/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/utils/SkRandom.h" #include "src/core/SkGeometry.h" #include "src/core/SkPointPriv.h" #include "tests/Test.h" #include #include static bool nearly_equal(const SkPoint& a, const SkPoint& b) { return SkScalarNearlyEqual(a.fX, b.fX) && SkScalarNearlyEqual(a.fY, b.fY); } static void testChopCubic(skiatest::Reporter* reporter) { /* Inspired by this test, which used to assert that the tValues had dups */ const SkPoint src[] = { { SkIntToScalar(2190), SkIntToScalar(5130) }, { SkIntToScalar(2190), SkIntToScalar(5070) }, { SkIntToScalar(2220), SkIntToScalar(5010) }, { SkIntToScalar(2205), SkIntToScalar(4980) }, }; SkPoint dst[13]; SkScalar tValues[3]; // make sure we don't assert internally int count = SkChopCubicAtMaxCurvature(src, dst, tValues); if (false) { // avoid bit rot, suppress warning REPORTER_ASSERT(reporter, count); } // Make sure src and dst can be the same pointer. SkPoint pts[7]; for (int i = 0; i < 7; ++i) { pts[i].set(i, i); } SkChopCubicAt(pts, pts, .5f); for (int i = 0; i < 7; ++i) { REPORTER_ASSERT(reporter, pts[i].fX == pts[i].fY); REPORTER_ASSERT(reporter, pts[i].fX == i * .5f); } } static void check_pairs(skiatest::Reporter* reporter, int index, SkScalar t, const char name[], SkScalar x0, SkScalar y0, SkScalar x1, SkScalar y1) { bool eq = SkScalarNearlyEqual(x0, x1) && SkScalarNearlyEqual(y0, y1); if (!eq) { SkDebugf("%s [%d %g] p0 [%10.8f %10.8f] p1 [%10.8f %10.8f]\n", name, index, t, x0, y0, x1, y1); REPORTER_ASSERT(reporter, eq); } } static void test_evalquadat(skiatest::Reporter* reporter) { SkRandom rand; for (int i = 0; i < 1000; ++i) { SkPoint pts[3]; for (int j = 0; j < 3; ++j) { pts[j].set(rand.nextSScalar1() * 100, rand.nextSScalar1() * 100); } const SkScalar dt = SK_Scalar1 / 128; SkScalar t = dt; for (int j = 1; j < 128; ++j) { SkPoint r0; SkEvalQuadAt(pts, t, &r0); SkPoint r1 = SkEvalQuadAt(pts, t); check_pairs(reporter, i, t, "quad-pos", r0.fX, r0.fY, r1.fX, r1.fY); SkVector v0; SkEvalQuadAt(pts, t, nullptr, &v0); SkVector v1 = SkEvalQuadTangentAt(pts, t); check_pairs(reporter, i, t, "quad-tan", v0.fX, v0.fY, v1.fX, v1.fY); t += dt; } } } static void test_conic_eval_pos(skiatest::Reporter* reporter, const SkConic& conic, SkScalar t) { SkPoint p0, p1; conic.evalAt(t, &p0, nullptr); p1 = conic.evalAt(t); check_pairs(reporter, 0, t, "conic-pos", p0.fX, p0.fY, p1.fX, p1.fY); } static void test_conic_eval_tan(skiatest::Reporter* reporter, const SkConic& conic, SkScalar t) { SkVector v0, v1; conic.evalAt(t, nullptr, &v0); v1 = conic.evalTangentAt(t); check_pairs(reporter, 0, t, "conic-tan", v0.fX, v0.fY, v1.fX, v1.fY); } static void test_conic(skiatest::Reporter* reporter) { SkRandom rand; for (int i = 0; i < 1000; ++i) { SkPoint pts[3]; for (int j = 0; j < 3; ++j) { pts[j].set(rand.nextSScalar1() * 100, rand.nextSScalar1() * 100); } for (int k = 0; k < 10; ++k) { SkScalar w = rand.nextUScalar1() * 2; SkConic conic(pts, w); const SkScalar dt = SK_Scalar1 / 128; SkScalar t = dt; for (int j = 1; j < 128; ++j) { test_conic_eval_pos(reporter, conic, t); test_conic_eval_tan(reporter, conic, t); t += dt; } } } } static void test_quad_tangents(skiatest::Reporter* reporter) { SkPoint pts[] = { {10, 20}, {10, 20}, {20, 30}, {10, 20}, {15, 25}, {20, 30}, {10, 20}, {20, 30}, {20, 30}, }; int count = (int) SK_ARRAY_COUNT(pts) / 3; for (int index = 0; index < count; ++index) { SkConic conic(&pts[index * 3], 0.707f); SkVector start = SkEvalQuadTangentAt(&pts[index * 3], 0); SkVector mid = SkEvalQuadTangentAt(&pts[index * 3], .5f); SkVector end = SkEvalQuadTangentAt(&pts[index * 3], 1); REPORTER_ASSERT(reporter, start.fX && start.fY); REPORTER_ASSERT(reporter, mid.fX && mid.fY); REPORTER_ASSERT(reporter, end.fX && end.fY); REPORTER_ASSERT(reporter, SkScalarNearlyZero(start.cross(mid))); REPORTER_ASSERT(reporter, SkScalarNearlyZero(mid.cross(end))); } } static void test_conic_tangents(skiatest::Reporter* reporter) { SkPoint pts[] = { { 10, 20}, {10, 20}, {20, 30}, { 10, 20}, {15, 25}, {20, 30}, { 10, 20}, {20, 30}, {20, 30} }; int count = (int) SK_ARRAY_COUNT(pts) / 3; for (int index = 0; index < count; ++index) { SkConic conic(&pts[index * 3], 0.707f); SkVector start = conic.evalTangentAt(0); SkVector mid = conic.evalTangentAt(.5f); SkVector end = conic.evalTangentAt(1); REPORTER_ASSERT(reporter, start.fX && start.fY); REPORTER_ASSERT(reporter, mid.fX && mid.fY); REPORTER_ASSERT(reporter, end.fX && end.fY); REPORTER_ASSERT(reporter, SkScalarNearlyZero(start.cross(mid))); REPORTER_ASSERT(reporter, SkScalarNearlyZero(mid.cross(end))); } } static void test_this_conic_to_quad(skiatest::Reporter* r, const SkPoint pts[3], SkScalar w) { SkAutoConicToQuads quadder; const SkPoint* qpts = quadder.computeQuads(pts, w, 0.25); const int qcount = quadder.countQuads(); const int pcount = qcount * 2 + 1; REPORTER_ASSERT(r, SkPointPriv::AreFinite(qpts, pcount)); } /** * We need to ensure that when a conic is approximated by quads, that we always return finite * values in the quads. * * Inspired by crbug_627414 */ static void test_conic_to_quads(skiatest::Reporter* reporter) { const SkPoint triples[] = { { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 0 }, { 3.58732e-43f, 2.72084f }, { 3.00392f, 3.00392f }, { 0, 0 }, { 100000, 0 }, { 100000, 100000 }, { 0, 0 }, { 1e30f, 0 }, { 1e30f, 1e30f }, }; const int N = sizeof(triples) / sizeof(SkPoint); for (int i = 0; i < N; i += 3) { const SkPoint* pts = &triples[i]; SkScalar w = 1e30f; do { w *= 2; test_this_conic_to_quad(reporter, pts, w); } while (SkScalarIsFinite(w)); test_this_conic_to_quad(reporter, pts, SK_ScalarNaN); } } static void test_cubic_tangents(skiatest::Reporter* reporter) { SkPoint pts[] = { { 10, 20}, {10, 20}, {20, 30}, {30, 40}, { 10, 20}, {15, 25}, {20, 30}, {30, 40}, { 10, 20}, {20, 30}, {30, 40}, {30, 40}, }; int count = (int) SK_ARRAY_COUNT(pts) / 4; for (int index = 0; index < count; ++index) { SkConic conic(&pts[index * 3], 0.707f); SkVector start, mid, end; SkEvalCubicAt(&pts[index * 4], 0, nullptr, &start, nullptr); SkEvalCubicAt(&pts[index * 4], .5f, nullptr, &mid, nullptr); SkEvalCubicAt(&pts[index * 4], 1, nullptr, &end, nullptr); REPORTER_ASSERT(reporter, start.fX && start.fY); REPORTER_ASSERT(reporter, mid.fX && mid.fY); REPORTER_ASSERT(reporter, end.fX && end.fY); REPORTER_ASSERT(reporter, SkScalarNearlyZero(start.cross(mid))); REPORTER_ASSERT(reporter, SkScalarNearlyZero(mid.cross(end))); } } static void check_cubic_type(skiatest::Reporter* reporter, const std::array& bezierPoints, SkCubicType expectedType, bool undefined = false) { // Classify the cubic even if the results will be undefined: check for crashes and asserts. SkCubicType actualType = SkClassifyCubic(bezierPoints.data()); if (!undefined) { REPORTER_ASSERT(reporter, actualType == expectedType); } } static void check_cubic_around_rect(skiatest::Reporter* reporter, float x1, float y1, float x2, float y2, bool undefined = false) { static constexpr SkCubicType expectations[24] = { SkCubicType::kLoop, SkCubicType::kCuspAtInfinity, SkCubicType::kLocalCusp, SkCubicType::kLocalCusp, SkCubicType::kCuspAtInfinity, SkCubicType::kLoop, SkCubicType::kCuspAtInfinity, SkCubicType::kLoop, SkCubicType::kCuspAtInfinity, SkCubicType::kLoop, SkCubicType::kLocalCusp, SkCubicType::kLocalCusp, SkCubicType::kLocalCusp, SkCubicType::kLocalCusp, SkCubicType::kLoop, SkCubicType::kCuspAtInfinity, SkCubicType::kLoop, SkCubicType::kCuspAtInfinity, SkCubicType::kLoop, SkCubicType::kCuspAtInfinity, SkCubicType::kLocalCusp, SkCubicType::kLocalCusp, SkCubicType::kCuspAtInfinity, SkCubicType::kLoop, }; SkPoint points[] = {{x1, y1}, {x2, y1}, {x2, y2}, {x1, y2}}; std::array bezier; for (int i=0; i < 4; ++i) { bezier[0] = points[i]; for (int j=0; j < 3; ++j) { int jidx = (j < i) ? j : j+1; bezier[1] = points[jidx]; for (int k=0, kidx=0; k < 2; ++k, ++kidx) { for (int n = 0; n < 2; ++n) { kidx = (kidx == i || kidx == jidx) ? kidx+1 : kidx; } bezier[2] = points[kidx]; for (int l = 0; l < 4; ++l) { if (l != i && l != jidx && l != kidx) { bezier[3] = points[l]; break; } } check_cubic_type(reporter, bezier, expectations[i*6 + j*2 + k], undefined); } } } for (int i=0; i < 4; ++i) { bezier[0] = points[i]; for (int j=0; j < 3; ++j) { int jidx = (j < i) ? j : j+1; bezier[1] = points[jidx]; bezier[2] = points[jidx]; for (int k=0, kidx=0; k < 2; ++k, ++kidx) { for (int n = 0; n < 2; ++n) { kidx = (kidx == i || kidx == jidx) ? kidx+1 : kidx; } bezier[3] = points[kidx]; check_cubic_type(reporter, bezier, SkCubicType::kSerpentine, undefined); } } } } static void test_classify_cubic(skiatest::Reporter* reporter) { check_cubic_type(reporter, {{{149.325f, 107.705f}, {149.325f, 103.783f}, {151.638f, 100.127f}, {156.263f, 96.736f}}}, SkCubicType::kSerpentine); check_cubic_type(reporter, {{{225.694f, 223.15f}, {209.831f, 224.837f}, {195.994f, 230.237f}, {184.181f, 239.35f}}}, SkCubicType::kSerpentine); check_cubic_type(reporter, {{{4.873f, 5.581f}, {5.083f, 5.2783f}, {5.182f, 4.8593f}, {5.177f, 4.3242f}}}, SkCubicType::kSerpentine); check_cubic_around_rect(reporter, 0, 0, 1, 1); check_cubic_around_rect(reporter, -std::numeric_limits::max(), -std::numeric_limits::max(), +std::numeric_limits::max(), +std::numeric_limits::max()); check_cubic_around_rect(reporter, 1, 1, +std::numeric_limits::min(), +std::numeric_limits::max()); check_cubic_around_rect(reporter, -std::numeric_limits::min(), -std::numeric_limits::min(), +std::numeric_limits::min(), +std::numeric_limits::min()); check_cubic_around_rect(reporter, +1, -std::numeric_limits::min(), -1, -1); check_cubic_around_rect(reporter, -std::numeric_limits::infinity(), -std::numeric_limits::infinity(), +std::numeric_limits::infinity(), +std::numeric_limits::infinity(), true); check_cubic_around_rect(reporter, 0, 0, 1, +std::numeric_limits::infinity(), true); check_cubic_around_rect(reporter, -std::numeric_limits::quiet_NaN(), -std::numeric_limits::quiet_NaN(), +std::numeric_limits::quiet_NaN(), +std::numeric_limits::quiet_NaN(), true); check_cubic_around_rect(reporter, 0, 0, 1, +std::numeric_limits::quiet_NaN(), true); } static void test_cubic_cusps(skiatest::Reporter* reporter) { std::array noCusps[] = { {{{0, 0}, {1, 1}, {2, 2}, {3, 3}}}, {{{0, 0}, {1, 0}, {1, 1}, {0, 1}}}, {{{0, 0}, {1, 0}, {2, 1}, {2, 2}}}, {{{0, 0}, {1, 0}, {1, 1}, {2, 1}}}, }; for (auto noCusp : noCusps) { REPORTER_ASSERT(reporter, SkFindCubicCusp(noCusp.data()) < 0); } std::array cusps[] = { {{{0, 0}, {1, 1}, {1, 0}, {0, 1}}}, {{{0, 0}, {1, 1}, {0, 1}, {1, 0}}}, {{{0, 1}, {1, 0}, {0, 0}, {1, 1}}}, {{{0, 1}, {1, 0}, {1, 1}, {0, 0}}}, }; for (auto cusp : cusps) { REPORTER_ASSERT(reporter, SkFindCubicCusp(cusp.data()) > 0); } } DEF_TEST(Geometry, reporter) { SkPoint pts[5]; pts[0].set(0, 0); pts[1].set(100, 50); pts[2].set(0, 100); int count = SkChopQuadAtMaxCurvature(pts, pts); // Ensure src and dst can be the same pointer. REPORTER_ASSERT(reporter, count == 1 || count == 2); pts[0].set(0, 0); pts[1].set(3, 0); pts[2].set(3, 3); SkConvertQuadToCubic(pts, pts); const SkPoint cubic[] = { { 0, 0, }, { 2, 0, }, { 3, 1, }, { 3, 3 }, }; for (int i = 0; i < 4; ++i) { REPORTER_ASSERT(reporter, nearly_equal(cubic[i], pts[i])); } testChopCubic(reporter); test_evalquadat(reporter); test_conic(reporter); test_cubic_tangents(reporter); test_quad_tangents(reporter); test_conic_tangents(reporter); test_conic_to_quads(reporter); test_classify_cubic(reporter); test_cubic_cusps(reporter); }