuarter.allocPixels(SkImageInfo::Make(planes.fYFull.width()/2, planes.fYFull.height()/2, kRGBA_8888_SkColorType, kUnpremul_SkAlphaType)); for (int y = 0; y < planes.fYFull.height()/2; ++y) { for (int x = 0; x < planes.fYFull.width()/2; ++x) { uint8_t U = *planes.fUQuarter.getAddr8(x, y); uint8_t V = *planes.fVQuarter.getAddr8(x, y); // NOT premul! // V and 0 swapped to match RGBA layout *vuQuarter.getAddr32(x, y) = SkColorSetARGB(0, 0, U, V); } } resultBMs[nextLayer++] = planes.fYFull; resultBMs[nextLayer++] = vuQuarter; yuvaIndices[0].fIndex = 0; yuvaIndices[0].fChannel = SkColorChannel::kA; yuvaIndices[1].fIndex = 1; yuvaIndices[1].fChannel = SkColorChannel::kG; yuvaIndices[2].fIndex = 1; yuvaIndices[2].fChannel = SkColorChannel::kR; break; } case kI420_YUVFormat: resultBMs[nextLayer++] = planes.fYFull; resultBMs[nextLayer++] = planes.fUQuarter; resultBMs[nextLayer++] = planes.fVQuarter; yuvaIndices[0].fIndex = 0; yuvaIndices[0].fChannel = SkColorChannel::kA; yuvaIndices[1].fIndex = 1; yuvaIndices[1].fChannel = SkColorChannel::kA; yuvaIndices[2].fIndex = 2; yuvaIndices[2].fChannel = SkColorChannel::kA; break; case kYV12_YUVFormat: resultBMs[nextLayer++] = planes.fYFull; resultBMs[nextLayer++] = planes.fVQuarter; resultBMs[nextLayer++] = planes.fUQuarter; yuvaIndices[0].fIndex = 0; yuvaIndices[0].fChannel = SkColorChannel::kA; yuvaIndices[1].fIndex = 2; yuvaIndices[1].fChannel = SkColorChannel::kA; yuvaIndices[2].fIndex = 1; yuvaIndices[2].fChannel = SkColorChannel::kA; break; } if (kAYUV_YUVFormat != yuvFormat) { if (opaque) { yuvaIndices[3].fIndex = -1; } else { resultBMs[nextLayer] = planes.fAFull; yuvaIndices[3].fIndex = nextLayer; yuvaIndices[3].fChannel = SkColorChannel::kA; } } } static uint8_t look_up(float x1, float y1, const SkBitmap& bm, SkColorChannel channel) { uint8_t result; int x = SkScalarFloorToInt(x1 * bm.width()); int y = SkScalarFloorToInt(y1 * bm.height()); if (kAlpha_8_SkColorType == bm.colorType()) { SkASSERT(SkColorChannel::kA == channel); result = *bm.getAddr8(x, y); } else { SkASSERT(kRGBA_8888_SkColorType == bm.colorType()); switch (channel) { case SkColorChannel::kR: result = SkColorGetR(bm.getColor(x, y)); break; case SkColorChannel::kG: result = SkColorGetG(bm.getColor(x, y)); break; case SkColorChannel::kB: result = SkColorGetB(bm.getColor(x, y)); break; case SkColorChannel::kA: result = SkColorGetA(bm.getColor(x, y)); break; } } return result; } class YUVGenerator : public SkImageGenerator { public: YUVGenerator(const SkImageInfo& ii, SkYUVColorSpace yuvColorSpace, SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount], SkBitmap bitmaps[SkYUVASizeInfo::kMaxCount]) : SkImageGenerator(ii) , fYUVColorSpace(yuvColorSpace) { memcpy(fYUVAIndices, yuvaIndices, sizeof(fYUVAIndices)); SkAssertResult(SkYUVAIndex::AreValidIndices(fYUVAIndices, &fNumBitmaps)); SkASSERT(fNumBitmaps > 0 && fNumBitmaps <= SkYUVASizeInfo::kMaxCount); for (int i = 0; i < fNumBitmaps; ++i) { fYUVBitmaps[i] = bitmaps[i]; } } protected: bool onGetPixels(const SkImageInfo& info, void* pixels, size_t rowBytes, const Options&) override { if (kUnknown_SkColorType == fFlattened.colorType()) { fFlattened.allocPixels(this->getInfo()); for (int y = 0; y < info.height(); ++y) { for (int x = 0; x < info.width(); ++x) { float x1 = (x + 0.5f) / info.width(); float y1 = (y + 0.5f) / info.height(); uint8_t Y = look_up(x1, y1, fYUVBitmaps[fYUVAIndices[0].fIndex], fYUVAIndices[0].fChannel); uint8_t U = look_up(x1, y1, fYUVBitmaps[fYUVAIndices[1].fIndex], fYUVAIndices[1].fChannel); uint8_t V = look_up(x1, y1, fYUVBitmaps[fYUVAIndices[2].fIndex], fYUVAIndices[2].fChannel); uint8_t A = 255; if (fYUVAIndices[3].fIndex >= 0) { A = look_up(x1, y1, fYUVBitmaps[fYUVAIndices[3].fIndex], fYUVAIndices[3].fChannel); } // Making premul here. switch (fYUVColorSpace) { case kJPEG_SkYUVColorSpace: *fFlattened.getAddr32(x, y) = convert_yuva_to_rgba_jpeg(Y, U, V, A); break; case kRec601_SkYUVColorSpace: *fFlattened.getAddr32(x, y) = convert_yuva_to_rgba_601(Y, U, V, A); break; case kRec709_SkYUVColorSpace: *fFlattened.getAddr32(x, y) = convert_yuva_to_rgba_709(Y, U, V, A); break; } } } } return fFlattened.readPixels(info, pixels, rowBytes, 0, 0); } bool onQueryYUVA8(SkYUVASizeInfo* size, SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount], SkYUVColorSpace* yuvColorSpace) const override { memcpy(yuvaIndices, fYUVAIndices, sizeof(fYUVAIndices)); *yuvColorSpace = fYUVColorSpace; int i = 0; for ( ; i < fNumBitmaps; ++i) { size->fSizes[i].fWidth = fYUVBitmaps[i].width(); size->fSizes[i].fHeight = fYUVBitmaps[i].height(); size->fWidthBytes[i] = fYUVBitmaps[i].rowBytes(); } for ( ; i < SkYUVASizeInfo::kMaxCount; ++i) { size->fSizes[i].fWidth = 0; size->fSizes[i].fHeight = 0; size->fWidthBytes[i] = 0; } return true; } bool onGetYUVA8Planes(const SkYUVASizeInfo&, const SkYUVAIndex[SkYUVAIndex::kIndexCount], void* planes[SkYUVASizeInfo::kMaxCount]) override { for (int i = 0; i < fNumBitmaps; ++i) { planes[i] = fYUVBitmaps[i].getPixels(); } return true; } private: SkYUVColorSpace fYUVColorSpace; SkYUVAIndex fYUVAIndices[SkYUVAIndex::kIndexCount]; int fNumBitmaps; SkBitmap fYUVBitmaps[SkYUVASizeInfo::kMaxCount]; SkBitmap fFlattened; }; static sk_sp make_yuv_gen_image(const SkImageInfo& ii, SkYUVColorSpace yuvColorSpace, SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount], SkBitmap bitmaps[]) { std::unique_ptr gen(new YUVGenerator(ii, yuvColorSpace, yuvaIndices, bitmaps)); return SkImage::MakeFromGenerator(std::move(gen)); } static void draw_col_label(SkCanvas* canvas, int x, int yuvColorSpace, bool opaque) { static const char* kYUVColorSpaceNames[] = { "JPEG", "601", "709" }; GR_STATIC_ASSERT(SK_ARRAY_COUNT(kYUVColorSpaceNames) == kLastEnum_SkYUVColorSpace+1); SkPaint paint; SkFont font(sk_tool_utils::create_portable_typeface(nullptr, SkFontStyle::Bold()), 16); font.setEdging(SkFont::Edging::kAlias); SkRect textRect; SkString colLabel; colLabel.printf("%s", kYUVColorSpaceNames[yuvColorSpace]); font.measureText(colLabel.c_str(), colLabel.size(), kUTF8_SkTextEncoding, &textRect); int y = textRect.height(); SkTextUtils::DrawString(canvas, colLabel.c_str(), x, y, font, paint, SkTextUtils::kCenter_Align); colLabel.printf("%s", opaque ? "Opaque" : "Transparent"); font.measureText(colLabel.c_str(), colLabel.size(), kUTF8_SkTextEncoding, &textRect); y += textRect.height(); SkTextUtils::DrawString(canvas, colLabel.c_str(), x, y, font, paint, SkTextUtils::kCenter_Align); } static void draw_row_label(SkCanvas* canvas, int y, int yuvFormat) { static const char* kYUVFormatNames[] = { "AYUV", "NV12", "NV21", "I420", "YV12" }; GR_STATIC_ASSERT(SK_ARRAY_COUNT(kYUVFormatNames) == kLast_YUVFormat+1); SkPaint paint; SkFont font(sk_tool_utils::create_portable_typeface(nullptr, SkFontStyle::Bold()), 16); font.setEdging(SkFont::Edging::kAlias); SkRect textRect; SkString rowLabel; rowLabel.printf("%s", kYUVFormatNames[yuvFormat]); font.measureText(rowLabel.c_str(), rowLabel.size(), kUTF8_SkTextEncoding, &textRect); y += kTileWidthHeight/2 + textRect.height()/2; canvas->drawString(rowLabel, 0, y, font, paint); } static GrBackendTexture create_yuva_texture(GrGpu* gpu, const SkBitmap& bm, SkYUVAIndex yuvaIndices[4], int texIndex) { SkASSERT(texIndex >= 0 && texIndex <= 3); int channelCount = 0; for (int i = 0; i < SkYUVAIndex::kIndexCount; ++i) { if (yuvaIndices[i].fIndex == texIndex) { ++channelCount; } } // Need to create an RG texture for two-channel planes GrBackendTexture tex; if (2 == channelCount) { SkASSERT(kRGBA_8888_SkColorType == bm.colorType()); SkAutoTMalloc pixels(2 * bm.width()*bm.height()); char* currPixel = pixels; for (int y = 0; y < bm.height(); ++y) { for (int x = 0; x < bm.width(); ++x) { SkColor color = bm.getColor(x, y); currPixel[0] = SkColorGetR(color); currPixel[1] = SkColorGetG(color); currPixel += 2; } } tex = gpu->createTestingOnlyBackendTexture( pixels, bm.width(), bm.height(), GrColorType::kRG_88, false, GrMipMapped::kNo, 2*bm.width()); } if (!tex.isValid()) { tex = gpu->createTestingOnlyBackendTexture( bm.getPixels(), bm.width(), bm.height(), bm.colorType(), false, GrMipMapped::kNo, bm.rowBytes()); } return tex; } namespace skiagm { // This GM creates an opaque and transparent bitmap, extracts the planes and then recombines // them into various YUV formats. It then renders the results in the grid: // // JPEG 601 709 // Transparent Opaque Transparent Opaque Transparent Opaque // AYUV // NV12 // NV21 // I420 // YV12 class WackyYUVFormatsGM : public GM { public: WackyYUVFormatsGM(bool useTargetColorSpace) : fUseTargetColorSpace(useTargetColorSpace) { this->setBGColor(0xFFCCCCCC); } protected: SkString onShortName() override { SkString name("wacky_yuv_formats"); if (fUseTargetColorSpace) { name += "_cs"; } return name; } SkISize onISize() override { int numCols = 2 * (kLastEnum_SkYUVColorSpace + 1); // opacity x color-space int numRows = 1 + (kLast_YUVFormat + 1); // origin + # yuv formats return SkISize::Make(kLabelWidth + numCols * (kTileWidthHeight + kPad), kLabelHeight + numRows * (kTileWidthHeight + kPad)); } void onOnceBeforeDraw() override { SkPoint origin = { kTileWidthHeight/2.0f, kTileWidthHeight/2.0f }; float outerRadius = kTileWidthHeight/2.0f - 20.0f; float innerRadius = 20.0f; { // transparent SkTDArray circles; SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 5, &circles); fOriginalBMs[0] = make_bitmap(path, circles, false); } { // opaque SkTDArray circles; SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 7, &circles); fOriginalBMs[1] = make_bitmap(path, circles, true); } if (fUseTargetColorSpace) { fTargetColorSpace = SkColorSpace::MakeSRGB()->makeColorSpin(); } } void createImages(GrContext* context) { int counter = 0; for (bool opaque : { false, true }) { for (int cs = kJPEG_SkYUVColorSpace; cs <= kLastEnum_SkYUVColorSpace; ++cs) { PlaneData planes; extract_planes(fOriginalBMs[opaque], (SkYUVColorSpace) cs, &planes); for (int format = kAYUV_YUVFormat; format <= kLast_YUVFormat; ++format) { SkBitmap resultBMs[4]; SkYUVAIndex yuvaIndices[4]; create_YUV(planes, (YUVFormat) format, resultBMs, yuvaIndices, opaque); int numTextures; if (!SkYUVAIndex::AreValidIndices(yuvaIndices, &numTextures)) { continue; } if (context) { if (context->abandoned()) { return; } GrGpu* gpu = context->priv().getGpu(); if (!gpu) { return; } GrBackendTexture yuvaTextures[4]; SkPixmap yuvaPixmaps[4]; for (int i = 0; i < numTextures; ++i) { yuvaTextures[i] = create_yuva_texture(gpu, resultBMs[i], yuvaIndices, i); if (yuvaTextures[i].isValid()) { fBackendTextures.push_back(yuvaTextures[i]); } yuvaPixmaps[i] = resultBMs[i].pixmap(); } int counterMod = counter % 3; switch (counterMod) { case 0: fImages[opaque][cs][format] = SkImage::MakeFromYUVATexturesCopy( context, (SkYUVColorSpace)cs, yuvaTextures, yuvaIndices, { fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() }, kTopLeft_GrSurfaceOrigin); break; case 1: fImages[opaque][cs][format] = SkImage::MakeFromYUVATextures( context, (SkYUVColorSpace)cs, yuvaTextures, yuvaIndices, { fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() }, kTopLeft_GrSurfaceOrigin); break; case 2: default: fImages[opaque][cs][format] = SkImage::MakeFromYUVAPixmaps( context, (SkYUVColorSpace)cs, yuvaPixmaps, yuvaIndices, { fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() }, kTopLeft_GrSurfaceOrigin, true); break; } ++counter; } else { fImages[opaque][cs][format] = make_yuv_gen_image( fOriginalBMs[opaque].info(), (SkYUVColorSpace) cs, yuvaIndices, resultBMs); } } } } } void onDraw(SkCanvas* canvas) override { this->createImages(canvas->getGrContext()); int x = kLabelWidth; for (int cs = kJPEG_SkYUVColorSpace; cs <= kLastEnum_SkYUVColorSpace; ++cs) { for (int opaque : { 0, 1 }) { int y = kLabelHeight; draw_col_label(canvas, x+kTileWidthHeight/2, cs, opaque); canvas->drawBitmap(fOriginalBMs[opaque], x, y); y += kTileWidthHeight + kPad; for (int format = kAYUV_YUVFormat; format <= kLast_YUVFormat; ++format) { draw_row_label(canvas, y, format); if (fUseTargetColorSpace && fImages[opaque][cs][format]) { sk_sp csImage = fImages[opaque][cs][format]->makeColorSpace(fTargetColorSpace); canvas->drawImage(csImage, x, y); } else { canvas->drawImage(fImages[opaque][cs][format], x, y); } y += kTileWidthHeight + kPad; } x += kTileWidthHeight + kPad; } } if (auto context = canvas->getGrContext()) { if (!context->abandoned()) { context->flush(); GrGpu* gpu = context->priv().getGpu(); SkASSERT(gpu); gpu->testingOnly_flushGpuAndSync(); for (const auto& tex : fBackendTextures) { gpu->deleteTestingOnlyBackendTexture(tex); } fBackendTextures.reset(); } } SkASSERT(!fBackendTextures.count()); } private: SkBitmap fOriginalBMs[2]; sk_sp fImages[2][kLastEnum_SkYUVColorSpace + 1][kLast_YUVFormat + 1]; SkTArray fBackendTextures; bool fUseTargetColorSpace; sk_sp fTargetColorSpace; typedef GM INHERITED; }; ////////////////////////////////////////////////////////////////////////////// DEF_GM(return new WackyYUVFormatsGM(false);) DEF_GM(return new WackyYUVFormatsGM(true);) class YUVMakeColorSpaceGM : public GpuGM { public: YUVMakeColorSpaceGM() { this->setBGColor(0xFFCCCCCC); } protected: SkString onShortName() override { return SkString("yuv_make_color_space"); } SkISize onISize() override { int numCols = 4; // (transparent, opaque) x (untagged, tagged) int numRows = 5; // original, YUV, subset, readPixels, makeNonTextureImage return SkISize::Make(numCols * (kTileWidthHeight + kPad) + kPad, numRows * (kTileWidthHeight + kPad) + kPad); } void onOnceBeforeDraw() override { SkPoint origin = { kTileWidthHeight/2.0f, kTileWidthHeight/2.0f }; float outerRadius = kTileWidthHeight/2.0f - 20.0f; float innerRadius = 20.0f; { // transparent SkTDArray circles; SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 5, &circles); fOriginalBMs[0] = make_bitmap(path, circles, false); } { // opaque SkTDArray circles; SkPath path = create_splat(origin, innerRadius, outerRadius, 1.0f, 7, &circles); fOriginalBMs[1] = make_bitmap(path, circles, true); } fTargetColorSpace = SkColorSpace::MakeSRGB()->makeColorSpin(); } void createImages(GrContext* context) { for (bool opaque : { false, true }) { PlaneData planes; extract_planes(fOriginalBMs[opaque], kJPEG_SkYUVColorSpace, &planes); SkBitmap resultBMs[4]; SkYUVAIndex yuvaIndices[4]; create_YUV(planes, kAYUV_YUVFormat, resultBMs, yuvaIndices, opaque); int numTextures; if (!SkYUVAIndex::AreValidIndices(yuvaIndices, &numTextures)) { continue; } GrGpu* gpu = context->priv().getGpu(); if (!gpu) { return; } GrBackendTexture yuvaTextures[4]; for (int i = 0; i < numTextures; ++i) { yuvaTextures[i] = create_yuva_texture(gpu, resultBMs[i], yuvaIndices, i); if (yuvaTextures[i].isValid()) { fBackendTextures.push_back(yuvaTextures[i]); } } fImages[opaque][0] = SkImage::MakeFromYUVATextures( context, kJPEG_SkYUVColorSpace, yuvaTextures, yuvaIndices, { fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() }, kTopLeft_GrSurfaceOrigin); fImages[opaque][1] = SkImage::MakeFromYUVATextures( context, kJPEG_SkYUVColorSpace, yuvaTextures, yuvaIndices, { fOriginalBMs[opaque].width(), fOriginalBMs[opaque].height() }, kTopLeft_GrSurfaceOrigin, SkColorSpace::MakeSRGB()); } } void onDraw(GrContext* context, GrRenderTargetContext*, SkCanvas* canvas) override { this->createImages(context); int x = kPad; for (int tagged : { 0, 1 }) { for (int opaque : { 0, 1 }) { int y = kPad; auto raster = SkImage::MakeFromBitmap(fOriginalBMs[opaque]) ->makeColorSpace(fTargetColorSpace); canvas->drawImage(raster, x, y); y += kTileWidthHeight + kPad; auto yuv = fImages[opaque][tagged]->makeColorSpace(fTargetColorSpace); SkASSERT(SkColorSpace::Equals(yuv->colorSpace(), fTargetColorSpace.get())); canvas->drawImage(yuv, x, y); y += kTileWidthHeight + kPad; auto subset = yuv->makeSubset(SkIRect::MakeWH(kTileWidthHeight / 2, kTileWidthHeight / 2)); canvas->drawImage(subset, x, y); y += kTileWidthHeight + kPad; auto nonTexture = yuv->makeNonTextureImage(); canvas->drawImage(nonTexture, x, y); y += kTileWidthHeight + kPad; SkBitmap readBack; readBack.allocPixels(as_IB(yuv)->onImageInfo()); yuv->readPixels(readBack.pixmap(), 0, 0); canvas->drawBitmap(readBack, x, y); x += kTileWidthHeight + kPad; } } context->flush(); GrGpu* gpu = context->priv().getGpu(); SkASSERT(gpu); gpu->testingOnly_flushGpuAndSync(); for (const auto& tex : fBackendTextures) { gpu->deleteTestingOnlyBackendTexture(tex); } fBackendTextures.reset(); } private: SkBitmap fOriginalBMs[2]; sk_sp fImages[2][2]; SkTArray fBackendTextures; sk_sp fTargetColorSpace; typedef GM INHERITED; }; DEF_GM(return new YUVMakeColorSpaceGM();) }