/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include "nanobench.h" #include "Benchmark.h" #include "CodecBench.h" #include "CrashHandler.h" #include "DecodingBench.h" #include "GMBench.h" #include "ProcStats.h" #include "ResultsWriter.h" #include "RecordingBench.h" #include "SKPAnimationBench.h" #include "SKPBench.h" #include "SubsetBenchPriv.h" #include "SubsetSingleBench.h" #include "SubsetTranslateBench.h" #include "SubsetZoomBench.h" #include "Stats.h" #include "Timer.h" #include "SkBBoxHierarchy.h" #include "SkCanvas.h" #include "SkCodec.h" #include "SkCommonFlags.h" #include "SkData.h" #include "SkForceLinking.h" #include "SkGraphics.h" #include "SkOSFile.h" #include "SkPictureRecorder.h" #include "SkPictureUtils.h" #include "SkString.h" #include "SkSurface.h" #include "SkTaskGroup.h" #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK #include "nanobenchAndroid.h" #endif #if SK_SUPPORT_GPU #include "gl/GrGLDefines.h" #include "GrCaps.h" #include "GrContextFactory.h" SkAutoTDelete gGrFactory; #endif struct GrContextOptions; __SK_FORCE_IMAGE_DECODER_LINKING; static const int kAutoTuneLoops = 0; static const int kDefaultLoops = #ifdef SK_DEBUG 1; #else kAutoTuneLoops; #endif static SkString loops_help_txt() { SkString help; help.printf("Number of times to run each bench. Set this to %d to auto-" "tune for each bench. Timings are only reported when auto-tuning.", kAutoTuneLoops); return help; } DEFINE_int32(loops, kDefaultLoops, loops_help_txt().c_str()); DEFINE_int32(samples, 10, "Number of samples to measure for each bench."); DEFINE_int32(overheadLoops, 100000, "Loops to estimate timer overhead."); DEFINE_double(overheadGoal, 0.0001, "Loop until timer overhead is at most this fraction of our measurments."); DEFINE_double(gpuMs, 5, "Target bench time in millseconds for GPU."); DEFINE_int32(gpuFrameLag, 5, "If unknown, estimated maximum number of frames GPU allows to lag."); DEFINE_bool(gpuCompressAlphaMasks, false, "Compress masks generated from falling back to " "software path rendering."); DEFINE_string(outResultsFile, "", "If given, write results here as JSON."); DEFINE_int32(maxCalibrationAttempts, 3, "Try up to this many times to guess loops for a bench, or skip the bench."); DEFINE_int32(maxLoops, 1000000, "Never run a bench more times than this."); DEFINE_string(clip, "0,0,1000,1000", "Clip for SKPs."); DEFINE_string(scales, "1.0", "Space-separated scales for SKPs."); DEFINE_string(zoom, "1.0,1", "Comma-separated scale,step zoom factors for SKPs."); DEFINE_bool(bbh, true, "Build a BBH for SKPs?"); DEFINE_bool(mpd, true, "Use MultiPictureDraw for the SKPs?"); DEFINE_bool(loopSKP, true, "Loop SKPs like we do for micro benches?"); DEFINE_int32(flushEvery, 10, "Flush --outResultsFile every Nth run."); DEFINE_bool(resetGpuContext, true, "Reset the GrContext before running each test."); DEFINE_bool(gpuStats, false, "Print GPU stats after each gpu benchmark?"); static SkString humanize(double ms) { if (FLAGS_verbose) return SkStringPrintf("%llu", (uint64_t)(ms*1e6)); return HumanizeMs(ms); } #define HUMANIZE(ms) humanize(ms).c_str() bool Target::init(SkImageInfo info, Benchmark* bench) { if (Benchmark::kRaster_Backend == config.backend) { this->surface.reset(SkSurface::NewRaster(info)); if (!this->surface.get()) { return false; } } return true; } bool Target::capturePixels(SkBitmap* bmp) { SkCanvas* canvas = this->getCanvas(); if (!canvas) { return false; } bmp->setInfo(canvas->imageInfo()); if (!canvas->readPixels(bmp, 0, 0)) { SkDebugf("Can't read canvas pixels.\n"); return false; } return true; } #if SK_SUPPORT_GPU struct GPUTarget : public Target { explicit GPUTarget(const Config& c) : Target(c), gl(NULL) { } SkGLContext* gl; void setup() override { this->gl->makeCurrent(); // Make sure we're done with whatever came before. SK_GL(*this->gl, Finish()); } void endTiming() override { if (this->gl) { SK_GL(*this->gl, Flush()); this->gl->swapBuffers(); } } void fence() override { SK_GL(*this->gl, Finish()); } bool needsFrameTiming(int* maxFrameLag) const override { if (!this->gl->getMaxGpuFrameLag(maxFrameLag)) { // Frame lag is unknown. *maxFrameLag = FLAGS_gpuFrameLag; } return true; } bool init(SkImageInfo info, Benchmark* bench) override { uint32_t flags = this->config.useDFText ? SkSurfaceProps::kUseDistanceFieldFonts_Flag : 0; SkSurfaceProps props(flags, SkSurfaceProps::kLegacyFontHost_InitType); this->surface.reset(SkSurface::NewRenderTarget(gGrFactory->get(this->config.ctxType), SkSurface::kNo_Budgeted, info, this->config.samples, &props)); this->gl = gGrFactory->getGLContext(this->config.ctxType); if (!this->surface.get()) { return false; } if (!this->gl->fenceSyncSupport()) { SkDebugf("WARNING: GL context for config \"%s\" does not support fence sync. " "Timings might not be accurate.\n", this->config.name); } return true; } void fillOptions(ResultsWriter* log) override { const GrGLubyte* version; SK_GL_RET(*this->gl, version, GetString(GR_GL_VERSION)); log->configOption("GL_VERSION", (const char*)(version)); SK_GL_RET(*this->gl, version, GetString(GR_GL_RENDERER)); log->configOption("GL_RENDERER", (const char*) version); SK_GL_RET(*this->gl, version, GetString(GR_GL_VENDOR)); log->configOption("GL_VENDOR", (const char*) version); SK_GL_RET(*this->gl, version, GetString(GR_GL_SHADING_LANGUAGE_VERSION)); log->configOption("GL_SHADING_LANGUAGE_VERSION", (const char*) version); } }; #endif static double time(int loops, Benchmark* bench, Target* target) { SkCanvas* canvas = target->getCanvas(); if (canvas) { canvas->clear(SK_ColorWHITE); } WallTimer timer; timer.start(); canvas = target->beginTiming(canvas); bench->draw(loops, canvas); if (canvas) { canvas->flush(); } target->endTiming(); timer.end(); return timer.fWall; } static double estimate_timer_overhead() { double overhead = 0; for (int i = 0; i < FLAGS_overheadLoops; i++) { WallTimer timer; timer.start(); timer.end(); overhead += timer.fWall; } return overhead / FLAGS_overheadLoops; } static int detect_forever_loops(int loops) { // look for a magic run-forever value if (loops < 0) { loops = SK_MaxS32; } return loops; } static int clamp_loops(int loops) { if (loops < 1) { SkDebugf("ERROR: clamping loops from %d to 1. " "There's probably something wrong with the bench.\n", loops); return 1; } if (loops > FLAGS_maxLoops) { SkDebugf("WARNING: clamping loops from %d to FLAGS_maxLoops, %d.\n", loops, FLAGS_maxLoops); return FLAGS_maxLoops; } return loops; } static bool write_canvas_png(Target* target, const SkString& filename) { if (filename.isEmpty()) { return false; } if (target->getCanvas() && kUnknown_SkColorType == target->getCanvas()->imageInfo().colorType()) { return false; } SkBitmap bmp; if (!target->capturePixels(&bmp)) { return false; } SkString dir = SkOSPath::Dirname(filename.c_str()); if (!sk_mkdir(dir.c_str())) { SkDebugf("Can't make dir %s.\n", dir.c_str()); return false; } SkFILEWStream stream(filename.c_str()); if (!stream.isValid()) { SkDebugf("Can't write %s.\n", filename.c_str()); return false; } if (!SkImageEncoder::EncodeStream(&stream, bmp, SkImageEncoder::kPNG_Type, 100)) { SkDebugf("Can't encode a PNG.\n"); return false; } return true; } static int kFailedLoops = -2; static int cpu_bench(const double overhead, Target* target, Benchmark* bench, double* samples) { // First figure out approximately how many loops of bench it takes to make overhead negligible. double bench_plus_overhead = 0.0; int round = 0; int loops = bench->calculateLoops(FLAGS_loops); if (kAutoTuneLoops == loops) { while (bench_plus_overhead < overhead) { if (round++ == FLAGS_maxCalibrationAttempts) { SkDebugf("WARNING: Can't estimate loops for %s (%s vs. %s); skipping.\n", bench->getUniqueName(), HUMANIZE(bench_plus_overhead), HUMANIZE(overhead)); return kFailedLoops; } bench_plus_overhead = time(1, bench, target); } } // Later we'll just start and stop the timer once but loop N times. // We'll pick N to make timer overhead negligible: // // overhead // ------------------------- < FLAGS_overheadGoal // overhead + N * Bench Time // // where bench_plus_overhead ≈ overhead + Bench Time. // // Doing some math, we get: // // (overhead / FLAGS_overheadGoal) - overhead // ------------------------------------------ < N // bench_plus_overhead - overhead) // // Luckily, this also works well in practice. :) if (kAutoTuneLoops == loops) { const double numer = overhead / FLAGS_overheadGoal - overhead; const double denom = bench_plus_overhead - overhead; loops = (int)ceil(numer / denom); loops = clamp_loops(loops); } else { loops = detect_forever_loops(loops); } for (int i = 0; i < FLAGS_samples; i++) { samples[i] = time(loops, bench, target) / loops; } return loops; } static int gpu_bench(Target* target, Benchmark* bench, double* samples, int maxGpuFrameLag) { // First, figure out how many loops it'll take to get a frame up to FLAGS_gpuMs. int loops = bench->calculateLoops(FLAGS_loops); if (kAutoTuneLoops == loops) { loops = 1; double elapsed = 0; do { if (1<<30 == loops) { // We're about to wrap. Something's wrong with the bench. loops = 0; break; } loops *= 2; // If the GPU lets frames lag at all, we need to make sure we're timing // _this_ round, not still timing last round. for (int i = 0; i < maxGpuFrameLag; i++) { elapsed = time(loops, bench, target); } } while (elapsed < FLAGS_gpuMs); // We've overshot at least a little. Scale back linearly. loops = (int)ceil(loops * FLAGS_gpuMs / elapsed); loops = clamp_loops(loops); // Make sure we're not still timing our calibration. target->fence(); } else { loops = detect_forever_loops(loops); } // Pretty much the same deal as the calibration: do some warmup to make // sure we're timing steady-state pipelined frames. for (int i = 0; i < maxGpuFrameLag - 1; i++) { time(loops, bench, target); } // Now, actually do the timing! for (int i = 0; i < FLAGS_samples; i++) { samples[i] = time(loops, bench, target) / loops; } return loops; } static SkString to_lower(const char* str) { SkString lower(str); for (size_t i = 0; i < lower.size(); i++) { lower[i] = tolower(lower[i]); } return lower; } static bool is_cpu_config_allowed(const char* name) { for (int i = 0; i < FLAGS_config.count(); i++) { if (to_lower(FLAGS_config[i]).equals(name)) { return true; } } return false; } #if SK_SUPPORT_GPU static bool is_gpu_config_allowed(const char* name, GrContextFactory::GLContextType ctxType, int sampleCnt) { if (!is_cpu_config_allowed(name)) { return false; } if (const GrContext* ctx = gGrFactory->get(ctxType)) { return sampleCnt <= ctx->caps()->maxSampleCount(); } return false; } #endif #if SK_SUPPORT_GPU #define kBogusGLContextType GrContextFactory::kNative_GLContextType #else #define kBogusGLContextType 0 #endif // Append all configs that are enabled and supported. static void create_configs(SkTDArray* configs) { #define CPU_CONFIG(name, backend, color, alpha) \ if (is_cpu_config_allowed(#name)) { \ Config config = { #name, Benchmark::backend, color, alpha, 0, \ kBogusGLContextType, false }; \ configs->push(config); \ } if (FLAGS_cpu) { CPU_CONFIG(nonrendering, kNonRendering_Backend, kUnknown_SkColorType, kUnpremul_SkAlphaType) CPU_CONFIG(8888, kRaster_Backend, kN32_SkColorType, kPremul_SkAlphaType) CPU_CONFIG(565, kRaster_Backend, kRGB_565_SkColorType, kOpaque_SkAlphaType) } #if SK_SUPPORT_GPU #define GPU_CONFIG(name, ctxType, samples, useDFText) \ if (is_gpu_config_allowed(#name, GrContextFactory::ctxType, samples)) { \ Config config = { \ #name, \ Benchmark::kGPU_Backend, \ kN32_SkColorType, \ kPremul_SkAlphaType, \ samples, \ GrContextFactory::ctxType, \ useDFText }; \ configs->push(config); \ } if (FLAGS_gpu) { GPU_CONFIG(gpu, kNative_GLContextType, 0, false) GPU_CONFIG(msaa4, kNative_GLContextType, 4, false) GPU_CONFIG(msaa16, kNative_GLContextType, 16, false) GPU_CONFIG(nvprmsaa4, kNVPR_GLContextType, 4, false) GPU_CONFIG(nvprmsaa16, kNVPR_GLContextType, 16, false) GPU_CONFIG(gpudft, kNative_GLContextType, 0, true) GPU_CONFIG(debug, kDebug_GLContextType, 0, false) GPU_CONFIG(nullgpu, kNull_GLContextType, 0, false) #ifdef SK_ANGLE GPU_CONFIG(angle, kANGLE_GLContextType, 0, false) #endif #if SK_MESA GPU_CONFIG(mesa, kMESA_GLContextType, 0, false) #endif } #endif #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK if (is_cpu_config_allowed("hwui")) { Config config = { "hwui", Benchmark::kHWUI_Backend, kRGBA_8888_SkColorType, kPremul_SkAlphaType, 0, kBogusGLContextType, false }; configs->push(config); } #endif } // If bench is enabled for config, returns a Target* for it, otherwise NULL. static Target* is_enabled(Benchmark* bench, const Config& config) { if (!bench->isSuitableFor(config.backend)) { return NULL; } SkImageInfo info = SkImageInfo::Make(bench->getSize().fX, bench->getSize().fY, config.color, config.alpha); Target* target = NULL; switch (config.backend) { #if SK_SUPPORT_GPU case Benchmark::kGPU_Backend: target = new GPUTarget(config); break; #endif #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK case Benchmark::kHWUI_Backend: target = new HWUITarget(config, bench); break; #endif default: target = new Target(config); break; } if (!target->init(info, bench)) { delete target; return NULL; } return target; } // Creates targets for a benchmark and a set of configs. static void create_targets(SkTDArray* targets, Benchmark* b, const SkTDArray& configs) { for (int i = 0; i < configs.count(); ++i) { if (Target* t = is_enabled(b, configs[i])) { targets->push(t); } } } /* * Returns true if set up for a subset decode succeeds, false otherwise * If the set-up succeeds, the width and height parameters will be set */ static bool valid_subset_bench(const SkString& path, SkColorType colorType, bool useCodec, int* width, int* height) { SkAutoTUnref encoded(SkData::NewFromFileName(path.c_str())); SkAutoTDelete stream(new SkMemoryStream(encoded)); // Check that we can create a codec or image decoder. if (useCodec) { SkAutoTDelete codec(SkCodec::NewFromStream(stream.detach())); if (NULL == codec) { SkDebugf("Could not create codec for %s. Skipping bench.\n", path.c_str()); return false; } // These will be initialized by SkCodec if the color type is kIndex8 and // unused otherwise. SkPMColor colors[256]; int colorCount; const SkImageInfo info = codec->getInfo().makeColorType(colorType); SkAutoTDeleteArray row(SkNEW_ARRAY(uint8_t, info.minRowBytes())); SkScanlineDecoder* scanlineDecoder = codec->getScanlineDecoder(info, NULL, colors, &colorCount); if (NULL == scanlineDecoder) { SkDebugf("Could not create scanline decoder for %s with color type %s. " "Skipping bench.\n", path.c_str(), get_color_name(colorType)); return false; } *width = info.width(); *height = info.height(); } else { SkAutoTDelete decoder(SkImageDecoder::Factory(stream)); if (NULL == decoder) { SkDebugf("Could not create decoder for %s. Skipping bench.\n", path.c_str()); return false; } //FIXME: See skbug.com/3921 if (kIndex_8_SkColorType == colorType || kGray_8_SkColorType == colorType) { SkDebugf("Cannot use image subset decoder for %s with color type %s. " "Skipping bench.\n", path.c_str(), get_color_name(colorType)); return false; } if (!decoder->buildTileIndex(stream.detach(), width, height)) { SkDebugf("Could not build tile index for %s. Skipping bench.\n", path.c_str()); return false; } } // Check if the image is large enough for a meaningful subset benchmark. if (*width <= 512 && *height <= 512) { // This should not print a message since it is not an error. return false; } return true; } class BenchmarkStream { public: BenchmarkStream() : fBenches(BenchRegistry::Head()) , fGMs(skiagm::GMRegistry::Head()) , fCurrentRecording(0) , fCurrentScale(0) , fCurrentSKP(0) , fCurrentUseMPD(0) , fCurrentCodec(0) , fCurrentImage(0) , fCurrentSubsetImage(0) , fCurrentColorType(0) , fCurrentSubsetType(0) , fUseCodec(0) , fCurrentAnimSKP(0) { for (int i = 0; i < FLAGS_skps.count(); i++) { if (SkStrEndsWith(FLAGS_skps[i], ".skp")) { fSKPs.push_back() = FLAGS_skps[i]; } else { SkOSFile::Iter it(FLAGS_skps[i], ".skp"); SkString path; while (it.next(&path)) { fSKPs.push_back() = SkOSPath::Join(FLAGS_skps[0], path.c_str()); } } } if (4 != sscanf(FLAGS_clip[0], "%d,%d,%d,%d", &fClip.fLeft, &fClip.fTop, &fClip.fRight, &fClip.fBottom)) { SkDebugf("Can't parse %s from --clip as an SkIRect.\n", FLAGS_clip[0]); exit(1); } for (int i = 0; i < FLAGS_scales.count(); i++) { if (1 != sscanf(FLAGS_scales[i], "%f", &fScales.push_back())) { SkDebugf("Can't parse %s from --scales as an SkScalar.\n", FLAGS_scales[i]); exit(1); } } if (2 != sscanf(FLAGS_zoom[0], "%f,%d", &fZoomScale, &fZoomSteps)) { SkDebugf("Can't parse %s from --zoom as a scale,step.\n", FLAGS_zoom[0]); exit(1); } if (FLAGS_mpd) { fUseMPDs.push_back() = true; } fUseMPDs.push_back() = false; // Prepare the images for decoding for (int i = 0; i < FLAGS_images.count(); i++) { const char* flag = FLAGS_images[i]; if (sk_isdir(flag)) { // If the value passed in is a directory, add all the images SkOSFile::Iter it(flag); SkString file; while (it.next(&file)) { fImages.push_back() = SkOSPath::Join(flag, file.c_str()); } } else if (sk_exists(flag)) { // Also add the value if it is a single image fImages.push_back() = flag; } } // Choose the candidate color types for image decoding const SkColorType colorTypes[] = { kN32_SkColorType, kRGB_565_SkColorType, kAlpha_8_SkColorType, kIndex_8_SkColorType, kGray_8_SkColorType }; fColorTypes.push_back_n(SK_ARRAY_COUNT(colorTypes), colorTypes); } static bool ReadPicture(const char* path, SkAutoTUnref* pic) { // Not strictly necessary, as it will be checked again later, // but helps to avoid a lot of pointless work if we're going to skip it. if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path)) { return false; } SkAutoTDelete stream(SkStream::NewFromFile(path)); if (stream.get() == NULL) { SkDebugf("Could not read %s.\n", path); return false; } pic->reset(SkPicture::CreateFromStream(stream.get())); if (pic->get() == NULL) { SkDebugf("Could not read %s as an SkPicture.\n", path); return false; } return true; } Benchmark* next() { if (fBenches) { Benchmark* bench = fBenches->factory()(NULL); fBenches = fBenches->next(); fSourceType = "bench"; fBenchType = "micro"; return bench; } while (fGMs) { SkAutoTDelete gm(fGMs->factory()(NULL)); fGMs = fGMs->next(); if (gm->runAsBench()) { fSourceType = "gm"; fBenchType = "micro"; return SkNEW_ARGS(GMBench, (gm.detach())); } } // First add all .skps as RecordingBenches. while (fCurrentRecording < fSKPs.count()) { const SkString& path = fSKPs[fCurrentRecording++]; SkAutoTUnref pic; if (!ReadPicture(path.c_str(), &pic)) { continue; } SkString name = SkOSPath::Basename(path.c_str()); fSourceType = "skp"; fBenchType = "recording"; fSKPBytes = static_cast(SkPictureUtils::ApproximateBytesUsed(pic)); fSKPOps = pic->approximateOpCount(); return SkNEW_ARGS(RecordingBench, (name.c_str(), pic.get(), FLAGS_bbh)); } // Then once each for each scale as SKPBenches (playback). while (fCurrentScale < fScales.count()) { while (fCurrentSKP < fSKPs.count()) { const SkString& path = fSKPs[fCurrentSKP]; SkAutoTUnref pic; if (!ReadPicture(path.c_str(), &pic)) { fCurrentSKP++; continue; } while (fCurrentUseMPD < fUseMPDs.count()) { if (FLAGS_bbh) { // The SKP we read off disk doesn't have a BBH. Re-record so it grows one. SkRTreeFactory factory; SkPictureRecorder recorder; static const int kFlags = SkPictureRecorder::kComputeSaveLayerInfo_RecordFlag; pic->playback(recorder.beginRecording(pic->cullRect().width(), pic->cullRect().height(), &factory, fUseMPDs[fCurrentUseMPD] ? kFlags : 0)); pic.reset(recorder.endRecording()); } SkString name = SkOSPath::Basename(path.c_str()); fSourceType = "skp"; fBenchType = "playback"; return SkNEW_ARGS(SKPBench, (name.c_str(), pic.get(), fClip, fScales[fCurrentScale], fUseMPDs[fCurrentUseMPD++], FLAGS_loopSKP)); } fCurrentUseMPD = 0; fCurrentSKP++; } fCurrentSKP = 0; fCurrentScale++; } // Now loop over each skp again if we have an animation if (fZoomScale != 1.0f && fZoomSteps != 1) { while (fCurrentAnimSKP < fSKPs.count()) { const SkString& path = fSKPs[fCurrentAnimSKP]; SkAutoTUnref pic; if (!ReadPicture(path.c_str(), &pic)) { fCurrentAnimSKP++; continue; } fCurrentAnimSKP++; SkString name = SkOSPath::Basename(path.c_str()); SkMatrix anim = SkMatrix::I(); anim.setScale(fZoomScale, fZoomScale); return SkNEW_ARGS(SKPAnimationBench, (name.c_str(), pic.get(), fClip, anim, fZoomSteps, FLAGS_loopSKP)); } } for (; fCurrentCodec < fImages.count(); fCurrentCodec++) { const SkString& path = fImages[fCurrentCodec]; SkAutoTUnref encoded(SkData::NewFromFileName(path.c_str())); SkAutoTDelete codec(SkCodec::NewFromData(encoded)); if (!codec) { // Nothing to time. SkDebugf("Cannot find codec for %s\n", path.c_str()); continue; } while (fCurrentColorType < fColorTypes.count()) { const SkColorType colorType = fColorTypes[fCurrentColorType]; fCurrentColorType++; // Make sure we can decode to this color type. SkImageInfo info = codec->getInfo().makeColorType(colorType); SkAlphaType alphaType; if (!SkColorTypeValidateAlphaType(colorType, info.alphaType(), &alphaType)) { continue; } if (alphaType != info.alphaType()) { info = info.makeAlphaType(alphaType); } const size_t rowBytes = info.minRowBytes(); SkAutoMalloc storage(info.getSafeSize(rowBytes)); // Used if fCurrentColorType is kIndex_8_SkColorType int colorCount = 256; SkPMColor colors[256]; const SkImageGenerator::Result result = codec->getPixels( info, storage.get(), rowBytes, NULL, colors, &colorCount); switch (result) { case SkImageGenerator::kSuccess: case SkImageGenerator::kIncompleteInput: return new CodecBench(SkOSPath::Basename(path.c_str()), encoded, colorType); case SkImageGenerator::kInvalidConversion: // This is okay. Not all conversions are valid. break; default: // This represents some sort of failure. SkASSERT(false); break; } } fCurrentColorType = 0; } // Run the DecodingBenches while (fCurrentImage < fImages.count()) { while (fCurrentColorType < fColorTypes.count()) { const SkString& path = fImages[fCurrentImage]; SkColorType colorType = fColorTypes[fCurrentColorType]; fCurrentColorType++; // Check if the image decodes to the right color type // before creating the benchmark SkBitmap bitmap; if (SkImageDecoder::DecodeFile(path.c_str(), &bitmap, colorType, SkImageDecoder::kDecodePixels_Mode) && bitmap.colorType() == colorType) { return new DecodingBench(path, colorType); } } fCurrentColorType = 0; fCurrentImage++; } // Run the SubsetBenches bool useCodecOpts[] = { true, false }; while (fUseCodec < 2) { bool useCodec = useCodecOpts[fUseCodec]; while (fCurrentSubsetImage < fImages.count()) { while (fCurrentColorType < fColorTypes.count()) { const SkString& path = fImages[fCurrentSubsetImage]; SkColorType colorType = fColorTypes[fCurrentColorType]; while (fCurrentSubsetType <= kLast_SubsetType) { int width = 0; int height = 0; int currentSubsetType = fCurrentSubsetType++; if (valid_subset_bench(path, colorType, useCodec, &width, &height)) { switch (currentSubsetType) { case kTopLeft_SubsetType: return new SubsetSingleBench(path, colorType, width/3, height/3, 0, 0, useCodec); case kTopRight_SubsetType: return new SubsetSingleBench(path, colorType, width/3, height/3, 2*width/3, 0, useCodec); case kMiddle_SubsetType: return new SubsetSingleBench(path, colorType, width/3, height/3, width/3, height/3, useCodec); case kBottomLeft_SubsetType: return new SubsetSingleBench(path, colorType, width/3, height/3, 0, 2*height/3, useCodec); case kBottomRight_SubsetType: return new SubsetSingleBench(path, colorType, width/3, height/3, 2*width/3, 2*height/3, useCodec); case kTranslate_SubsetType: return new SubsetTranslateBench(path, colorType, 512, 512, useCodec); case kZoom_SubsetType: return new SubsetZoomBench(path, colorType, 512, 512, useCodec); } } else { break; } } fCurrentSubsetType = 0; fCurrentColorType++; } fCurrentColorType = 0; fCurrentSubsetImage++; } fCurrentSubsetImage = 0; fUseCodec++; } return NULL; } void fillCurrentOptions(ResultsWriter* log) const { log->configOption("source_type", fSourceType); log->configOption("bench_type", fBenchType); if (0 == strcmp(fSourceType, "skp")) { log->configOption("clip", SkStringPrintf("%d %d %d %d", fClip.fLeft, fClip.fTop, fClip.fRight, fClip.fBottom).c_str()); log->configOption("scale", SkStringPrintf("%.2g", fScales[fCurrentScale]).c_str()); if (fCurrentUseMPD > 0) { SkASSERT(1 == fCurrentUseMPD || 2 == fCurrentUseMPD); log->configOption("multi_picture_draw", fUseMPDs[fCurrentUseMPD-1] ? "true" : "false"); } } if (0 == strcmp(fBenchType, "recording")) { log->metric("bytes", fSKPBytes); log->metric("ops", fSKPOps); } } private: enum SubsetType { kTopLeft_SubsetType = 0, kTopRight_SubsetType = 1, kMiddle_SubsetType = 2, kBottomLeft_SubsetType = 3, kBottomRight_SubsetType = 4, kTranslate_SubsetType = 5, kZoom_SubsetType = 6, kLast_SubsetType = kZoom_SubsetType }; const BenchRegistry* fBenches; const skiagm::GMRegistry* fGMs; SkIRect fClip; SkTArray fScales; SkTArray fSKPs; SkTArray fUseMPDs; SkTArray fImages; SkTArray fColorTypes; SkScalar fZoomScale; int fZoomSteps; double fSKPBytes, fSKPOps; const char* fSourceType; // What we're benching: bench, GM, SKP, ... const char* fBenchType; // How we bench it: micro, recording, playback, ... int fCurrentRecording; int fCurrentScale; int fCurrentSKP; int fCurrentUseMPD; int fCurrentCodec; int fCurrentImage; int fCurrentSubsetImage; int fCurrentColorType; int fCurrentSubsetType; int fUseCodec; int fCurrentAnimSKP; }; int nanobench_main(); int nanobench_main() { SetupCrashHandler(); SkAutoGraphics ag; SkTaskGroup::Enabler enabled; #if SK_SUPPORT_GPU GrContextOptions grContextOpts; grContextOpts.fDrawPathToCompressedTexture = FLAGS_gpuCompressAlphaMasks; gGrFactory.reset(SkNEW_ARGS(GrContextFactory, (grContextOpts))); #endif if (FLAGS_veryVerbose) { FLAGS_verbose = true; } if (kAutoTuneLoops != FLAGS_loops) { FLAGS_samples = 1; FLAGS_gpuFrameLag = 0; } if (!FLAGS_writePath.isEmpty()) { SkDebugf("Writing files to %s.\n", FLAGS_writePath[0]); if (!sk_mkdir(FLAGS_writePath[0])) { SkDebugf("Could not create %s. Files won't be written.\n", FLAGS_writePath[0]); FLAGS_writePath.set(0, NULL); } } SkAutoTDelete log(SkNEW(ResultsWriter)); if (!FLAGS_outResultsFile.isEmpty()) { log.reset(SkNEW(NanoJSONResultsWriter(FLAGS_outResultsFile[0]))); } if (1 == FLAGS_properties.count() % 2) { SkDebugf("ERROR: --properties must be passed with an even number of arguments.\n"); return 1; } for (int i = 1; i < FLAGS_properties.count(); i += 2) { log->property(FLAGS_properties[i-1], FLAGS_properties[i]); } if (1 == FLAGS_key.count() % 2) { SkDebugf("ERROR: --key must be passed with an even number of arguments.\n"); return 1; } for (int i = 1; i < FLAGS_key.count(); i += 2) { log->key(FLAGS_key[i-1], FLAGS_key[i]); } const double overhead = estimate_timer_overhead(); SkDebugf("Timer overhead: %s\n", HUMANIZE(overhead)); SkAutoTMalloc samples(FLAGS_samples); if (kAutoTuneLoops != FLAGS_loops) { SkDebugf("Fixed number of loops; times would only be misleading so we won't print them.\n"); } else if (FLAGS_verbose) { // No header. } else if (FLAGS_quiet) { SkDebugf("median\tbench\tconfig\n"); } else { SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\t%-*s\tconfig\tbench\n", FLAGS_samples, "samples"); } SkTDArray configs; create_configs(&configs); int runs = 0; BenchmarkStream benchStream; while (Benchmark* b = benchStream.next()) { SkAutoTDelete bench(b); if (SkCommandLineFlags::ShouldSkip(FLAGS_match, bench->getUniqueName())) { continue; } SkTDArray targets; create_targets(&targets, bench.get(), configs); if (!targets.isEmpty()) { log->bench(bench->getUniqueName(), bench->getSize().fX, bench->getSize().fY); bench->preDraw(); } for (int j = 0; j < targets.count(); j++) { // During HWUI output this canvas may be NULL. SkCanvas* canvas = targets[j]->getCanvas(); const char* config = targets[j]->config.name; targets[j]->setup(); bench->perCanvasPreDraw(canvas); int frameLag; const int loops = targets[j]->needsFrameTiming(&frameLag) ? gpu_bench(targets[j], bench.get(), samples.get(), frameLag) : cpu_bench(overhead, targets[j], bench.get(), samples.get()); bench->perCanvasPostDraw(canvas); if (Benchmark::kNonRendering_Backend != targets[j]->config.backend && !FLAGS_writePath.isEmpty() && FLAGS_writePath[0]) { SkString pngFilename = SkOSPath::Join(FLAGS_writePath[0], config); pngFilename = SkOSPath::Join(pngFilename.c_str(), bench->getUniqueName()); pngFilename.append(".png"); write_canvas_png(targets[j], pngFilename); } if (kFailedLoops == loops) { // Can't be timed. A warning note has already been printed. continue; } Stats stats(samples.get(), FLAGS_samples); log->config(config); log->configOption("name", bench->getName()); benchStream.fillCurrentOptions(log.get()); targets[j]->fillOptions(log.get()); log->metric("min_ms", stats.min); if (runs++ % FLAGS_flushEvery == 0) { log->flush(); } if (kAutoTuneLoops != FLAGS_loops) { if (targets.count() == 1) { config = ""; // Only print the config if we run the same bench on more than one. } SkDebugf("%4d/%-4dMB\t%s\t%s\n" , sk_tools::getCurrResidentSetSizeMB() , sk_tools::getMaxResidentSetSizeMB() , bench->getUniqueName() , config); } else if (FLAGS_verbose) { for (int i = 0; i < FLAGS_samples; i++) { SkDebugf("%s ", HUMANIZE(samples[i])); } SkDebugf("%s\n", bench->getUniqueName()); } else if (FLAGS_quiet) { if (targets.count() == 1) { config = ""; // Only print the config if we run the same bench on more than one. } SkDebugf("%s\t%s\t%s\n", HUMANIZE(stats.median), bench->getUniqueName(), config); } else { const double stddev_percent = 100 * sqrt(stats.var) / stats.mean; SkDebugf("%4d/%-4dMB\t%d\t%s\t%s\t%s\t%s\t%.0f%%\t%s\t%s\t%s\n" , sk_tools::getCurrResidentSetSizeMB() , sk_tools::getMaxResidentSetSizeMB() , loops , HUMANIZE(stats.min) , HUMANIZE(stats.median) , HUMANIZE(stats.mean) , HUMANIZE(stats.max) , stddev_percent , stats.plot.c_str() , config , bench->getUniqueName() ); } #if SK_SUPPORT_GPU if (FLAGS_gpuStats && Benchmark::kGPU_Backend == targets[j]->config.backend) { gGrFactory->get(targets[j]->config.ctxType)->printCacheStats(); gGrFactory->get(targets[j]->config.ctxType)->printGpuStats(); } #endif } targets.deleteAll(); #if SK_SUPPORT_GPU if (FLAGS_abandonGpuContext) { gGrFactory->abandonContexts(); } if (FLAGS_resetGpuContext || FLAGS_abandonGpuContext) { gGrFactory->destroyContexts(); } #endif } log->bench("memory_usage", 0,0); log->config("meta"); log->metric("max_rss_mb", sk_tools::getMaxResidentSetSizeMB()); #if SK_SUPPORT_GPU // Make sure we clean up the global GrContextFactory here, otherwise we might race with the // SkEventTracer destructor gGrFactory.reset(NULL); #endif return 0; } #if !defined SK_BUILD_FOR_IOS int main(int argc, char** argv) { SkCommandLineFlags::Parse(argc, argv); return nanobench_main(); } #endif