/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gm/gm.h" #include "include/core/SkCanvas.h" #include "include/core/SkColor.h" #include "include/core/SkMatrix.h" #include "include/core/SkPaint.h" #include "include/core/SkPath.h" #include "include/core/SkPoint.h" #include "include/core/SkRect.h" #include "include/core/SkSize.h" #include "include/core/SkString.h" #include "include/core/SkTypes.h" #include "include/gpu/GrContextOptions.h" #include "include/gpu/GrDirectContext.h" #include "include/utils/SkRandom.h" #include "src/core/SkGeometry.h" #include "src/gpu/GrDirectContextPriv.h" #include "src/gpu/GrDrawingManager.h" #include "src/gpu/GrRecordingContextPriv.h" static constexpr float kStrokeWidth = 30; static constexpr int kCellSize = 200; static constexpr int kNumCols = 5; static constexpr int kNumRows = 5; static constexpr int kTestWidth = kNumCols * kCellSize; static constexpr int kTestHeight = kNumRows * kCellSize; enum class CellFillMode { kStretch, kCenter }; struct TrickyCubic { SkPoint fPoints[4]; int fNumPts; CellFillMode fFillMode; float fScale = 1; }; // This is a compilation of cubics that have given strokers grief. Feel free to add more. static const TrickyCubic kTrickyCubics[] = { {{{122, 737}, {348, 553}, {403, 761}, {400, 760}}, 4, CellFillMode::kStretch}, {{{244, 520}, {244, 518}, {1141, 634}, {394, 688}}, 4, CellFillMode::kStretch}, {{{550, 194}, {138, 130}, {1035, 246}, {288, 300}}, 4, CellFillMode::kStretch}, {{{226, 733}, {556, 779}, {-43, 471}, {348, 683}}, 4, CellFillMode::kStretch}, {{{268, 204}, {492, 304}, {352, 23}, {433, 412}}, 4, CellFillMode::kStretch}, {{{172, 480}, {396, 580}, {256, 299}, {338, 677}}, 4, CellFillMode::kStretch}, {{{731, 340}, {318, 252}, {1026, -64}, {367, 265}}, 4, CellFillMode::kStretch}, {{{475, 708}, {62, 620}, {770, 304}, {220, 659}}, 4, CellFillMode::kStretch}, {{{0, 0}, {128, 128}, {128, 0}, {0, 128}}, 4, CellFillMode::kCenter}, // Perfect cusp {{{0,.01f}, {128,127.999f}, {128,.01f}, {0,127.99f}}, 4, CellFillMode::kCenter}, // Near-cusp {{{0,-.01f}, {128,128.001f}, {128,-.01f}, {0,128.001f}}, 4, CellFillMode::kCenter}, // Near-cusp {{{0,0}, {0,-10}, {0,-10}, {0,10}}, 4, CellFillMode::kCenter, 1.098283f}, // Flat line with 180 {{{10,0}, {0,0}, {20,0}, {10,0}}, 4, CellFillMode::kStretch}, // Flat line with 2 180s {{{39,-39}, {40,-40}, {40,-40}, {0,0}}, 4, CellFillMode::kStretch}, // Flat diagonal with 180 {{{40, 40}, {0, 0}, {200, 200}, {0, 0}}, 4, CellFillMode::kStretch}, // Diag w/ an internal 180 {{{0,0}, {1e-2f,0}, {-1e-2f,0}, {0,0}}, 4, CellFillMode::kCenter}, // Circle {{{400.75f,100.05f}, {400.75f,100.05f}, {100.05f,300.95f}, {100.05f,300.95f}}, 4, CellFillMode::kStretch}, // Flat line with no turns {{{0.5f,0}, {0,0}, {20,0}, {10,0}}, 4, CellFillMode::kStretch}, // Flat line with 2 180s {{{10,0}, {0,0}, {10,0}, {10,0}}, 4, CellFillMode::kStretch}, // Flat line with a 180 {{{1,1}, {2,1}, {1,1}, {1, std::numeric_limits::quiet_NaN()}}, 3, CellFillMode::kStretch}, // Flat QUAD with a cusp {{{1,1}, {100,1}, {25,1}, {.3f, std::numeric_limits::quiet_NaN()}}, 3, CellFillMode::kStretch}, // Flat CONIC with a cusp {{{1,1}, {100,1}, {25,1}, {1.5f, std::numeric_limits::quiet_NaN()}}, 3, CellFillMode::kStretch}, // Flat CONIC with a cusp }; static SkRect calc_tight_cubic_bounds(const SkPoint P[4], int depth=5) { if (0 == depth) { SkRect bounds; bounds.fLeft = std::min(std::min(P[0].x(), P[1].x()), std::min(P[2].x(), P[3].x())); bounds.fTop = std::min(std::min(P[0].y(), P[1].y()), std::min(P[2].y(), P[3].y())); bounds.fRight = std::max(std::max(P[0].x(), P[1].x()), std::max(P[2].x(), P[3].x())); bounds.fBottom = std::max(std::max(P[0].y(), P[1].y()), std::max(P[2].y(), P[3].y())); return bounds; } SkPoint chopped[7]; SkChopCubicAt(P, chopped, .5f); SkRect bounds = calc_tight_cubic_bounds(chopped, depth - 1); bounds.join(calc_tight_cubic_bounds(chopped+3, depth - 1)); return bounds; } static SkPoint lerp(const SkPoint& a, const SkPoint& b, float T) { SkASSERT(1 != T); // The below does not guarantee lerp(a, b, 1) === b. return (b - a) * T + a; } enum class FillMode { kCenter, kScale }; static void draw_test(SkCanvas* canvas, SkPaint::Cap cap, SkPaint::Join join) { SkRandom rand; if (canvas->recordingContext() && canvas->recordingContext()->priv().caps()->shaderCaps()->tessellationSupport() && canvas->recordingContext()->priv().caps()->shaderCaps()->maxTessellationSegments() == 5) { // The caller successfully overrode the max tessellation segments to 5. Indicate this in the // background color. canvas->clear(SkColorSetARGB(255, 64, 0, 0)); } else { canvas->clear(SK_ColorBLACK); } SkPaint strokePaint; strokePaint.setAntiAlias(true); strokePaint.setStrokeWidth(kStrokeWidth); strokePaint.setStyle(SkPaint::kStroke_Style); strokePaint.setStrokeCap(cap); strokePaint.setStrokeJoin(join); for (size_t i = 0; i < SK_ARRAY_COUNT(kTrickyCubics); ++i) { auto [originalPts, numPts, fillMode, scale] = kTrickyCubics[i]; SkASSERT(numPts <= 4); SkPoint p[4]; memcpy(p, originalPts, sizeof(SkPoint) * numPts); for (int j = 0; j < numPts; ++j) { p[j] *= scale; } float w = originalPts[3].fX; auto cellRect = SkRect::MakeXYWH((i % kNumCols) * kCellSize, (i / kNumCols) * kCellSize, kCellSize, kCellSize); SkRect strokeBounds; if (numPts == 4) { strokeBounds = calc_tight_cubic_bounds(p); } else { SkASSERT(numPts == 3); SkPoint asCubic[4] = {p[0], lerp(p[0], p[1], 2/3.f), lerp(p[1], p[2], 1/3.f), p[2]}; strokeBounds = calc_tight_cubic_bounds(asCubic); } strokeBounds.outset(kStrokeWidth, kStrokeWidth); SkMatrix matrix; if (fillMode == CellFillMode::kStretch) { matrix = SkMatrix::RectToRect(strokeBounds, cellRect, SkMatrix::kCenter_ScaleToFit); } else { matrix.setTranslate(cellRect.x() + kStrokeWidth + (cellRect.width() - strokeBounds.width()) / 2, cellRect.y() + kStrokeWidth + (cellRect.height() - strokeBounds.height()) / 2); } SkAutoCanvasRestore acr(canvas, true); canvas->concat(matrix); strokePaint.setStrokeWidth(kStrokeWidth / matrix.getMaxScale()); strokePaint.setColor(rand.nextU() | 0xff808080); SkPath path = SkPath().moveTo(p[0]); if (numPts == 4) { path.cubicTo(p[1], p[2], p[3]); } else if (w == 1) { SkASSERT(numPts == 3); path.quadTo(p[1], p[2]); } else { SkASSERT(numPts == 3); path.conicTo(p[1], p[2], w); } canvas->drawPath(path, strokePaint); } } DEF_SIMPLE_GM(trickycubicstrokes, canvas, kTestWidth, kTestHeight) { draw_test(canvas, SkPaint::kButt_Cap, SkPaint::kMiter_Join); } DEF_SIMPLE_GM(trickycubicstrokes_roundcaps, canvas, kTestWidth, kTestHeight) { draw_test(canvas, SkPaint::kRound_Cap, SkPaint::kRound_Join); } #if GR_OGA #include "src/gpu/tessellate/GrTessellationPathRenderer.h" class TrickyCubicStrokes_tess_segs_5 : public skiagm::GM { SkString onShortName() override { return SkString("trickycubicstrokes_tess_segs_5"); } SkISize onISize() override { return SkISize::Make(kTestWidth, kTestHeight); } // Pick a very small, odd (and better yet, prime) number of segments. // // - Odd because it makes the tessellation strip asymmetric, which will be important to test for // future plans that involve drawing in reverse order. // // - >=4 because the tessellator code will just assume we have enough to combine a miter join // and line in a single patch. (Requires 4 segments. Spec required minimum is 64.) static constexpr int kMaxTessellationSegmentsOverride = 5; void modifyGrContextOptions(GrContextOptions* options) override { options->fMaxTessellationSegmentsOverride = kMaxTessellationSegmentsOverride; options->fAlwaysPreferHardwareTessellation = true; // Only allow the tessellation path renderer. options->fGpuPathRenderers = (GpuPathRenderers)((int)options->fGpuPathRenderers & (int)GpuPathRenderers::kTessellation); } DrawResult onDraw(SkCanvas* canvas, SkString* errorMsg) override { auto dContext = GrAsDirectContext(canvas->recordingContext()); if (!dContext) { *errorMsg = "GM relies on having access to a live direct context."; return DrawResult::kSkip; } if (!dContext->priv().caps()->shaderCaps()->tessellationSupport() || !GrTessellationPathRenderer::IsSupported(*dContext->priv().caps())) { errorMsg->set("Tessellation not supported."); return DrawResult::kSkip; } auto opts = dContext->priv().drawingManager()->testingOnly_getOptionsForPathRendererChain(); if (!(opts.fGpuPathRenderers & GpuPathRenderers::kTessellation)) { errorMsg->set("GrTessellationPathRenderer disabled."); return DrawResult::kSkip; } if (dContext->priv().caps()->shaderCaps()->maxTessellationSegments() != kMaxTessellationSegmentsOverride) { errorMsg->set("modifyGrContextOptions did not affect maxTessellationSegments. " "(Are you running viewer? If so use '--maxTessellationSegments 5'.)"); return DrawResult::kFail; } // Suppress a tessellator warning message that caps.maxTessellationSegments is too small. GrRecordingContextPriv::AutoSuppressWarningMessages aswm(dContext); draw_test(canvas, SkPaint::kButt_Cap, SkPaint::kMiter_Join); return DrawResult::kOk; } }; DEF_GM( return new TrickyCubicStrokes_tess_segs_5; ) #endif // GR_OGA